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Abstract. Recently, optical coherence tomography (OCT)
angiography has enabled label-free imaging of vasculature
based on dynamic scattering in vessels. However, quan-
titative volumetric analysis of the vascular networks
depicted in OCT angiography data has remained challeng-
ing. Multiple-scattering tails (artifacts specific to the imag-
ing geometry) make automated assessment of vascular
morphology problematic. We demonstrate that dynami-
cally focused optical coherence microscopy (OCM)
angiography with a high numerical aperture, chosen so
the scattering length greatly exceeds the depth-of-field,
significantly reduces the deleterious effect of multiple-
scattering tails in synthesized angiograms. Capitalizing
on the improved vascular image quality, we devised and
tailored a self-correcting automated graphing approach
that achieves a reconstruction of cortical microvasculature
from OCM angiography data sets with accuracy approach-
ing that attained by trained operators. The automated tech-
niques described here will facilitate more widespread
study of vascular network topology in health and disease.
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1 Introduction
A recent enabling advance in optical coherence tomography
(OCT) imaging has been the development of angiography meth-
odologies to selectively image vasculature.1–4 The motion of red
blood cells (RBCs) and other scatterers within blood vessels can
typically be observed as dynamic changes in OCT images.
Building on this observation, angiography techniques based

on amplitude and/or phase motion contrast have been developed
as means of visualizing perfused vasculature in vivo.1–3

Though three-dimensional (3-D) OCT angiography provides
volumetric vascular information, morphometric analysis of ves-
sels is often limited to two dimensions, typically using projec-
tions in the en face plane. By comparison, comprehensive
quantitative volumetric analysis of brain vasculature has been
demonstrated using two-photon laser scanning microscopy
employing a plasma label,5–7 yielding a topological graph of
the vascular network. OCT angiography, in contrast to two-
photon microscopy, offers label-free assessment of the func-
tional (i.e., oxygen-delivering) microvascular network that is
perfused with moving blood cells, and OCT is widely used clin-
ically and in basic research. However, angiographic analysis
methods have yet to fully capitalize on its volumetric imaging
potential.

A significant obstacle to quantitative volumetric analysis of
3-D OCT angiography data is the degradation of lumen locali-
zation precision due to light originating from multiple-scattering
events. This effect can be observed as dynamic scattering “tails”
beneath large vessels, resulting mainly from RBC forward scat-
tering followed or preceded by tissue backscattering.8 These
tails may also be caused by changes in optical path length aris-
ing from the higher refractive index of RBCs crossing the beam
path.9 Such tails appear to elongate imaged vessel lumens in the
axial direction and cause overlap between superficial and deep
vessels.

Optical coherence microscopy (OCM) combines the coher-
ent detection methods of OCT with high transverse spatial
resolution, typically by employing higher numerical aperture
(NA) focusing.10 In this work, we show that high NA OCM
angiography improves rejection of multiple-scattered photons,
provided that the depth of field is much smaller than the scatter-
ing length, thus mitigating tail artifacts and facilitating 3-D
analysis. We subsequently describe a self-correcting automated
graphing protocol that can be used as a basis for robust quanti-
tative analysis, such as computing 3-D blood vessel network
topology, interconnectivity, and branching hierarchy from
OCM angiography data.

2 Methods
Angiograms were computed using an algorithm based on tem-
poral filtering of the complex OCT signal.8 Sprague–Dawley
rats (80 to 120 g, N ¼ 2) were anesthetized and ventilated
with a mixture of air and O2, and imaged through a sealed cra-
nial window using a 1310-nm spectral/Fourier domain OCM
microscope. All experimental procedures were approved by
the committee on research animal care. Figure 1 illustrates
low NA [Fig. 1(a)] and high NA [Fig. 1(b)] imaging geometries.
The full width at half maximum (FWHM) transverse resolutions
were 7.2 and 1.8 μm, respectively, with corresponding confocal
parameters of 242.2 and 15.1 μm. The confocal parameter
for the high NA geometry was much smaller than typical scat-
tering lengths in brain tissue (∼285 μm),11 thus helping to reject
light arising from multiple-scattering events [Fig. 1(b)].
Experimentally, for the high NA geometry, a water immersion
objective was employed along with a dynamic focusing proto-
col, which we described in detail in a previous work.12 This
technique yields fine transverse resolution over an extended
depth range, as depicted in Fig. 1(c). The axial resolution,
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mainly determined by the source coherence length and not the
confocal parameter, was 3.6 μm for both low and high NA
geometries.

