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Abstract. With early detection, 5-year survival rates for ovarian cancer exceed 90%, yet no effective early
screening method exists. Emerging consensus suggests over 50% of the most lethal form of the disease orig-
inates in the fallopian tube. Twenty-eight women undergoing oophorectomy or debulking surgery provided
informed consent for the use of surgical discard tissue samples for multispectral fluorescence imaging.
Using multiple ultraviolet and visible excitation wavelengths and emissions bands, 12 fluorescence and 6 reflec-
tance images of 47 ovarian and 31 fallopian tube tissue samples were recorded. After imaging, each sample was
fixed, sectioned, and stained for pathological evaluation. Univariate logistic regression showed cancerous tissue
samples had significantly lower intensity than noncancerous tissue for 17 image types. The predictive power of
multiple image types was evaluated using multivariate logistic regression (MLR) and quadratic discriminant
analysis (QDA). Two MLR models each using two image types had receiver operating characteristic curves
with area under the curve exceeding 0.9. QDA determined 56 image type combinations with perfect resubstitut-
ing using as few as five image types. Adaption of the system for future in vivo fallopian tube and ovary endo-
scopic imaging is possible, which may enable sensitive detection of ovarian cancer with no exogenous contrast
agents. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.5.056005]
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1 Introduction
Ovarian cancer is the most deadly female reproductive malig-
nancy with over 21,000 cases and over 14,000 deaths annually
in the US.1 Ovarian cancer typically presents with nonspecific
symptoms. Current screening methods [physical examination,
transvaginal ultrasound (US), the CA-125 blood test] have
not proven to be effective when used for annual screening in
the general population in large clinical trials,2 although one
noted a possible reduction in mortality after 7 to 14 years of
annual screening for some population groups.2 The lack of spe-
cific symptoms or a proven effective screening method results in
only 15% of cases discovered at an early stage when 5-year sur-
vival rates are over 90%. Thus, overall 5-year survival rates are
just 45%.1 Certain high-risk women (BRCA1/2 gene mutations,
family history of breast or ovarian cancer) are recommended to
undergo prophylactic oophorectomy to remove the ovaries and
fallopian tubes. This drastic measure decreases risk, but side
effects include increased mortality for women who undergo
the procedure before age 45 without hormone replacement.3,4

Early detection is extremely difficult because early changes
may be too subtle to be resolved with whole-body imaging tech-
niques, such as magnetic resonance imaging, computed tomog-
raphy, or US.5,6 Additionally, emerging consensus suggests that
perhaps over 50% of the most lethal form of the disease, high-
grade serous ovarian cancer, originates in the fallopian tube.7,8

The need for an effective screening method is universal to all
women, but is particularly critical for high-risk women. Without
any high-risk factors, the lifetime risk of developing ovarian
cancer is 1% to 2%. Women with a family history but no
BRCA mutation have a risk of 4% to 7%, while women with
family history and a BRCA mutation have a 23% to 54% life-
time risk.9 For high-risk patients, a reliable detection method
may delay prophylactic salpingo-oophorectomy with regular
monitoring. Advanced optical imaging techniques are a prom-
ising approach to provide the resolution and functional imaging
needed for a sensitive and specific screening test.

Optical techniques can be miniaturized for endoscopy, are
robust, and are relatively inexpensive. Ovarian cancer has
been imaged by several microscopic optical modalities in the
past, including optical coherence tomography (OCT),10–14 con-
focal microscopy,15–18 multiphoton microscopy (MPM),19,20

photoacoustic imaging (PAI),13,21–23 and fluorescence spectros-
copy/imaging.24–27 OCT captures high-resolution depth images
of tissue microstructure and has demonstrated ability to distin-
guish normal tissue from ovarian cancer in vivo in animal
models28 and laparoscopically in vivo in human patients.10

