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Abstract. The model-based image reconstruction techniques for photoacoustic (PA) tomography require an
explicit regularization. An error estimate (η2) minimization-based approach was proposed and developed for
the determination of a regularization parameter for PA imaging. The regularization was used within Lanczos
bidiagonalization framework, which provides the advantage of dimensionality reduction for a large system of
equations. It was shown that the proposed method is computationally faster than the state-of-the-art techniques
and provides similar performance in terms of quantitative accuracy in reconstructed images. It was also shown
that the error estimate (η2) can also be utilized in determining a suitable regularization parameter for other popu-
lar techniques such as Tikhonov, exponential, and nonsmooth (l1 and total variation norm based) regularization
methods. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.10.106002]
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1 Introduction
Photoacoustic tomography (PAT) is a rapidly growing noninva-
sive, in vivo hybrid biomedical imaging technique combining
both optics and acoustics. It has applications in breast cancer
imaging, brain imaging, temperature monitoring, sentinel lymph
node imaging, and so on.1–6 It holds a great potential for ana-
tomical, functional, and molecular imaging in preclinical and
clinical medicine.6–9 In PAT, to-be-imaged biological tissue is
illuminated with a nanosecond laser pulse, which generates
internal acoustic wavefields through the thermoacoustic effect.6

The initial amplitude of induced acoustic wavefield (pressure
rise) is proportional to the absorbed optical energy density in
the tissue. These acoustic wavefields propagate out of the tissue
and are measured by the use of an array of ultrasonic transduc-
ers. From the measured acoustic data, an image reconstruction
algorithm, analytical, or model-based in nature,10–14 is employed
to obtain an estimate of the image that depicts the initial pressure
rise or the spatially variant optical energy density distribution
within the imaged tissue.

Many analytical image reconstruction algorithms have been
proposed in the literature.15 These algorithms, in the form of
filtered back projection, are based on spherical Radon transform.
They require a large amount of data to accurately estimate
the initial pressure distribution. Large data acquisition needs
expensive ultrasonic transducer arrays along with increased
data collection time when a mechanical scanning is employed.
Moreover, the analytical algorithms do not provide much
required quantitative accuracy in limited data cases.16

Model-based image reconstruction algorithms15,16 can
improve image quality in these limited data cases and have
a larger utility for practical scenarios. Thus, development and
investigation of model-based algorithms for PAT image
reconstruction is an important research topic of current interest.
In limited-data case, the regularized least-squares QR (LSQR)

based image reconstruction scheme was earlier deployed by our
group17 and proven to be highly efficient and quantitatively
more accurate in providing regularized solution.17,18 Traditional
regularization schemes, such as Tikhonov regularization, become
relatively expensive in terms of computation with a requirement
of having an explicit appropriate regularization parameter.

Photoacoustic (PA) image reconstruction problem deals with
estimation of initial condition of an observed effect. This is a
discrete ill-posed problem, where the system matrix is ill con-
ditioned in nature. The computation of numerical solution is
challenging due to the possibility of severe error propagation
(caused by measurement inaccuracies, transmission errors of
the data, and discretization errors). The regularized solutions,
such as Tikhonov regularization, reduce the sensitivity of the
computed solution to errors in the data. These regularization
methods require a suitable value of regularization parameter to
be chosen. In this study, we investigate a class of error estimates
ðη2Þ for the approximate solution and propose to apply this error
estimate to compute a suitable value of the regularization param-
eter. This study focuses on the widely popular Tikhonov regu-
larization framework, which uses Lanczos bidiagonalization to
provide dimensionality reduction to the system matrix in case of
limited-view datasets.17,18 The applications of the proposed error
estimates to various direct and iterative regularization methods
were also discussed, and the effectiveness of this analysis is
proven by extensive numerical experimentation. It is proven
that the class of error estimate that is proposed here is very effec-
tive and computationally efficient for evaluation of regulariza-
tion in PA imaging.

2 Forward Problem in Photoacoustic
Tomography: System Matrix Approach

A system matrix-based approach was utilized,18 where the PA
system is represented by a Toeplitz matrix of a time-varying
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causal system. This approach was extensively discussed in
Refs. 17 and 18, herein it is only briefly reviewed.