Figure 2 shows the impact of NA on localization of capilla-
ries in OCT angiograms. Figure 2(a) shows a cross-sectional
angiogram obtained with the low NA imaging geometry.
Figure 2(b) shows a cross-sectional angiogram (synthesized
from dynamically focused data sets) obtained with the high
NA imaging geometry. Backscattering arising from an exem-
plary capillary lumen is marked by a yellow arrow in both
angiograms. Multiple-scattering tails (pink brackets), with

longer path lengths than the initial backscattering events, are
more prominent in the low NA geometry [Fig. 2(a), solid]
than in the high NA geometry [Fig. 2(b), dotted]. Figure 2(c)
gives mean normalized axial line profiles for selected capillaries
of similar size. The high NA geometry reduced the FWHM of
the mean axial line profile by ∼1.9×, demonstrating better axial
localization of vessels. Since the high NA geometry did not
appreciably change the axial resolution, we attribute this
improvement to better rejection of multiple-scattered light in
the high NA geometry. Figure 2(d) shows a maximum intensity
projection (MIP) of a region of interest under a large vessel,
using low NA imaging geometry. Figure 2(e) shows an MIP
of the same region with high NA, revealing vessel crossings
that were obscured in the low NA MIP.

The high NA OCM image data set, covering a 600 micron
cube, was subsequently used to form a 3-D representation, or
graph, of the cortical vasculature. First, vascular structure within
the image volume was enhanced using a multiscale technique.13

An empirically determined threshold was then applied to the
enhanced data volume, yielding a binary mask representation
of the vasculature. Morphological opening was implemented
to mitigate the effect of noise on the mask. A skeletonization
method14,15 was then used to obtain a center-line map, or “skel-
eton,” which enabled the vasculature to be represented as a 3-D
vectorized graph.16 Skeletonization methods are commonly con-
founded by noise or other artifacts that lead to errors in the skel-
eton topology, such as small spurious branches and vessel gaps
that are not representative of the true underlying anatomy. Such
errors are manifested as singly connected branches that are not
consistent with the contiguous vascular graph. In prior work,
such branches were resolved with the aid of manual input
based on operator judgment in the form of interactive point-
selection and curve-drawing,17 or labeling of training data
sets to aid supervised machine-learning methods.18

In this work, errors in the vascular graph topology were
resolved using an automated algorithm based on shortest-path
computation. The algorithm could correct both erroneous
gaps and spurious singly connected branches, but did not explic-
itly deal with incorrectly merged branches. First, the software
identified all points on the skeleton for which a connecting
branch was required, i.e., all skeleton voxels with only one

Fig. 1 (a) LowNA imaging geometry is sensitive to multiple-scattering
events, while high NA imaging geometry (b) is not; (c) imaging using
dynamic focusing at high NA to achieve high transverse resolution
over an extended depth range.

Fig. 2 (a) Cross-sectional image obtained with low NA imaging geometry. The yellow arrow shows a
capillary lumen, with the approximate extent of the corresponding multiple-scattering tail marked
(pink bracket). (b) Cross-sectional image obtained with high NA imaging geometry and dynamic focusing.
The yellow arrow shows the same capillary lumen, while the multiple-scattering tail (dotted pink bracket)
is less prominent than in (a). Insets in (a) and (b) show en face MIPs. (c) Mean normalized axial line
profiles of signal amplitude from selected capillaries of similar size, with standard deviations shown
by the shaded regions. The estimated FWHM of the mean vessel axial line profile was
20.45� 4.64 μm using low NA, and 10.65� 1.78 μm using high NA and dynamic focusing. (d and e)
En faceMIP of a selected region of interest under a large vessel. The multiple-scattering and shadowing
owing to the large vessel obscures deeper capillary crossings in the low NA case (d, dotted red arrows),
whereas for the high NA case, these crossings can be clearly seen (e, solid red arrows).
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neighboring voxel located within their 3 × 3 × 3 neighborhood
(excluding those adjacent to the boundary of the data volume).
Each of these endpoints could be resolved by either (i) connect-
ing it to the contiguous graph via a bridging strand; or (ii) remov-
ing the singly connected branch from the network.
For each located endpoint, the software determined a list of can-
didate connection points consisting of nearby branch points
(bifurcation points), as well as other singly connected branch
endpoints. A candidate bridging strand was identified for
each candidate connection point using a computation based
on Dijkstra’s algorithm.19 Candidate bridging strands were vali-
dated using a simple ad hoc decision tree model, which imposed
limits on the acceptable tortuosity and branching geometry.
Validation of candidate bridging strands can also be performed
using a classification model derived from the geometrical and/or
intensity-based features of a manually approved training set.18

However, a MATLAB® implementation of a bootstrap aggre-
gated decision tree model (based upon a training set of approx-
imately 1000 bridging strands) was found to be no more
effective at validation than the simple ad hoc decision tree
model. A path score was calculated for each valid candidate
bridging strand, computed as

P
kIeðkÞ∕L2, where L is the

length of the strand and IeðkÞ is the enhanced image intensity
at voxel k traversed along the strand’s path. The candidate bridg-
ing strand with the highest path score was incorporated into the
skeleton, thus rejoining the singly connected branch to the con-
tiguous vascular graph. Singly connected branches with end-
points for which no viable bridging strands could be found
were removed.