Fluorescence confocal imaging has been integrated into a
microlaparoscope and has the ability to detect cancerous tissue
in vivo.16–18 High-quality images of nuclear size and shape are
obtained by the use of contrast agents, which have not yet been
approved by the U.S. Food and Drug Administration (FDA) for
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in vivo use. MPM, including second-harmonic generation and
multiphoton excited fluorescence, can image cell and connective
tissue structure and metabolic tissue properties. It has
demonstrated promise for distinguishing healthy from diseased
human tissue ex vivo,19,20,29 as well as in vivo in mouse
models.28,30,31 PAI combines high-resolution US imaging with
contrast from optical absorption. Visible red or near-infrared
illumination wavelengths are commonly used to provide large
imaging depths. Using multiple wavelengths allows mapping
of changes in hemoglobin concentration and oxygen saturation
related to tumor angiogenesis.13,21–23,32

The above techniques have high-resolution, small fields of
view and are point- or line-scanning imaging methods or require
reconstruction, and thus have limited utility for navigation or
rapid, large-area visualization. Some, such as MPM and PAI,
typically utilize complex laser systems, which are less suitable
for a robust, inexpensive clinical imaging system, although new
fiber-based laser systems may enable small portable systems.33–
38 All of the above high-resolution optical techniques may have
promise for detecting early-stage ovarian cancer assuming the
imaging system can be placed near or in contact with the epi-
thelium of the ovary and fallopian tube.

Although high-resolution techniques show promise, they
may need to be coupled with a lower-resolution, wider field
of view and long depth-of-field modality to navigate the ovarian
and fallopian tube epithelium and identify suspicious areas. In
an open surgery, a high-resolution modality endoscope can be
visually directed to the tissue of interest, whereas in a laparo-
scopic procedure a white-light imaging system (either integrated
with the high-resolution system into a dual-modality endoscope
or in a second endoscope) can be used for navigation. However,
the subtle changes of early-stage ovarian cancer may not be vis-
ible to the human eye or a standard white-light endoscope. Thus,
in this case, the guidance imaging system simply guides the
high-resolution system to the ovary so the high-resolution
modality can optically biopsy discrete locations on the ovary
and fallopian tubes. Furthermore, open and even laparoscopic
surgeries are too invasive to be a widely used screening method.
A less-invasive imaging method could utilize the natural orifice
of the vagina, uterus, and fallopian tube for a miniature endo-
scopic imaging system. The system could combine a wide field
of view, highly sensitive navigation, and surveillance technique
with a more specific high-resolution technique.

Fluorescence imaging is a promising candidate for the large
field of view, highly sensitive imaging technique. Systems
visualizing autofluorescence have been demonstrated.11–13

Autofluorescence imaging is advantageous because it does not
require any dyes or contrast agents that may complicate regula-
tory approval. Previous studies by the investigators and others
have characterized normal, cancerous, and benign ex vivo ovarian
tissue autofluorescence using fiberoptic probes. One study
excited tissue with a 325-nm pulsed laser and evaluated the emis-
sion spectrum from 350 to 600 nm for normal, benign, and malig-
nant samples.26 Another study used a probe with tunable
narrowband excitation and emission windows to develop com-
plete excitation–emission matrices for excitation from 270 to
550 nm and emission from 290 to 700 nm with high spectral
resolution.24 Wide-field spectral imaging with limited wave-
lengths has also been performed on both ovarian and fallopian
tube tissue. Ovarian tissue was imaged using a 365-nm source
to excite the tissue and an imaging system capable of recording
eight emission bands between 400 and 640 nm.25 Another study

imaged normal and cancerous fallopian tube samples by captur-
ing a series of images including white-light reflectance, narrow-
band green reflectance, green autofluorescence (405- and 436-nm
excitation), and blue autofluorescence (405-nm excitation).27 All
these studies indicate autofluorescence imaging that shows prom-
ise for detection of ovarian cancer.

