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Abstract. Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intrae-
pithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations
such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and process-
ing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to
800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced
the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second
derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification
with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested
in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis.
Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation
and high-grade lesion. These classification results were coincident with those by an experienced gynecology
oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for
in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in
order to establish a large-scale diagnostic database and optimize the tissue classification technique. © 2015 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JB0.20.12.121303]
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1 Introduction

Cervical cancer has been the third most commonly diagnosed
cancer and the fourth most common cause of cancer death in
women worldwide. It has the highest incidence rate in develop-
ing countries, which is attributable to the lack of infrastructure
and resources.! Cervical cancer begins with dysplastic precan-
cerous changes, termed cervical intraepithelial neoplasia (CIN).
The transition from cervical lesions to CIN usually takes
several years, but cancer outbreak can occur in less than a year.
However, if detected early and treated adequately, cervical
cancer is also one of the most treatable and absolutely avoidable
cancers. One of the commonly used methods for early detection
is colposcopy, followed by a Papanicolaou (Pap) smear.> To
facilitate further clinical decision for suspected tissue anomalies,
follow-up examinations may be prescribed within several weeks.
Moreover, the conventional examination method is heavily de-
pendent on the physician’s personal experience and subjective

specificity.**> Hyperspectral imaging techniques characterize tis-
sue functional and molecular properties by acquiring high-res-
olution imaging data in a continuous wavelength range.
For decades, hyperspectral spectroscopy has been used to reveal
characteristic optical contrasts between normal and dysplastic
cervical tissue. Masilamani et al. analyzed and compared the
fluorescence emission spectra between normal and dysplastic
cervical tissue, and they provided a general discussion concern-
ing the application of hyperspectral spectroscopy in cervical
neoplasia detection.>” But fluorescence spectroscopy in the
diagnosis of cervical cancer was usually based on point moni-
toring using a probe. Point monitoring may be susceptible to
noise, and it also ignores the spatial structure of tissue.
Obtaining diffuse reflectance after the application of acetic acid
is another general observation method. Liang et al.® observed
temporal changes in the red and green channels of colposcopy
images before and after a diluted solution (3% to 5%) of acetic

evaluations, which can lead to unnecessary biopsies, additional
costs, increased risks of infection, discomfort, and even delayed
treatment.® Therefore, it is important to develop a rapid and
objective cervical examination tool that can effectively minimize
variables of the examiners and improve reliability.

Optical imaging techniques in combination with automated
image analysis have been proposed for noncontact and noninva-
sive in vivo tissue detection, providing high sensitivity and
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acid was applied. Lange’ developed an automatic detection
method, dividing cervical acetowhitening images into multilevel
regions. However, the reaction is temporal and unstable, it
ignores the original spectral changes caused by component
changes in dysplastic cervical tissue. Diffuse reflectance imag-
ing techniques have been used for noninvasive and in vivo
detection of endogenous biomarkers in cervical tissue without
any additional contrast agents. However, owing to its unique
anatomic structure, accurate differentiation between normal and
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dysplastic cervical tissue in a large cervical surface area is
hindered by nonuniform illumination conditions. To avoid this
problem, Thekkek and Richards-Kortum' used a fiber optical
probe to collect cervical diffuse reflectance without imaging
capability. Gustafsson et al.!! acquired the entire cervical hyper-
spectral reflectance data cube and demonstrated the spectral dif-
ference for different lesion types but did not explain the method
they used to eliminate the effect of nonuniform illumination or
further analysis for tissue classification.

In this paper, we propose an image processing procedure to
classify cervical tissue into normal, inflammation and high-
grade (HG) lesion (CIN 2 or 3) types by wide gap second deriva-
tive spectral analysis and image segmentation. One advantage of
wide gap second derivative spectral analysis method is its rel-
atively lower sensitivity to nonuniform illumination condition
and nonspecific background absorption.'? The technique has
been used to extract useful signals from nonspecific background
data, as it detects the signatures in continuous absorption and
scattering spectra.'>!> Therefore, second derivative spectral
analysis is an ideal method for in vivo detection of spectral char-
acteristics in cervix anomalies. Considering that sequential im-
aging and processing of too many wavelengths in hyperspectral
imaging is very time consuming, we introduced the wide gap
spectral analysis method to reduce the involved wavelength
number and shorten the image processing time. Since the wide
gap second derivative spectral analysis method eliminates need
for the bulky and costly hyperspectral imaging system, it is espe-
cially suitable for detecting cervical anomalies in developing
countries with limited resources.