The image representing the imaging domain, having a
dimension of n × n, is vectorized by stacking all columns in
lexicographic manner, converting it into a n2 × 1 size vector.
This vector was represented as x, the unknown to be estimated
in the PA inverse problem. The time varying PA data collected at
the ultrasonic transducers was also stacked into a m × 1 dimen-
sional vector, represented as the measurement vector b. The PA
system matrix ðAÞ has a dimension of m × n2, each column
representing impulse response (IR) of a corresponding pixel in
the image, as explained in Refs. 17 and 18. The k-Wave tool-
box,19 which simulates the acoustic wave propagation in two
dimension, was utilized to construct the PA system matrix.
This simulation is computationally expensive to perform for
all pixels. To reduce the computational time for building the sys-
tem matrix, IR is recorded for only one pixel (corner pixel), and
IRs for the rest of the pixels were determined using the shifting
and attenuation properties of PA signal. The IRs for all pixels
are computed and filled in column-by-column in the system
matrix form.

It was assumed that the medium has homogeneous ultra-
sound properties. The sound of speed was modeled to be
1500 m∕s (approximate value for typical soft tissues). The ultra-
sound detectors were considered to be point detectors with
a frequency response of 2.25 MHz as center frequency and
70% bandwidth. These detectors were placed equidistantly
around a 22-mm radius circle. A perfectly matched layer was
used to satisfy the boundary condition. The simulation geometry
had a k-Wave computational grid of size 501 × 501 pixel size,
each pixel measuring 0.1 mm (50 mm × 50 mm). The imaging
domain had 201 × 201 pixels ðn2 ¼ 40;401Þ. The time step for
data collection was 50 ns, with a total of 500 steps. For a total of
60 detectors’ geometry, m ¼ 60 × 500. Thus the size of the
system matrix ðm × n2Þ becomes 30;000 × 40;401.

To summarize, the forward model of PA imaging can be
expressed as

EQ-TARGET;temp:intralink-;e001;63;345Ax ¼ b; (1)

where A is the system matrix (collection of IRs of each pixel),
x is initial pressure value (unknown) for each pixel in the
imaging domain, and b is the vector containing the recorded
measurement data from ultrasound transducers.

3 Error Estimate for a Regularized Solution
The error (e) in the measurement vector (b), also referred as
noise, can be caused by measurement inaccuracies and discre-
tization errors. Let b̂ ∈ Rm (unavailable) be the noise-free vector
associated with b:

EQ-TARGET;temp:intralink-;e002;63;203b ¼ b̂þ e; (2)

and let x̂ ∈ Rn2 be the minimal-norm least squares solution of
the following problem,

EQ-TARGET;temp:intralink-;e003;63;148arg min
x∈Rn2

kAx − bk22: (3)

Here, k · k2 represents l2 norm. The aim of the PA inverse prob-
lem is to estimate the initial pressure distribution, x, from the
above equation.17,18 In order to compute a useful approximation,
the minimization problem is replaced by a nearby problem,

which is less sensitive to noise in b, also known as Tikhonov
regularization. The cost function minimization for this problem
becomes

EQ-TARGET;temp:intralink-;e004;326;719xλ ¼ arg min
x∈Rn2

kAx − bk22 þ λkRxk22; (4)

where λ > 0 is a regularization parameter and R is a regulari-
zation operator. For the conventional Tikhonov regularization
R ¼ I; other possible choices of R are discussed in Ref. 20.
The minimization of cost function in Eq. (4) leads to the solution

EQ-TARGET;temp:intralink-;e005;326;634xλ ¼ ðATAþ λIÞ−1ATb; (5)

for any λ > 0. The regularization parameter (λ) determines the
sensitivity of the solution xλ to the noise/error e in b, and how
close xλ would be to, x̂, the desired solution of Eq. (3). Thus,
determining a suitable choice of λ is a very important part of
finding solution. This work addresses this problem and proposes
a method based on error estimates to find the regularization
parameter.