Building upon these previous studies, an imaging system was
developed with a wide field of view, multiple excitation wave-
lengths, and multiple emission bands. Multispectral fluorescence
imaging (MFI) creates a series of coregistered fluorescence and
reflectance images with a specific set of excitation wavelengths
and emission bands that are selected to match the expected char-
acteristics of known endogenous tissue fluorophores. These flu-
orophores may change in concentration and spatial location as
normal tissue transitions to a cancerous or benign abnormality
state. The reflectance images taken at several narrowband wave-
lengths effectively sample the blood absorption spectrum of
hemoglobin, as well as indicate the overall remittance of light
from scatterers in the tissue. Cancerous tissue tends to have
increased vessel density leading to higher optical absorption
and decreased reflectance and fluorescence.25,27 In cervical tissue,
it has been shown that increased proteolytic activity associated
with dysplasia reduces collagen fluorescence.39 The fluorescence
images are obtained at multiple excitation wavelengths between
255 and 550 nm with emission bands between 340 and 650 nm.
Miniaturization of the system to endoscopy is possible. The sys-
tem has been successfully used to obtain high-contrast images of
colon polyps40 and is utilized in this study to visualize ovarian and
fallopian tube surgical biopsies.

2 Materials and Methods

2.1 Patients

Patients at the University of Arizona Medical Center undergoing
oophorectomy, salpingo-oophorectomy, total abdominal hyster-
ectomy with bilateral salpingo-oophorectomy, and debulking
surgeries were asked to donate surgical discard tissue to this im-
aging study. Additionally, the patients were requested to fill out
a questionnaire including questions about age and menopause
status. The study and questionnaire were approved by the
Institutional Review Board of the University of Arizona and tis-
sue was collected for 9 months. Informed consent was obtained
from 28 patients during the study. Tissue was not available for
four consented patients. Samples from the remaining 24 patients
were imaged on the MFI system.

2.2 Tissue Samples

Surgical discard tissue was made available after samples neces-
sary for clinical pathology were removed. Collected tissue sam-
ples for the study were small pieces of the ovary, fimbria, or
distal fallopian tube. The imaged surface area of resected tissues
was typically 1.1 cm2. Surface area for small samples of all tis-
sue types was typically 0.2 to 0.3 cm2, while the largest imaged
surface areas were 3.3 and 9.6 cm2 for fallopian tube and ovar-
ian samples, respectively.

2.3 Multispectral Fluorescence Imaging System

The laboratory-built MFI system used to collect images has been
described in detail previously.40 The system uses a xenon arc lamp
(300 W, Lambda LS, Sutter Instruments, Novato, California) and
10-position filter wheel to select discrete narrowband (∼20 nm
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FWHM) illumination wavelengths between 260 and 650 nm. The
illumination light is transmitted through a custom quartz fiber bun-
dle with feedback fibers to monitor source power. The fiber illumi-
nates a 4 cm × 4 cm field of view. A color-corrected UV imaging
lens images the sample onto a thermoelectrically cooled, UV-
enhanced camera with intensified CCD (PhotonMAX: 512B,
Princeton Instruments, Trenton, New Jersey). A second 10-posi-
tion filter wheel with long pass filters selects the detected wave-
lengths. Software written in LabVIEW (National Instruments,
Austin, Texas) automatically collects a series of raw images of
interest by controlling the two filter wheels and camera. The im-
aging system uses image subtraction of long pass-filtered images
to create effective bandpass images. For example, a 410- to 500-
nm emission image is created by subtracting a 500-nm long pass
image from a 410-nm long pass image. In total, the software uses
the collected raw images to generate 18 output images for each
sample: 12 autofluorescence images and 6 reflectance images
[Fig. 1(a)]. The emission and excitation combinations used for
autofluorescence images are selected based on expected character-
istics of endogenous fluorophores.24 The reflected light images are
designed to sample the absorption spectrum of hemoglobin41

[Fig. 1(b)].

2.4 Tissue Imaging

Surgical discard tissue was placed in saline immediately follow-
ing surgery and transported to the MFI system. Between one and
eight samples were obtained and imaged per patient with
between one and five samples placed in the field of view of
the system at a time. Tissues were typically imaged within
1 h of removal, but at most within 2 h of removal. Tissue
was kept moist with saline before and after imaging.

2.5 Histology and Pathological Evaluation

Immediately after imaging, each tissue sample was affixed to the
filter paper to maintain orientation and fixed in 10% buffered

formalin or Histochoice (Ameresco). Tissues were histologi-
cally processed into paraffin blocks and cut into 6-μm sections.
Slides were stained with hematoxylin and eosin (H&E) and a
histological diagnosis of the imaged tissue obtained independent
of patient diagnosis by a pathologist at the University of Arizona
Cancer Center Tissue Acquisition and Cellular/Molecular
Analysis Shared Resource.