For rapid diagnosis and cost reduction, we adopted a specific
spectral configuration with superior capability of tissue classi-
fication, minimal number of the required wavelengths, and suf-
ficient sensitivity and specificity. In order to define this specific
spectral configuration, a training data set was used to calculate
the second derivative spectral values at different wavelengths
and various wavelength intervals. A filter was designed to iden-
tify the optimal wavelength set for the maximal spate of different
tissue classes. In our preliminary experiment, wide gap multi-
spectral images were acquired at the wavelengths of 620, 696,
and 772 nm with an interval of 76 nm. A minimum distance
(MD) method was used for segmentation and classification of
the cervical image into three anticipated categories. The exper-
imental results verified the potential usability of the wide gap
second derivative spectra in HG cervical disease screening and
it may be generalized to provide an accurate, real-time, low-cost
diagnosis for various tissue diseases.

GigE interface  AOTF adapter

Computer

Xenon light source

2 Materials and Methods

2.1 Hyperspectral Imaging System

We used an acousto-optic tunable filter (AOTF) hyperspectral
imager (Brimrose, Sparks, Maryland) to acquire the hyperspec-
tral image data. This AOTF hyperspectral imager has been used
for optical characterization of various biological tissue types.
For example, Martin et al.'® used the system to acquire fluores-
cence and reflectance hyperspectral images for the early detec-
tion of esophageal cancer. Arnold et al.!” evaluated the system
clinically and verified its ability to detect dysplastic tissue. In
our study, the working wavelength range of the AOTF system
was adjusted from 500 to 900 nm. A 500-W Xenon light source
was used for the low pass rates of AOTE.'® The experimental
setup for the clinical trial is illustrated in Fig. 1 and the test device
is described in our previous report."” The reflectance image of
cervical tissue was captured by a monochrome charge-coupled
device camera (JAI Apparatus, Japan), which is a 16-bit, high-res-
olution imaging sensor (1392 x 1040 pixel with a 6.45-um pixel
size) with supporting frame rates of 30 frames/s. The spectral
analysis and image processing results were obtained through
MATLAB software (Mathworks Inc., Natick, Massachusetts).

Hyperspectral image data are characterized by a hyperspec-
tral cube containing spatial information in two dimensions and
spectral information in the third dimension. As shown in Fig. 2,
the vertical axis indicates the relative intensity of different wave-
lengths illuminated by the same light source. The wavelengths
we used in each reflection imaging spanned from 600 to 800 nm
at an interval of 2 nm.

2.2 Clinical Data Collection

The clinical data were collected in a clinical trial approved by the
Institutional Review Board (IRB) of the Second Affiliated Hospital
of Chongqing Medical University (IRB No: 2013KLS002).
Generally, the cervical tissue with HGCIN always includes dif-
ferent tissue types, such as normal, inflammation, and CIN. We
regard pathological results as the gold standard to confirm the
distribution of these tissue types. Based on their abnormal
results in a Papanicolaou (Pap) smear or cervical ThinPrep cyto-
logic test, patients who had scheduled biopsies were recruited
for this study before the biopsies were carried out.
Hyperspectral reflectance images were acquired before the rou-
tine colposcopy examinations. A vaginal speculum was inserted
by a nurse and the surface of the cervix was gently cleaned with

Position of subjects

Light controller

Fig. 1 Schematic view of the integrated hyperspectral imaging system for high-grade (HG) lesion

detection.
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Fig. 2 (a) A typical hyperspectral data cube for cervical tissue. (b) The reflectance spectra averaged
within the region of interest (ROI) as marked by a white rectangle in (a).