The initial pressure rise (x) in the imaging domain is
unknown in experiments. The associated residual vector is
defined to be r :¼ b̂ − Ax. Brezinski et al.21 derived the family
of error estimates for the norm of the difference, i.e., d ¼ x − x̂,
given as22

EQ-TARGET;temp:intralink-;e006;326;470kdk22 ≈ η2ν :¼ dν−1o d5−2ν1 dν−32 ; ν ∈ R; (6)

where

EQ-TARGET;temp:intralink-;e007;326;427do :¼ krk22; d1 :¼ kATrk22; d2 :¼ kAATrk22. (7)

Proceeding from Eq. (6), the error estimate for ν ¼ 2 can be
defined as

EQ-TARGET;temp:intralink-;e008;326;378η2 ¼
krk2kATrk2
kAATrk2

: (8)

Since the noise-free measurement vector (b̂), and the true sol-
ution (x) is not available, the residual vector (r) in Eq. (7) is
written as

EQ-TARGET;temp:intralink-;e009;326;300r ¼ rλ :¼ b − Axλ: (9)

The regularization parameter (λ) is determined by the min-
imization of the expression in Eq. (8):

EQ-TARGET;temp:intralink-;e010;326;247λ ¼ arg min
λ∈R>0

η2ðλÞ ¼ arg min
λ∈R>0

krλk22kATrλk22
kAATrλk22

: (10)

Note that in this work, only an approximation to η2ðλÞ was
utilized (achieved through step 2 of Algorithm 1), thus removing
the requirement of computing rλ to find λ. However, Shaw
et al.17 utilized the krλk22, which requires estimation of xλ,
which involves matrix–matrix operations. If the singular value
decomposition (SVD) of the system matrix (A) is available, the
computation of residual r [Eq. (9)] and the estimates [Eq. (6)]
is inexpensive. However, it may not be the case and as A is
large, these computations become expensive in the Tikhonov
regularization framework. The cost efficiency of the system
can be accomplished by reducing the matrix A to a small
lower bidiagonal matrix by applying few steps of Lanczos
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bidiagonalization.17,18 This framework for PA image reconstruc-
tion with the application of proposed regularization method is
described in next section.

3.1 Regularized LSQR Method

The equations of Lanczos bidiagonalization can be written as23

EQ-TARGET;temp:intralink-;e012;63;165Gkþ1ðβ0e1Þ ¼ b; (12)

EQ-TARGET;temp:intralink-;e013;63;135AHk ¼ Gkþ1Bk; (13)

EQ-TARGET;temp:intralink-;e014;63;110ATGkþ1 ¼ HkBT
k þ αkþ1hkþ1eTkþ1; (14)

whereGk andHk represent the left and right orthogonal Lanczos
matrices, β0 represents the l2 norm of b, e1 as a unit vector of

dimension k × 1, and Bk represents the lower bidiagonal matrix
having αk in the main diagonal. The cost function can now be
written as18,24

EQ-TARGET;temp:intralink-;sec3.1;326;719Ω ¼ kβ0e1 − BkxðkÞk22 þ λkxðkÞk22;

where xðkÞ is the dimensionality reduced version of x, such that
k < n2. The updated equation for the solution estimate is given
as

EQ-TARGET;temp:intralink-;e015;326;652xðkÞest ¼ ðBT
kBk þ λIÞ−1β0BT

k e1: (15)

Once xðkÞest is estimated, then the initial pressure distribution can

be obtained using the relation po ¼ x ¼ Hkx
ðkÞ
est .

Determining the required number of Lanczos bidiagonaliza-
tion steps (k) and the regularization parameter (λ) using the error
estimate (η2) is given in Algorithm 1. We start the process with a
grid of q log-equispaced values of λ in the interval [λmin, λmax]:

EQ-TARGET;temp:intralink-;e016;326;5470 < λ1 < λ2 < : : : < λq. (16)

These grid points are divided into two sets, S1 and S2, as
discussed in the Algorithm 1. The algorithm has two phases,
the first phase computes a nearby estimate of the suitable
regularization parameter λ�. The initialization starts with S1 :¼
fλ1; λ2; : : : ; λqg and S2 :¼ ∅. The upper and lower bounds of
the error estimate, η2ðλÞ, can be computed with the help of
Gauss–Radau quadrature rules, as described in Theorem 3.1
of Ref. 22. A smallest λp within the set S1 was searched
such that the absolute difference of upper and lower bound is
smaller than a set threshold [See Eq. (11)]. Once this λp is
found, all parameters in set S1 after p’th index will be moved
to set S2. This indicates that η̄2ðλjÞ was considered as an
approximation of η2ðλjÞ for j ¼ p; pþ 1; : : : ; #S1.