2.6 Image Processing

System calibration was performed to enable comparison of
intensity measurements for each piece of tissue. Immediately
before or after each imaging session, a uniform reflector was
imaged to normalize intensity across the field of view.
Additionally, illumination power measurements and images
of known fluorophores were used to normalize changes in
lamp power spectrum over time. Imaging was performed in a
dark room to minimize background light. As a further correc-
tion, images of tissue were obtained at each filter setting
with the illumination lamp on and off. The lamp-off image
was subtracted from the lamp-on image to correct for changes
in ambient lighting. Exposure times were verified to be the same
for all images within each image type. All normalization proce-
dures were performed on the raw intensity values from the cam-
era detector using MATLAB™ (The MathWorks, Natick,
Massachusetts). Images with the desired excitation wavelength
and emission band were saved as 32-bit floating point tagged
image file format (TIFF) files to maintain absolute intensity val-
ues. The result obtained was 18 recorded images per imaging
sequence; six fluorescence images with UV excitation wave-
lengths, six fluorescence images with visible excitation wave-
lengths, and six reflected light images. An example image set
is shown in Fig. 2. Only after all normalization procedures
were performed, the tissue image gray scale values were sta-
tistically compared.

Using image analysis software (ImageJ, National Institute of
Health), each set of 18 images was combined into a coregistered

Fig. 1 Summary of MFI image types. (a) Plot of 18 image types collected by system. Six reflectance
images are represented by asterisks having equal excitation and emission wavelengths. Twelve fluo-
rescence images are represented by boxes with height representing 20-nm FHWM illumination band-
width and width representing the bandwidth of the collected emission. (b) The absorption spectrum of
hemoglobin from 250 to 650 nm (data41). Vertical dotted lines correspond to six recorded reflectance
images from the MFI system. HbO2, oxygenated hemoglobin and Hb, deoxygenated hemoglobin.
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image stack. Each tissue within each stack was manually out-
lined with a many point polygon. These steps allowed simulta-
neous measurement of intensity statistics (mean, median, min,
max, and standard error) for all tissue samples and all image
types in each image stack. The area (pixels) of each tissue
was also recorded. All data were then combined into a master
table providing the intensity statistics, tissue type, tissue path-
ology, imaging date, and patient age and menopause status, if
disclosed on the questionnaire, for each tissue sample.

2.7 Statistical Analysis

Three types of statistical analysis—descriptive statistics, logistic
regression (LR), and quadratic discriminant analysis (QDA)—
were conducted. Because of the small number of histologically
confirmed cancer samples from the fallopian tube, we limited
the analysis of fallopian tube samples to descriptive statistics.
LR has fewer assumptions than discriminant analysis and
gives a probability of an outcome based on independent varia-
bles. It is useful for evaluating data in which one or more inde-
pendent variables (e.g., image type mean intensities) determine
a binary outcome (e.g., cancerous versus noncancerous ovarian
tissue). QDA is a method of statistical classification that uses a
set of training data to build quadratic classifiers designed to pre-
dict classification (e.g., normal, benign, and cancerous pathol-
ogy) given the independent variables (e.g., image type mean
intensities) associated with the sample. In this study, QDA mod-
els used all sample data as a training set and were validated using
resubstitution.

2.7.1 Descriptive statistics

For ovarian and fallopian tube samples, the mean and standard
error of image intensities were calculated and compared
between tissue in the broad pathological categories—normal,
benign, and cancerous—for each image type. For ovarian tissue,
robust standard error with clustering on patient was also calcu-
lated. In general, robust standard error calculations assume inde-
pendence for each sample. Since multiple tissue samples from

the same patient were often obtained the variance–covariance
matrices used to determine robust standard error for each tissue
were clustered on the patients. Clustering allows for intragroup
(multiple tissues from one patient) correlation to be accounted
for appropriately.42