Four separate 256 × 256 × 400 voxel cortical subgraphs
(located within the capillary bed) were corrected using the auto-
mated procedure. Each graph was also corrected independently
by three manual operators. The manual correction was per-
formed using a custom-built MATLAB® graphical user interface
that allows the operator to manually select candidate connection
points for correction via the aforementioned shortest-path
algorithm.16

3 Results
A 3-D rendering of the segmented cortical vasculature (acquired
using high NA imaging geometry and dynamic focusing) is
shown in Fig. 3(a), representing both superficial (pial) vessels
and the deeper capillary bed. Figure 3(b) shows an MIP of the

capillary bed vessels from the enhanced image data. Figures 3(c)
and 3(d) show MIPs of a section of the enhanced image data,
overlaid with the manually and automatically corrected skele-
tons, respectively.

Consensus among manual corrections by multiple operators
can provide a ground truth for the evaluation of automated skel-
eton correction methods.20 Figure 4 summarizes the perfor-
mance of the automated correction via comparison to that of
the manual operators in terms of correction outcomes for end-
points, both in cases where all of the manual operators agreed
upon equivalent bridging strands [Fig. 4(a)], and in cases where
all manual operators elected to remove the endpoint branch
[Fig. 4(b)]. Considering each of the three manual operators
and the automated correction algorithm as independent

Fig. 3 Correction of cortical vascular graphs acquired using the high NA imaging geometry and dynamic
focusing. (a) 3-D representation of the segmented cortical vasculature showing pial vessels (arteries in
red, veins in blue) and capillaries (gray). (b) MIP of capillary bed vessels from the enhanced OCM image
data set. MIPs of image data from this data set were previously published by Srinivasan et al.12 (c) MIP of
image intensity from the highlighted section in panel b, overlaid with the original uncorrected skeleton
(cyan) and branches drawn during manual correction (green). (d) MIP of image intensity, overlaid with the
original uncorrected skeleton (cyan) and branches drawn during automated correction (red).

Fig. 4 Performance of automated skeleton correction, measured
against a consensus formed by three manual operators. (a) For
cases where all three manual operators identified an equivalent bridg-
ing strand (i.e., connecting to the same branch), the automated
method established an equivalent strand 71.1� 1.7% of the time,
a different bridging strand 21.8� 4.6% of the time, or elected to
remove the endpoint branch from the graph (when no viable candi-
date strands were found) 7.1� 4.1% of the time. (b) For endpoints
for which no manual operators identified a valid bridging strand
(i.e., all elected to remove the endpoint branch), the automated cor-
rection was in agreement 90.1� 3.6% of the time, whereas in 9.9�
3.6% of cases, the automated algorithm found a viable bridging strand
candidate and thus connected the endpoint to the contiguous
skeleton.
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observers, the accuracy of each observer with respect to the con-
sensus established by the other three was also evaluated (data
not shown). Though the automated method was not as effective
in terms of correction accuracy, its performance was nonetheless
comparable to that of the manual observers.

Ultimately, the most effective use for a self-correcting graph-
ing technique, such as the one described in this work, may be in
a semiautomated approach. Such a hybrid approach would bal-
ance the enhanced speed of automatic algorithms with the supe-
rior ability of humans to perceive structure in the presence of
noise or other confounds. Along these lines, we integrated auto-
mated correction with our graphical user interface such that the
software presented the operator with a suggested bridging strand
for each unconnected endpoint. We found that in 48.1� 4.8% of
cases, the operator accepted the suggested bridging strand as
valid, pointing to the possibility for a significant reduction in
manual effort through a semiautomated approach. Further
reductions in manual effort could likely be achieved by present-
ing the operator with a choice of several bridging strands.

4 Discussion and Conclusion
In this work, we demonstrated that high NAOCM angiography,
besides providing fine transverse resolution, also rejects multi-
ple-scattered light arising from vessels. The improved angio-
gram quality achieved with high NA OCM imaging leads to
better localization of vessel lumens, which is desirable for accu-
rate volumetric segmentation and graphing. However, the higher
NA and improved transverse resolution yield a reduced depth of
field, which leads to longer imaging sessions with dynamic
focusing and increased susceptibility to angiogram artifacts
caused by sample motion, both of which represent limitations
of the method.

The new automated graph correction approach described in
this work emulates the features of manually guided skeleton
correction.17 In cases where manual operators reached a consen-
sus on the bridging strand, the automated algorithm agreed
71.1� 1.7% of the time [Fig. 4(a)]. The automated algorithm
agreed 90.1� 3.6% of the time in cases where the manual oper-
ator consensus was to remove a branch [Fig. 4(b)]. This suggests
an appreciable correspondence between manual and automated
correction. Further advances in automated self-correction algo-
rithms may enable graphing methods to be applied more widely
than is currently possible with manual correction tools, with
considerable benefit from the reduced human effort. Once cor-
rected, vascular graphs can be used to compute quantitative
measures of 3-D blood vessel network topology, interconnectiv-
ity, and branching hierarchy.5,16 Therefore, the imaging and
graphing approaches presented here could serve as comprehen-
sive tools to analyze vasculature in health and disease.
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