22 Now the
number of Lanczos bidiagonalization steps was increased,
and the same procedure was performed until one finds an aver-
aged error estimate [η̄2ðλpþ1Þ], which is lower than its own value
in the previous step [η̄2ðλpÞ]. This means that a local minima λ�

of the function η2ðλÞ was found at an internal point of S2 (this
step could be seen in Fig. 2). Once λ� is found, no more Lanczos
bidiagonalization steps were required. This completes the first
phase of the algorithm.

The second phase improves the accuracy of λ�. This was
achieved by adding the points around λ� in set S2. The points
were added by bisection in log-scale and the value of λ� was
being updated such that Eq. (11) is valid. This step was per-
formed until the minimum distance between adjacent grid
points around λ� in S2 reaches a user defined tolerance (10−4).
Thus, refined λ ¼ λ� is the suitable regularization parameter.

Other popular techniques to determine regularization param-
eter are L-curve, generalized cross-validation (GCV) method,
and LSQR method. Shaw et al.17 showed that LSQR was faster
and quantitatively more accurate than L-curve and GCV meth-
ods. The LSQR method is based on the minimization of residual
kb − Axk22. The detailed description of regularized LSQR
method is omitted here, interested readers can refer to
Algorithm 1 in Ref. 17, which minimizes the squared l2 norm
of residual vector (r). The main aim of the present study is to
show that the proposed method is computationally more effi-
cient than other popular techniques, without compromising the
reconstructed image quality.

Algorithm 1 Algorithm for evaluation of regularization parameter and
number of Lanczos bidiagonalization steps.

Input: A;b; ½λmin; λmax�; kmax = max number of Lanczos
bidiagonalization steps

Output: Required number of Lanczos iterations: k ; regularization
parameter: λ

1 Make a grid of q log-equispaced values of λ in the interval [λmin,
λmax]. Define S1 :¼ fλ1; λ2; : : : ; λqg and S2 :¼ ∅.

2 For each λj in S1, compute the lower bound ηl2ðλj Þ, the upper bounds
ηu2ðλj Þ, and their average η̄2ðλj Þ. (Refer Theorem 3.1 of Ref. 22).

3 Find the smallest index p, such that

EQ-TARGET;temp:intralink-;e011;62;588jηu2ðλj Þ − ηl2ðλjÞj < β · η̄2ðλjÞ; j ¼ p; p þ 1; : : : ; #S1;

(11)

where β is user specified tolerance (typically, 10−4) and #S1 is the
cardinality of the set S1.

4 if For above p’th index, Eq. (11) = true then

5 Move fλp; λpþ1; : : : ; λ#Ng from S1 to S2

6 End

7 Increase k :¼ k þ 1, i.e., perform another Lanczos bidiagonalization
step and repeat the algorithm steps 1 to 5 until

η̄2ðλpÞ > η̄2ðλpþ1Þ

for some pair fλp; λpþ1g ⊂ S2, this gives local minima λ� of the
function η̄2ðλÞ and k is the corresponding number of Lanczos steps.

8 Add points around λ�, by bisection in log-scale, to refine the set S2.

9 Repeat step 3. Update value of λ�.

10 if λ� − λadjacent < tolerance ð10−4Þ then

11 Required λ ¼ λ�;

12 Else

13 Repeat steps 8 to 11;

14 End
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It will also be shown in the next subsections that the pro-
posed error estimate (η2) is generic in nature and can be utilized
(for example, instead of r in LSQR-based method proposed in
Ref. 17) for other popular model-based reconstruction tech-
niques, with examples of traditional Tikhonov regularization,
recently proposed exponential filtering,24 and l1- or TV-norm
based regularization.

3.2 Traditional Tikhonov Regularization

The Tikhonov-based l2 norm smoothness constraint is widely
utilized for solving the reconstruction problem. As seen in
Eq. (5), the Tikhonov regularization solution can be written as

EQ-TARGET;temp:intralink-;e017;63;612ðATAþ λIÞxλ ¼ ATb: (17)

The SVD of the system matrix, i.e., its reduction to diagonal
form, can be represented as

EQ-TARGET;temp:intralink-;e018;63;559A ¼ UΣVT; (18)

where U and V are left and right orthogonal matrices and Σ is
a diagonal matrix containing singular (spectral) values on its
diagonal. Using the SVD of A [Eq. (18)], the solution to
Eq. (17) for this case can be rewritten as24

EQ-TARGET;temp:intralink-;e019;63;488xλ ¼ ðVΣTΣVT þ λIÞ−1VΣTUTb; (19)