2.7.2 Logistic regression analysis on ovarian tissue

The University of Arizona Cancer Center Biostatistics Shared
Service performed LR on ovarian sample image data using
Stata13 (StataCorp LP, College Station, Texas). The ultimate
goal was to determine which, if any, small combinations of
image types could accurately predict whether an ovarian tissue
sample was cancerous or noncancerous (normal and benign
ovarian samples combined) given the mean intensities of the
image types, patient age, and patient menopause status.
Univariate logistic regression (ULR) was used to compare the
mean intensity values of cancer versus noncancer samples for
each image type in order to determine how well each individual
image type performed. Previous research on cervical tissue has
shown an effect of age and follicle stimulating hormone, an
indicator of menopause, on fluorescence and reflectance
spectroscopy.43 Age and menopause status were examined for
significant impact on image intensity in the ULR models for
all image types so corrections could be made if necessary.
Finally, two multivariate logistic regression (MLR) models
were determined with best predictive values from small subsets
of image types. One model was determined using fluorescence
image types and the other used reflectance image types. In each
model, a small subset of image types was generated by explor-
ing the relationships between image types using correlation and
bivariate LR. Pairs of image types with very high correlation
were determined and only the better fitting of the image
types was retained in the model. This process was repeated
to determine a small subset of image types with low cross-cor-
relation for each MLR model. The receiver operating character-
istic (ROC) curves and respective area under the curve
(AUC) for each model was calculated using STATA’s built-in
postestimation command. Both ULR and MLR were performed

Fig. 2 Example of the 18 images collected on a set of tissues. Within each image, the two tissue samples
on the left are histologically normal fallopian tube samples and the two samples on the right are histo-
logically normal ovary samples. Image gray scale values have been compressed to 8 bits for display, and
contrast window and level have been adjusted between rows to account for significant differences in
image intensity. Thus, the intensities within a row of images are comparable, but the intensities between
rows are not.
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using robust variance estimates clustered on patient, to
account for the potential correlation of tissues within the same
patient.

2.7.3 Quadratic discriminant analysis on ovarian tissue

QDAwas used to build n-dimensional quadratic surfaces to sep-
arate the data by pathology given image mean intensities from n
of the image types. Recording and analyzing 18 image types was
impractical for future clinical devices. QDA was used to deter-
mine which subsets of image types are most efficient at predict-
ing the correct pathology. Each subset was tested using
resubstitution of the data into the model.

3 Results
The number of samples, number of patients, mean age, and age
range for each tissue classification (tissue type and pathology) is
shown in Table 1. Tissue samples were not available for 4 of the
28 consented patients. At least one sample of ovarian tissue was
received from 24 patients, resulting in 47 pieces of ovarian tis-
sue. Of the 47 samples, 35 were pathologically normal, 7 were
cancerous (serous adenocarcinoma), and 5 had a noncancerous
benign condition (two mucinous cystadenoma and three simple
cysts). Fallopian tube samples were collected and imaged from
21 patients. In total, 31 fallopian tube samples were imaged with
21 being normal, 1 cancer (serous adenocarcinoma), and 9
benign (mild fibrosis). The age range was between 22 and 73
years with a mean age of 49.5.

3.1 Tissue Sample Intensity Descriptive Statistics

The mean fluorescence and reflectance image intensity and stan-
dard error for normal, benign, and cancerous ovarian and fallo-
pian tube tissue samples are shown in Figs. 3(a) and 3(b),
respectively. The absolute intensity values of fallopian tube sam-
ples are generally a factor of 2 to 3 times lower than the ovarian
samples for all image types, but relative changes between path-
ologies are similar. For all image types and both tissue types, the

image intensity from samples with benign conditions had a
higher mean intensity than the normal samples, whereas cancer-
ous samples had lower mean image intensity than normal
samples.

3.2 Logistic Regression

ULR models were used to determine age and menopause effects
as well as statistical significance between intensities for cancer-
ous and noncancerous ovarian tissue for each image type.
Twelve patients were known to be premenopause, seven patients
were known to be postmenopause, and five patients had uncer-
tain menopausal status (two undisclosed, two perimenopause,
and one prior hysterectomy). All patients provided age informa-
tion, which was considered a categorical variable (<50 and
≥50). The cutoff was chosen because it completely separated
all known pre and postmenopausal patients. Age did not
have a statistically significant impact on measured intensity
in all image type ULR models (p ≥ 0.1). Thus, age and meno-
pausal status were removed from all following statistical analy-
ses for simplicity.