a cotton swab to remove mucus in order to reduce the interfer-
ence in spectral imaging. The hyperspectral imaging system was
coordinated at a proper position to record hyperspectral images
from 600 to 800 nm. Each imaging process took 10 s. In our
clinical trial, a 4 mm X4 mm white polytetrafluoroethylene
(PTFE) board in a round container was placed on the surface of
cervix. The board had a near-unity reflectance and was used to
eliminate inconsistent exposure time. If the board was large
enough to cover the entire cervix surface, then we could solve
the problem of nonuniform illumination simply by correcting
the data with the spatial reflectance on the board, but this was
difficult to achieve in vivo. Two sets of spectral images were
taken using the same exposure time and at the same position,
one of them with the PTFE board on the surface. After acquiring
a series of cervical reflectance images of multiple wavelengths,
the subject received a routine colposcopy. A diluted solution
(3% to 5%) of acetic acid and Lugol’s iodine solution was suc-
cessively applied to the cervix. In acetowhitening, the metaplas-
tic epithelia turns white following the application of acetic acid,
whereas normal cervical epithelia remains pink.? Liang et al.3
analyzed the acetowhitening phenomenon at different time inter-
vals and monitored the reflectance changes of normal and dys-
plastic cervical tissue. However, although applying acetic acid
rapidly enhances the differences in appearance between normal
and dysplastic tissue, it is difficult and unstable to study. Lugol’s
stain is another widely used visual inspection method for cer-
vical cancer screening.”’ Iodine is absorbed by normal cervical
cells, coloring the tissue surface from healthy pink to dark
brown or black. However, Iodine cannot be absorbed by abnor-
mal cells, leading to yellow or “unstained” areas. The acetow-
hitening image and iodine staining image are all recorded by
clinical digital colposcopy (SLC-1000B, Goldway Apparatus,
China), respectively. Upon completion of the hyperspectral
scan and colposcopic examination, the diagnosis is followed
by a biopsy. Clinicians will refer to the cervical digital colpos-
copy images of acetowhitening and iodine staining and then take
biopsies at suspicious sites and label them. Biopsy tissue sam-
ples were sent to pathology department and made into sections
followed by microscopic diagnosis by pathologist. The lesion
level is usually graded by the basal proportion of epithelium
occupied by abnormal cells.>! HG CIN is confined to the
basal two-thirds or above of the epithelial thickness. Finally,
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the pathologist makes a confirmed diagnosis and determines
the lesion level. The clinical colposcopy and biopsy results pro-
vided a standard comparison and evaluation for our proposed
algorithms.

Based on the clinical protocol in the study, only potential
patient can be enrolled for the hyperspectral imaging. There-
fore, we have not included a control group in the clinic trial.
Finally, six patients were enrolled in the hyperspectral imaging
clinical trial. Among them, two patients yielded overexposed
hyperspectral images and one patient had a large amount of
secretion on the cervical surface that blocked the field of view.
Therefore, only the spectral data from three subjects were
finally used for spectral analysis and tissue classification tasks.

3 Spectral Analysis and Image Processing

3.1 Data Correction

As mentioned above, we took two sets of cervical hyperspectral
images for each subject, and the raw data were corrected using a
PTFE board and a dark current to remove the interferences of
inconsistent exposure time among bands. The PTFE board was
calibrated in advance by a standard reference material 2044
NIST traceable white diffuser (NIST, Gaithersburg, Maryland).
The dark current Ry, (4) was acquired by keeping the lens
covered during exposure. The corrected reflectance R(A) is
expressed as in the following equation:

R(/l) _ Rraw (A) - Rdark(/l)
Tvoard '

€]

where rp,.q 1S the mean value of a region of interest (ROI)
selected manually on the surface of the PTFE board, shown
as the black rectangle in Fig. 3(a). R, (1) denotes the raw cer-
vical image data without the PTFE board at 696 nm, as shown in
Fig. 3(b), and the relative reflectance data were corrected with
the absolute reflectance of the PTFE board and dark current by
Eq. (1). Figure 3(c) shows the corrected image at the same wave-
length. Figure 3(d) shows the corrected reflectance spectrum
compared with the raw spectrum, corresponding to the mean
value of the ROIs in Figs. 3(b) and 3(c), respectively.
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Fig. 3 Spectral data showing all of the reflectance images at 696 nm: (a) the raw cervical image with a
polytetrafluoroethylene (PTFE) board on the surface, (b) the raw cervical image without the PTFE board,
and (c) the corrected image according to Eq. (1). (d) The reflectance spectra before and after correction
by the PTFE board. Each data point in the spectra corresponds to the reflectance value averaged within

the marked ROI in (b) and (c).