EQ-TARGET;temp:intralink-;e020;63;456xλ ¼ VΣ†
FU

Tb; (20)

where the filtered singular values Σ†
F is given as

EQ-TARGET;temp:intralink-;e021;63;417Σ†
F ¼ diag

�
ϕi

σi

�
; (21)

where σi is i’th singular value of A, and ϕi are the filter factors
defined as24

EQ-TARGET;temp:intralink-;e022;63;350ϕi ¼
σ2i

σ2i þ λ
: (22)

Rewriting Eq. (17) in terms of residual [Eq. (9)] makes

EQ-TARGET;temp:intralink-;e023;63;293ATrλ ¼ λxλ; (23)

where rλ is the residue expressed in Eq. (9). xλ can be evaluated
using Eq. (20). Substituting ATrλ with λxλ in Eq. (8), the expres-
sion becomes

EQ-TARGET;temp:intralink-;e024;63;229η2ðλÞ ¼
krk2kxλk2
kAxλk2

: (24)

For the case of linear systems treated by Tikhonov method,
above representation of the error estimate becomes numerically
much more effective than Eq. (8). This estimate can be utilized
in the framework of Algorithm 1 (especially in steps 8 to 14) to
determine the required regularization parameter.

3.3 Exponential Filtering or Showalter’s Method

The exponential filtering method was recently proposed for PA
image reconstruction.24 This method considers the exponential
filtering of singular values of PA system matrix (A). This

filtering was applied in the Tikhonov framework with solution
being determined using Eq. (20) with a difference that the filter
factors (ϕi‘s) in this case are written as

EQ-TARGET;temp:intralink-;e025;326;719ϕi ¼ 1 − expð−σ2i ∕λÞ: (25)

Similar to Eq. (17), the solution can be uniquely determined
by the consistent linear system:

EQ-TARGET;temp:intralink-;e026;326;666ðATAþ λRTRÞxλ ¼ ATb; (26)

which implies

EQ-TARGET;temp:intralink-;e027;326;623ATrλ ¼ λExλ; (27)

where E ¼ RTR is diagonal regularization matrix. Comparing
Eqs. (20) and (26), the E in this case can be constructed as

EQ-TARGET;temp:intralink-;e028;326;574E ¼ RTR ¼ 1

λ
VΣTFΣVT; (28)

where F is a diagonal filtering matrix, whose i’th diagonal
element can be constructed from filter factors defined as

EQ-TARGET;temp:intralink-;e029;326;511Fi ¼
1

expðσ2i ∕λÞ − 1
: (29)

Thus, i’th diagonal element of E can be written as

EQ-TARGET;temp:intralink-;e030;326;456Ei ¼
σ2i ∕λ

expðσ2i ∕λÞ − 1
: (30)

Substituting Eq. (27) in Eq. (8), the expression for error
estimate becomes

EQ-TARGET;temp:intralink-;e031;326;388η2ðλÞ ¼
krk2kExλk2
kAExλk2

: (31)

Now similar to the traditional Tikhonov method, one can use
this expression in the framework of Algorithm 1 to determine
the required regularization parameter (λ).

Local regularization parameter λ� ¼ λp at which η2ðλpÞ
is minimum. Follow steps 8 to 14 of Algorithm 1 to find
required λ.

3.4 l1 Norm or Total Variation-Norm Based
Regularization Method

The l1 and total variation (TV) norms are sparsity promoting
norms, which have been previously utilized in various image
reconstruction applications.25,26 In this scheme, the cost function
to be minimized becomes as

EQ-TARGET;temp:intralink-;e032;326;193arg min
x∈Rn2

kAx − bk22 þ λkXk�; (32)

where kXk� is either l1 norm or TV term. X is the matrix form
of vectorized image x. For l1-norm case:

EQ-TARGET;temp:intralink-;e033;326;129kXk� ¼ kxk1: (33)

The TV term is widely written as the l1 norm of gradient of
image (x). Hence, for the TV-norm case:
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EQ-TARGET;temp:intralink-;e034;63;752kXk� ¼ Σn2
i¼1kDixk1; (34)

whereDi denotes the local finite difference operator (with boun-
dary condition) at pixel i and ΣikDixk1 is a discretization of
the TV of x.26 The solution x can be computed by minimizing
Eq. (32).