All ULR models demonstrated statistical significance
(p ≤ 0.005) between cancer and noncancerous ovarian tissue
except fluorescence using 280-nm excitation (p ¼ 0.163).
MLR models were developed to evaluate the predictive
power of small subsets of image types. For the fluorescence
data, the best fitting MLR model was determined to use
image types F440 and F480 (R2

McFadden ¼ 0.4185). For the
reflectance data, the best fitting MLR model used image
types R440 and R480 (R2

McFadden ¼ 0.5179). The ROC curves,
generated using STATA’s built-in postestimation commands, for
the fluorescence and reflectance models’ ability to predict
whether an ovarian tissue sample was cancerous are shown
in Fig. 4. The AUCs were 0.9036 and 0.9464 for the fluores-
cence and reflectance models, respectively. LR analysis exam-
ined cancer against noncancerous samples; thus, an image
type’s ability to discriminate between normal and benign path-
ologies was not considered.

3.3 Quadratic Discriminant Analysis

QDA was applied to the ovarian data with the mean intensities
from each of the 18 image types being the independent varia-
bles. Age and menopause status were omitted based on the
results from the ULR models. QDA was run on every possible
subset of image types from size 2 to 18. There are 218 possible
subsets for a set of 18 elements. Eliminating the one way to
choose zero elements from the set and 18 ways to choose
one element resulted in 262,125 subsets of image types analyzed
with QDA. Multivariate normality, an assumption of QDA, was
tested for each subset using the Mardia kurtosis test. For a subset
of n image types, QDA determines the two n-dimensional sur-
faces that best separates all tissue samples by pathology. After
the model was created from the tissue sample image intensities,
each sample was tested by resubstitution into the model to deter-
mine whether the model accurately classified the tissue. The
classification accuracy and type of misclassifications for each
QDA model were recorded. A good subset of image types
was defined as one that had a p-value >0.1 in the kurtosis
test and had at most one tissue sample misclassified by resub-
stitution. There were 56 subsets that passed the Mardia kurtosis
test and had zero resubstitution error. The subsets ranged in size
between 5 and 9 image types. Similarly, there were 1256 subsets

Table 1 Characteristics of patients and tissues imaged.

Tissue classification Samples Patients Mean age Age range

Ovary 47 24 48.6 22 to 73

Benign 5 3 48.4 45 to 52

Mucinous cystadenoma 3 2 50.7 50 to 52

Simple cyst 2 1 45.0 45 to 45

Cancer (serous
adenocarcinoma)

7 4 45.4 31 to 64

Normal 35 19 49.2 22 to 73

Fallopian tube 31 21 48.3 22 to 73

Benign (mild fibrosis) 9 6 57.7 45 to 73

Cancer (serous
adenocarcinoma)

1 1 64.0 64 to 64

Normal 21 15 43.6 22 to 71
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with one resubstitution mistake ranging in subset size 4 to 10.
Subset sizes of 6 and 7 produced the majority of good subsets.
The frequency that each image type appeared in a good image
subset is shown in Fig. 5.

3.4 Qualitative Visualization

Of the seven image type subsets of size 5 determined by QDA to
have zero resubstitution error, the representative subset of image
types F320blue, F370, R400, R415, and R480 is shown in
Fig. 6. Three representative tissue samples are shown of each
broad category of pathology (normal, benign, and cancer). Of
the five benign samples, the middle three in terms of average
image intensity were chosen. The samples with the second,
fourth, and sixth most intense images were chosen from the
seven available cancer samples. The three normal samples

were chosen at approximately the 25th, 50th, and 75th percentile
in average image intensity of all normal samples. Thus, the sam-
ples are representative of the range of intensities from each
pathologic group. The reflectance images have much higher
intensity than fluorescence images so a logarithmic transforma-
tion has been applied to the image for display purposes.