3.2 Issue of lllumination

The data correction process with the PTFE board had the ability
to eliminate the inconsistent exposure time and Fig. 4 shows the
corrected reflectance of different cervical tissue types. One
group of two spectra with the same color indicates the same cat-
egory of the cervical tissue, which was selected depending on
the biopsy results in combination with the clinician’s experi-
ence. The mean values of ROIs identified by different marker
types in Fig. 4(a) were calculated and are shown in Fig. 4(b),
which displayed interlaced reflectance characteristics. It was dif-
ficult to observe and determine the differences between these
reflectance spectra based on original characteristics. Conven-
tional segmentation algorithms, such as Mahalanobis distance,
maximum likelihood, k-means, etc., always require significant
features among clusters, which are difficult to directly use. Con-
sidering that the spectral spikes in Fig. 5(b) were caused by
measurement noise instead of actual spectral characteristics,
data smoothing was used before further imaging analysis.
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The reflectance spectral differences for different tissue types
may be also induced by the nonuniform illumination condition.
In order to evaluate the contribution of the nonuniform illumi-
nation condition, a PTFE board was cut to the cervical tissue
size and placed in a human cervical model to simulate the illu-
mination condition in the clinical trial, as shown in Fig. 5(a).
Multiple ROIs were selected at different locations of the PTFE
board surface, as identified by different marker types and colors.
The mean intensity of these ROIs in Fig. 5(a) was calculated and
is shown in Fig. 5(b). According to Fig. 5(b), the ROIs in different
positions showed a superposition of intensity caused by non-
uniform illumination. This measurement bias caused by a non-
uniform illumination condition can be effectively reduced by our
second-derivative spectral analysis method, as is discussed later.

3.3 Spectral Analysis

Derivative spectral analysis methods may effectively reveal
the subtle details and minimize the effect of nonuniform

December 2015 « Vol. 20(12)
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Fig. 4 (a) Reflectance image at a single wavelength. The markers belonging to different tissue types in
the image were selected depending on biopsy results in combination with the clinician’s judgment.
Different marker types with blue, green, and red indicate normal, inflammation, and HG lesion area
on the cervical tissue, respectively. (b) Averaged reflectance spectra after correction for the correspond-

ing markers labeled with the same color in (a).

illumination.'* Among different derivative spectra, the first and
the second derivatives are most commonly used. In this paper,
the second derivative spectrum was used because of its lower
sensitivity to illumination variations.'”> The derivative spectra
were calculated by dividing the difference of intensity values
between spectral bands by the wavelength interval separating
them. On the other hand, Mark and Workman'® did not use
the denominator term of the derivative calculation to observe

0.65

0.45

Intensity

04

035

0.3/ =ROI2
—=-ROI3
—>—ROI4

derivative values changes with different wavelength intervals.
For the approximate calculation of the second derivative spec-
trum in this study, the intensity values of three wavelengths
were used:

A+ A2+ R(A—AL) = 2R(2)

Ry R :

, (@)

—ROI5
0.2éi00

650 700
Wavelength (nm)

Journal of Biomedical Optics

Fig. 5 (a) Reflectance image of PTFE board at 696 nm and the markers on the surface were selected
manually. (b) Averaged intensity of ROls was identified by different markers in (a). The intensity variation
of different ROIs was difficult to be detected by eyes in (a).
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Fig. 6 Wide gap second derivative spectra of the corresponding
spectra in Fig. 5(b) with a wide gap of 60 nm. The value variations
are controlled in 0.01, which shows an effective decrease in nonuni-
form illumination reduction.

where A is the wavelength interval and a is defined as a con-
stant. Derivative spectroscopy is quite susceptible to measure-
ment noise, and exaggerating Al in Eq. (2) can reduce noise
effects.!>!5 Therefore, the method called wide gap second
derivative was used to reduce imaging artifacts caused by non-
uniform illumination and background absorption in this study.