The detailed description of these nonsmooth regularization
schemes is beyond the scope of this study and these details
can be found in Refs. 25–27. The exact algorithm that was uti-
lized for finding the regularization parameter for l1- or TV-norm
regularization schemes was provided in Algorithm 2. Note that
the initial step is similar to step 1 of Algorithm 1, i.e., the first
step was to start with the i grid values chosen in interval
[logðλminÞ, logðλmaxÞ].

Then, the regularized solution (which minimized cost func-
tion) and the error estimate (η2) was computed. For this step,
the algorithm contained two loops. The outer loop started from
a higher value of λ, and the inner loop solved Eq. (32). The outer
loop progressively reduced the value of λ until the condition in
step 7 of Algorithm 1 is met. The error estimate η2ðλÞwas evalu-
ated using the following expression:

EQ-TARGET;temp:intralink-;e036;326;752η2ðλÞ ¼
krλk2kATrλk2
kAATrλk2

: (36)

The suitable λ� was selected as the one, which minimized
η2ðλÞ. Then, to accurately refine the value of λ, we iteratively
added points to the grid around the minima λ�, as described
in steps 8 to 14 of Algorithm 1.

4 Numerical Experiments
Numerical experiments are ideal for comparing the quantitative
accuracies and efficiency of the various methods as measuring
actual initial pressure rise in experimental phantom is very chal-
lenging. In this work, three numerical phantoms were chosen to
justify effectiveness of the proposed model. Since PA imaging is
widely used for visualizing internal blood vessel structures, first
is a numerical blood vessel network phantom with an initial
pressure rise of 1 kPa. Another numerical phantom is a variation
of the Derenzo phantom, which consists of small and large size
circular targets distributions over the imaging region. Both these
phantoms dimensions were 201 × 201.

A bigger dimension, 301 × 301, the blood vessel phantom
was considered as a third phantom. In this case, 100 ultrasound
detectors were utilized, thus making A as big as 50;000 ×
90;601. The size of vector b became 90;601 × 1. These phantoms
are shown in Figs. 1(a), 1(e), and 1(i). The SNR of simulated data
was kept at 40 dB to closely mimic the experimental data.

The main focus of this study was to compare the proposed
LSQR method with Shaw et al.’s17 regularized LSQR method.
This comparison was performed via running numerical simula-
tions for the three phantoms introduced here. The study also
showed that the proposed error estimate can be utilized with any
regularization framework and to support the claim image recon-
struction routines for Tikhonov regularization, exponential filter-
ing, l1-norm based regularization, and TV regularization frame-
works were performed. A Linux workstation with dual eight-core
Intel Xeon processors having a speed of 3.10 GHz with 128 GB
RAM was used for all computations performed in this work.

5 Results and Discussion
The minimization of the error estimate (η2) has been illustrated in
Fig. 2. The circles show where η̄2ðλÞ was evaluated [Fig. 2(b)].
Adjacent circles were connected for visual clarity and the lines
have no significance. The residue in the figure was minimized to
find λ in Ref. 17. The local minima of residue curve [Fig. 2(a)]
was situated close to the local minima of η2 curve [Fig. 2(b)].
Once regularization is determined, the desired solution can be
computed using Eq. (15).

For a 60 detectors’ geometry PA system matrix [Figs. 1(a)
and 1(e)], the required number of Lanczos bidiagonalization
steps (k) turns out to be 44. This makes the size of matrix BT

k
as 45 × 44 (see Ref. 20), making computation of ðBTBþ λIÞ−1,
which has a dimension of 45 × 45, inexpensive. The number of
Lanczos bidiagonalization steps (k) required for the 100-detec-
tor case [Fig. 1(i)] was 77. The comparison of computation time
between utilization of 201 × 201 dimension phantoms versus
301 × 301 dimension phantom is listed in Table 1.

The reconstruction results obtained for the blood vessel net-
work using the regularized LSQR method17 and the proposed
method are shown in Figs. 1(b) and 1(c). A one-dimensional
cross-sectional plot for the reconstructed image along the red
dotted line in the target image is shown in Fig. 1(d). This

Algorithm 2 Algorithm for evaluation of regularization parameter for
l1- or TV-norm based regularization method.