4 Discussion
The results of the ex vivo study support further development of
multispectral fluorescence and reflectance imaging to predict
ovarian and fallopian tube tissue pathology. Both the LR
and QDA models showed promising results. The MLR models
showed strong classification performance (AUC > 0.9) for
detecting cancer that can be obtained using only the image inten-
sity from reflectance or fluorescence images at excitation wave-
lengths of 440 and 480 nm, whereas QDA showed perfect

Fig. 3 Mean (a) ovarian and (b) fallopian tube tissue intensity and standard error for each pathological
group normalized to the normal groupmean intensity for each image type. Standard error bars for ovarian
tissue are robust standard error. Error bars are not shown for cancerous fallopian tube due to a sample
size of one.
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classification of normal, cancerous, and benign tissues using as
little as five reflectance and fluorescence image types. A limi-
tation of this study was the small number of benign and cancer-
ous tissue samples, which required tissue samples to be
classified in broad pathological groups for analysis. Further,
a detailed statistical analysis of fallopian tube data was not pos-
sible due to having only one cancerous sample. Further, study
with a larger number of samples is needed to corroborate these
findings; however, the good results and consistent trends pro-
vide confidence in MFI’s ability to discriminate between nor-
mal, benign, and cancerous ovarian tissue.

The overall decreased image intensity in cancerous tissue and
increased intensity in benign tissue aligns with expected changes
in tissue optical properties.11 Tissue pathology determines tissue
composition and thus the concentration and distribution of fluo-
rophores as well as the optical absorption and scattering coeffi-
cients. The dominant absorber in the UV and visible spectrum is

hemoglobin [Fig. 1(b)]. Neovascularization is a hallmark of
cancer and is expected to increase the blood volume fraction
and thus absorption in cancerous tissue. Examination of Fig. 3
shows that cancerous tissue has the lowest relative reflectance
image intensity at 415 nm, near the hemoglobin absorption
peaks, and the highest relative reflectance image intensity at
480 nm, which is near a trough in hemoglobin absorption.
Cancerous ovarian tissue has been shown to have significantly
less collagen content than normal tissue, which is correlated
with decreased scattering coefficient.44 Thus, the increased
absorption and decreased scattering are expected to decrease
reflectance image intensity. Increased absorption will also
cause decreased fluorescence image intensity due to overlap of
the hemoglobin absorption spectrum with both the excitation
and emission wavelengths. Upon visual evaluation of the H&E
slides, all benign ovary (three mucinous cystadenoma and two
simple cysts) and fallopian tube (nine mild fibrosis) samples
had increased collagen relative to normal. The strong scattering
and fluorescence of collagen may be the mechanism behind the
benign samples having increased reflectance and fluorescence
image intensity.

All image types except F280 showed statistically significant
discrimination between cancerous and noncancerous ovarian tis-
sue in the ULR models. For the MLR and QDA models, image
types with excitation or emission wavelengths at or around the
hemoglobin absorption peaks and troughs generally showed the
strongest discrimination. Image types R400 and R415, both
sampling the left side of the blood absorption peak, were
included in over 92% of the good QDA subsets. The illumina-
tion wavelengths of 440 and 480 nm were chosen in both the
fluorescence and reflectance MLR models as the best predictors
of tissue pathology. The process of determining variables for the
MLR models eliminated image types with high covariance and
thus redundant information. Since 440 nm is near the deoxyhe-
moglobin absorption peak while 480 nm is in a trough, the
image types acquired with these illumination wavelengths
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Fig. 4 ROC curves for ovarian tissue MLR models. Dotted diagonal
lines represent a model with no predictive power (AUC of 0.5).
(a) Fluorescence model using image types F440 and F480 with
AUC of 0.9036 and (b) reflectance model using image types R440
and R480 with AUC of 0.946.

Image Type
     F280 328
     F320 299
     F320blue 436
     F340 488
     F340uv 334
     F370 264
     F400 407
     F440 394
     F440red 414

F480 750
F480red 414
F550 376
R370 485
R400 1216
R415 1257
R440 576
R480 412
R555 308

Frequency

Fig. 5 Frequency of occurrence of image types in QDA-determined
high predictive power image subsets.