We selected an appropriate larger interval of 60 nm to calculate
the second derivative values of Fig. 6(b), and Fig. 6 shows that
the wide gap second derivative analysis effectively reduces the
measurement bias caused by nonuniform illumination condi-
tions. In comparison with greater than 30% variations in the
reflectance spectra, the location-dependent variations in the sec-
ond derivative spectra were controlled within 10%. On the other
hand, the common image compensation techniques, for exam-
ple, histogram equalization, homomorphic filter and Retinex,
etc., are always applied for a single image;*>* they may intro-
duce new noise and change the spectra features if they are
applied for hyperspectral images.

The wavelength interval A/ needs to be optimized in second
derivative differential spectral analysis in order to improve the
reliability for tissue classification.'>!> An optimization algo-
rithm was developed to screen A4 for tissue differentiation with
high sensitivity, high specificity and minimal number of the
required wavelengths. The flowchart of the algorithm is
shown in Fig. 7. All the calculation were based on the correct
pathological results, which provided the selection gist for the
ROIs. According to the pathological results, we selected five
to seven ROIs on cervical images for each cervical tissue cat-
egory as training samples. In order to acquire reliable outputs,
we selected 10 sets of ROIs for each patient and their averages
were calculated for further processing. After necessary smooth
processing, the program based on MATLAB took various inter-
vals from 2 to 90 nm with the corresponding three wavelengths
to create a large synthetic data set for the screening filter. After
this process, the separability of ROIs was conducted based on
the difference between interclass distance and intraclass vari-
ance as the “score” of spectral configuration.?>?* In combination
with the calculation of three patients, the total score of universal
spectral configuration for three patients was shown in Fig. 8,

(Patient 2) [Patient 3

ple 2]

------ {Sample 10]

{Sample 1: 5-7 ROIs for each] Gam

cervical tissue category

|Average spectra of ROIsl

Second derivative calculation at
wavelength intervals of 2-90 nm.

atisfy the classification of ROIs ?

Yes No

|Save the separability of ROIs as “score” |

Total score of selected spectral

configuration in 10 samples
L

,_‘Remova !;

Total score of Universal spectral
configuration of three patients

lsort

/ Best spectral conﬁguratior/

Fig. 7 The calculation process of screening filter.
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Fig. 8 The sorted total score of spectral configuration. “CW” is short
for the center wavelength in the calculation of the second derivative.
The highest score of A4 =76 nm and CW = 696 nm means that the
wavelengths 620, 696, and 772 nm with a specific wide gap of 76 nm
emerged as the optimal selection.

where the center wavelength is denoted as “CW” and the wave-
length interval is denoted as AA. Based on this analysis, the
optimal configuration of Al =76 nm and CW = 696 nm
was derived out of 61 spectral configurations.

The above optimal wavelength parameters were then applied
to the analysis of hyperspectral images. Figures 9 and 10 show
the effectiveness of wide gap second derivative analysis with the
optimal wavelength set and interval. After the second derivative

0 —©—Normal ! ' ‘ ' ! : '
—©—Normal
-0.05 Inflammation
Inflammation
—+—HG
-0.1|2-HG K
oo
-0.15
)
2
S 07
@
°
o 2025820 L A T
o
o
@
[72]
03N
F:
-0.35
-0.4
-0.45

1 1 1 1 1 1 1 1 1
680 685 690 695 700 705 710 715 720
Wavelength (nm)

Fig. 9 Wide gap second derivative spectra of the corresponding aver-
aged reflectance spectra in Fig. 4(b). The wavelength interval used for

calculation was 76 nm. The arranged regularly spectral values at
696 nm could be used for further tissue classification.
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calculation with a wavelength interval of 76 nm, the disordered
spectra in Fig. 4(b) were regularly rearranged in many wave-
lengths, especially around 696 nm as in Fig. 9.