1 Input: A;b; ½λmin; λmax�; xo ;.

2 Output: local regularization parameter: λ�.

1. while1 η2ðλpÞ < η2ðλpþ1Þ (i.e., step 7 of Algorithm 1)

2. while2 Ωk−Ωkþ1
ΩkþΩkþ1

≥ Tol ð10−4Þ (minimization of cost function Ω)

• Compute objective function for current iteration (k ):

EQ-TARGET;temp:intralink-;e035;62;353Ωk ¼ kAxk − bk22 þ λpkXkk� (35)

(Xk is the matrix form (dimension: n × n) of vectorized image
xk (dimension: n2 × 1), with k:k� being either l1 [Eq. (33)] or
TV [Eq. (34)])

• i. xk ¼ xk−1 þ AT ðb − Axk−1Þ

ii. Form the matrix Xk by reshaping xk

iii. SVD: Xk¼ U 0SV 0T

iv. Soft threshold of the singular values
Ŝ ¼ softðdiagðSÞ; λp∕2Þ

v. Xkþ1¼ U 0ŜV 0T. Form xkþ1 by vectorizing Xkþ1

vi. Update k ¼ k þ 1

• Compute objective function for next iterate:
Ωkþ1 ¼ kAxkþ1 − bk22 þ λpkXkþ1k�

• End while2

3. r λ ¼ b − Axkþ1. Compute η2ðλpÞ ¼ kr λk2kAT r λk2
kAAT r λk2

4. Update p ¼ p þ 1

5. End while1
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(b) (c) (d)

(h)

(l)

Fig. 1 The numerical phantoms used in this study. (a) Blood vessel network (dimension: 201 × 201),
(e) Derenzo phantom (dimension: 201 × 201), and (i) blood vessel phantom (dimension: 301 × 301).
Reconstructed images of these phantoms using (b,f,j) regularized LSQR method17 and (c,g,k) proposed
method. (d,h,l) A 1-D cross-sectional plot for the reconstructed images along the dotted line in target
phantoms. The corresponding computation time and quantitative metric are listed in Table 1.
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Fig. 2 The minimization of (a) residue (kb − Axk22) for k ¼ 44 and (b) error estimate (η2) [Eq. (8)] through
Algorithm 1 for the phantom, as shown in Fig. 1(a).

Table 1 Performance comparison of two methods, regularized LSQR versus proposed methods for the results presented in Fig. 1.

Phantom

Regularized LSQR method17 Proposed

Time (s) λ PC Time (s) λ PC

Blood vessel network ∼412 0.0423 0.59 ∼90 0.0594 0.58

Derenzo phantom ∼424 0.0158 0.69 ∼96 0.0205 0.76

Blood vessel phantom ∼1871 0.0890 0.534 ∼526 0.0672 0.529
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plot shows that the performance of the proposed method in
terms of quantitative accuracy of the reconstructed image is
similar to the state-of-the-art regularized LSQR method.
Figures 1(f)–1(h) show the similar results for the Derenzo
phantom, which testify the ability to reconstruct the objects
of different shapes and sizes. The results for the larger phan-
tom (301 × 301 dimension, 100 detector points) are shown in
Figs. 1(i)–1(l).

To check the performance of the image quality, a figure of
merit, such as Pearson correlation (PC), was used for the com-
parison. PC is a quantitative metric that measures the degree of
correlation between the target image and the reconstructed
image. The PC is defined as18

EQ-TARGET;temp:intralink-;e037;63;454PCðx; xreconÞ ¼ COVðx; xreconÞ
σðxÞσðxreconÞ ; (37)

where x is the expected initial pressure distribution, xrecon is
the reconstructed initial pressure distribution, COV denotes the
covariance, and σ denotes the standard deviation. Higher value
of PC corresponds to the accurate detectability of the target
(i.e., spatial fidelity).18,28

The proposed method is computationally much faster than
previously proposed methods. Table 1 shows the comparison
results, where it can be seen that there is little difference in
PC, while the computation time is much lower for the proposed
method (∼4.5× speed up) compared to the regularized LSQR
method proposed by Shaw et al.17 Note that the one-time system
matrix building time (∼181 s) was excluded from the compu-
tation time, as listed in Tables 1 and 2.

The proposed regularization method was also tested for other
popular model-based reconstruction schemes, i.e., traditional
Tikhonov regularization, exponential filtering of SVD-based24

regularization, l1-norm based regularization,25 and TV-norm
based regularization26 technique to evaluate the regularization
parameter and reconstruct the PA images. Figure 3 presents
the reconstruction results for blood vessel network and Derenzo
phantom obtained through these methods. Figures 3(a) and
3(b) show the reconstructed images obtained using Tikhonov
regularization, and Figs. 3(c) and 3(d) show images obtained
using recently proposed exponential filtering method.24 The
reconstruction results for nonsmooth regularization, such as
l1- and TV-norm based methods, are shown in Figs. 3(e)–3(f)
and 3(g)–3(h), respectively. The l1- and TV-norm based

Table 2 The computation time, regularization parameter, and PC for the results presented in Fig. 3.

Method

Computation Blood vessel network Derenzo phantom

Time (s) λ PC λ PC

Traditional Tikhonov regularization ∼221 0.0035 0.58 0.0004 0.76

Exponential filtering24 ∼210 0.0077 0.57 0.0008 0.75

l1-norm based regularization25 ∼617 0.0010 0.63 0.0010 0.59

TV-norm based regularization26 ∼581 0.0012 0.64 0.0011 0.65

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 3 Reconstructed images using (a and b) traditional Tikhonov regularization,24 (c and d) exponential
filtering of SVD-based reconstruction,24 (e and f) l1-norm based regularization,25 and (g and h) TV-norm
based regularization26 for the two numerical phantoms [target phantoms are given in Figs. 1(a) and 1(e)],
where the regularization parameter was determined using proposed error estimate minimization. The
quantitative metrics are given in Table 2.
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algorithm becomes expensive in computation for more iterations
[Eq. (35)]. It is to be noted that the results presented for
l1- and TV-based reconstructions25 are for 10 iterations, with
l1-norm based method being slightly more expensive in
terms of computation (refer to Table 2). However, the recon-
struction accuracy can be improved with a larger number of
iterations. The algorithm to determine regularization parameter
for nonsmooth regularization methods was described in
Algorithm 2. As it can be seen, the proposed error estimate (η2)
is capable of determining the required regularization parameter
both in the smooth and non-smooth regularization frameworks.
The regularization parameter determined using the proposed η2
estimate and the image quality metrics, PC, has been listed in
Table 2.

The regularization schemes that are utilized in this work
include smooth and nonsmooth regularizations. Among the
smooth regularization (Tikhonov) schemes, we have imple-
mented the proposed scheme both in dimensionality reduction
frame work (regularized LSQR) as well as traditional Tikhonov
frame work. From Tables 1 and 2, it is clear that the regularized
LSQR method is computationally more efficient and observed
reconstruction performance (in terms of PC) for both methods is
same as expected. It should be noted that the Lanczos bidiagno-
lization was not utilized for nonsmooth regularization schemes,
including the presented l1- and TV-norm based ones. These
(nonsmooth regularization schemes) were implemented in tradi-
tional fashion (same as traditional Tikhonov) as the main aim of
this work was to show that the proposed error estimates have
utility for any regularization frame work (traditional/reduced
dimension combined with smooth/nonsmooth).

The assessment of image quality in emission tomography
as well as biological imaging has been previously performed
through figure of merits, such as PC.18,28 Even though the
task-based image quality metrics29 can better assess the recon-
structed image quality, the use of residual errors (least-squares
metric) in comparison of reconstruction algorithms performance
(including the parameters used in them) has been a common
practice across tomographic problems.30 The estimate of these
residual errors has been utilized in this work to find the appro-
priate reconstruction parameters; here, it is being regularization
parameter. The future scope of this study is to validate the per-
formance of proposed algorithm through experimental studies,
which can further assure the efficiency and usability of proposed
method.

6 Conclusions
The LSQR model has been extensively used and shown to
be effective15 in full-view data cases (m ≫ n2), where there is
no requirement of regularization. However, in limited data
(m ≪ n2) cases, Tikhonov framework has to be used for regu-
larizing the solution.17 Determining a suitable regularization
parameter is important as the solution is sensitive to this choice.
This study addressed the problem of determining the regulari-
zation parameter automatically based on error estimate (η2)
analysis without any prior information about the noise.
Utilizing this with Lanczos bidiagonalization framework adds
the advantage of reducing the dimensionality of the problem.
This makes the proposed model highly computationally efficient
and promising as compared to the other popular state-of-the-art
techniques. The proposed method is generic in nature and can
be used in any regularization framework to determine the regu-
larization parameter. Here, it was also shown that the proposed

method is 4.5 times faster compared to existing state-of-the-art
methods.
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