Figures 10(a) and 10(b) illustrate the second derivative values
at the selected cervical locations from three patients. Data from
different patients are labeled with different data markers and
those of different tissue types are labeled in different colors.
Figure 10(a) shows the reflectance values averaged in the
selected ROIs from three patients at 696 nm. According to the
figure, different tissue types cannot be effectively differentiated
based on the reflectance values. Figure 10(b) shows the same
data set after wide gap second derivative analysis and normali-
zation using the selected wavelengths: 620, 696, and 772 nm
with a specific wide gap of 76 nm. As the dashed lines indicate
in the figure, different tissue types can be effectively classified
based on the specific second derivative spectral value.

3.4 Image Segmentation

After the reflectance spectrum were processed and the wave-
length combinations were screened by the algorithm proposed
above, the used wavelengths from 600 to 800 nm were narrowed
to several specific wavelengths for classification, which also
greatly reduces the associated cost and operation time. Three
data sets of hyperspectral images acquired from the correspond-
ing patients were studied in this paper. Based on the wide gap
second derivative algorithm, only three spectrum images were
used in the following image classification processing, and they
were processed to generate a computed image by Eq. (2). It can
be clearly observed in Fig. 10(b) that the distance between clus-
ters was obvious. Therefore, we adopted an MD segmentation
algorithm based on the Euclidean distance.** This segmentation
process can be expressed as

3

C, = min(Dg,). @)

Here, Ry; is the wide gap second derivative value of each pixel of
the computed image and Rf is the training data of three tissue
types, where x = (1,2, 3) indicates the index of the three differ-
ent tissue categories. Dg, is the distance calculated by R and
three different values of Ry;. C, indicate that the R is classified
to the corresponding category by evaluating the minimum
value Dg;.

4 Results and Discussion

An imaging processing procedure that combines a wide gap sec-
ond derivative spectral method and a segmentation algorithm
was developed to classify cervical tissue into three categories of
normal, inflammation and HG lesion. Figure 11 shows the
experimental results for three patients.

Figures 11(al), 11(bl), and 11(cl) are digital colposcopy
images of these patients after the application of 3% to 5% acetic
acid. The suspicious regions as marked by black circles in these
figures were identified by an experienced surgeon for further
biopsy. Figure 11(al) shows the bleeding dysplastic tissue
caused by the removal of mucus and residue as well as the
stimulation of acetic acid. Therefore, a cotton swab was gently
applied to the bleeding tissue in order to ensure appropriate data
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Fig. 10. (a) The average reflectance values within the ROls from three patients were acquired at 696 nm.
(b) The normalized second derivative values derived from the same ROlIs using the selected wavelength
set of 620, 696, and 772 nm, with a wavelength interval of 76 nm.

collection and clinical judgment. Figures 11(a2), 11(b2), and
11(c2) are digital colposcopy images of the patients after the
application of Lugol’s stain; the presence or lack of stain is
obvious in these figures. Figures 11(a3), 11(b3) and 11(c3)
show the multispectral reflectance images acquired from the

three patients. Following the second derivative spectral method
and the classification algorithm as described before, the cervical
tissues are classified into three categories of normal, inflamma-
tion, and HG lesion, as shown in Figs. 11(a4), 11(b4), and
11(c4). The classified HG lesion areas are highlighted in red,

Normal
Inflammation
HG

Unknown

Highlight

Fig. 11 Image classification results for patients (a), (b), and (c) with HG lesions. (a1), (b1) and (c1):
Digital colposcopy images after the application of 3% to 5% acetic acid. The black circles, drawn by
an experienced surgeon, denote the HG lesion areas. The area divided by the red line indicates the
portion of nabothian cysts. (a2), (b2), and (c2): Digital colposcopy images after the application of
Lugol’s iodine. (a3), (b3), and (c3): Reflectance image of a single wavelength at 696 nm. (a4), (b4)

and (c4): Classification results.
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Fig. 12 Influence of oxygenation. (a) The molar extinction coefficients of oxygenated hemoglobin change
with wavelengths. The extinction coefficients of oxygenated hemoglobin reach their minimum at around
696 nm and (b) the smooth data of different types of cervical tissue reflectance which have maximal
diffuse reflectance level at a wavelength of 696 nm. These figures illustrate the effect of oxyhemoglobin

in cervical tissue.

corresponding to the suspicious areas previously identified by
the surgeon and marked in black circles [Figs. 11(al), 11(b1),
and 11(c1)]. The biopsy results further confirmed the HG lesion
status for the cervical tissue in these black circled areas. These
results demonstrate the clinical effectiveness of our proposed
algorithm in identifying suspicious malignant regions. It is
worth mentioning that many nabothian cysts can be observed on
the cervical surface, as labeled by red lines in Fig. 11(bl).
Nabothian cysts are a common symptom of cervical inflamma-
tion that cannot be stained by iodine, as shown in Fig. 11(b2).
The presence of these cysts does not affect the classification
results by our algorithm.

We believe that the primary biomarker that affects the spec-
tral sensitivity of cervical tissue at 600 to 800 nm is oxyhemo-
globin. Previous studies have demonstrated that oxyhemoglobin
is a primary absorber in cervical tissue.'®*%" Hornung et al.?®
showed that the averaged hemoglobin oxygen saturation
(SO, = [HbO,]/[TotHb]) in dysplastic sites was lower than
that in normal sites (76.5% =+ 14.7% versus 84.9% =+ 3.4%), but
the difference was not statistically significant. Figure 12(a) has
also shown that oxyhemoglobin has a low extinction coefficient
at around 696 nm.” Figure 12(b) shows our experimental data
after smoothing. The extinction coefficients of oxygenated
hemoglobin reach a minimum at 696 nm, corresponding to
the maximal diffuse reflectance level at that wavelength. These
results indicate the role that oxyhemoglobin plays in the reflec-
tance spectra of cervical tissue.

In addition to the absorption properties of cervical tissue,
scattering is primarily affected by collagen fibers, organelles
and cell nuclei.?® Different cervical lesion types have different
concentrations of scatters, leading to variations in diffuse reflec-
tance spectra. The dysplasia in the cervix is usually accompa-
nied with increased epithelial thickness and nuclear-cytoplasmic
ratio. Therefore, tissue with HG precancer commonly comes
with an increased scattering in the epithelium.’**! In the
study of Collier et al.,’? the scattering coefficients of cervical
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HG epithelium (69 cm™!) were higher than normal epithelium
(22 cm™"). Pavlova et al.** had also reported that the density of
collagen fibers decreased approximately half in cervical HG
stroma, which might affect light scattering. Based on these stud-
ies, Weber et al.’! summarized that the scattering in cervical HG
epithelium was increased by a factor of 3 relative to normal
tissue. However, the scattering in the stroma was decreased
by a factor of 0.75 relative to normal tissue. Furthermore, in
Hornung’s research, the ratio of the scattering coefficient of
HG lesions (CIN 2 or 3) and normal tissues was decreased at
674,811, 849, and 956 nm. Thus, we inferred that the ratio from
696 to 800 nm was gradually reduced, corresponding to the dif-
ference in the declining rate of reflectance after 696 nm for HG
lesions and normal tissue. As we know, the method of the sec-
ond derivative can be used to detect the rate of change in the
progress curve.** We may further infer that the reflectance
changes identified at 620, 696, and 772 nm are associated with
the changes in oxyhemoglobin concentration and scattering in
cervical tissue.

5 Conclusions and Future Works

We propose a mathematical method that uses hyperspectral
wide gap second derivative analysis and image classification for
in vivo detection of cervical neoplasia. This method may effec-
tively reduce the imaging artifacts caused by nonuniform illu-
mination and background absorption. Furthermore, with second
derivative analysis, only three specific wavelengths (620, 696,
and 772 nm) are needed for tissue classification with optimal
separability. The clinical feasibility of the proposed image
analysis and classification method was preliminarily tested in
a clinical trial, where cervical hyperspectral images from three
patients were used for classification analysis. Our study results
show that in vivo and noninvasive detection of cervical neoplasia
without acetic acid is technically possible. Further clinical
research is needed in order to establish a large-scale database
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and to verify the sensitivity and specificity of the tissue classi-
fication technique for in vivo detection of cervical neoplasia and
various other tissue anomalies.
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