Fig. 6 Representative images of ovarian tissue. Within each column,
the top three tissues are cancer samples, the middle three are normal
samples and the bottom three are benign samples. The three samples
for each pathology are representative of the range of intensities mea-
sured for the given pathology. From left to right, the columns are
image type F320blue, F370, R400, R415, and R480. The QDA
model using these five image types had zero resubstitution errors.
The images are saved as floating point TIFF files for statistical com-
parison. The significant differences in intensities and dynamic range
between image types require the images to be log scaled for visuali-
zation with the same window and level settings.
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may present the strongest and weakest effects of blood absorp-
tion, respectively, in these samples.

Of the fluorescence image types, F480 was determined a
strong discriminator by MLR and most frequently occurred
in good QDA subsets. Unlike the other wavelengths with strong
discrimination between pathology, the excitation, and emission
band of F480 are expected to have relatively low influence from
blood absorption. The fluorescence from F480 has been shown
to be higher for normal than cancer tissue in previous fiber probe
studies, due to the primary excited fluorophores of FAD and
collagen.23

Of interest are the possible reasons, F280 was the only image
type not showing significant discrimination between cancerous
and noncancerous tissue in the ULR models. The excitation and
emission bands are moderately affected by hemoglobin absorp-
tion. However, previous studies on colon tissue with the same
imaging device have shown that optical penetration decays
exponential with a 1∕e decay at ∼105 μm for 280-nm excitation
and ∼2 mm for 440-nm excitation.45 Biological tissue has
increased scattering with decreased wavelength, and in the ultra-
violet spectrum, tissue scattering significantly limits optical pen-
etration. Anatomically, the ovarian epithelium is about 100-μm
thick and lacks vasculature in normal pathology. Thus, hemo-
globin absorption effects are expected to be minimal for 280-
nm excitation. Previous studies have indicated that excitation
below 300 nm produces the highest fluorescence in cancerous
ovarian tissue and lowest in benign tissue, when performing
point spectroscopy.11 An excitation wavelength of 280 nm pri-
marily excites the amino acid tryptophan, which is believed to
be more abundant in cancerous tissue due to an increase in pro-
tein synthesis.11,24 Imaging geometries have been shown to be
more sensitive to blood absorption effects compared to probe
spectroscopy.46 Increased angiogenesis in cancerous samples
may bring vasculature within 100 μm of the surface. It is pos-
sible that the attenuating effects of blood absorption (enhanced
in our illumination-detection geometry) are countering the
increased fluorescence from amino acids in the cancerous sam-
ples, and the net result is a similar intensity for all pathologies at
F280. Prior studies on colon cancer using the multispectral
imager used in this study have also shown slightly decreased
intensity for cancerous tissue for F280 images.40

Further examination of the QDA results provides additional
insight. Of the top seven most frequently occurring image types
(F320blue, F340, F480, R370, R400, R415, and R440), only 2
of the 1312 good subsets were constructed exclusively of these
image types. The full set of seven and the subset excluding R440
both passed the kurtosis test and both only misclassified one
benign ovary tissue sample as normal. Thus the best performing
sets included some, but not all of the most frequently occurring
image types. Of the image subsets of size five or six that had
perfect resubstitution, all 18 image types occurred at least
once. This finding is likely due to two reasons. First, the illu-
mination and fluorescence emission wavelengths have already
been chosen based on their ability to sample the most commonly
occurring chromophores and fluorophores in tissue. Therefore,
it is not surprising that they all perform well. Also, the MLR
modeling identified high covariance between many image
types, suggesting that similar performance could be obtained
with varying image types.

Although the primary analysis focused on the ovarian tissue
samples, the fallopian tube samples’ descriptive statistics show
trends very similar to those of the ovarian samples. The primary

difference between the tissue types is the uniformly reduced
image intensity for fallopian tube samples. The reduction in
intensity may be primarily due to a naturally occurring higher
concentration of hemoglobin and decreased collagen in the fal-
lopian tube samples.

In addition to the limited number of benign and cancerous
samples discussed above, there were two other limitations of
this study. First, since no effective method of detecting early-
stage ovarian cancer exists, it is challenging to acquire early-
stage cancer samples, and all cancerous samples used in this
study were advanced stage. It is unknown, if early-stage cancer
has the same imaging characteristics. Most of the surgeries con-
tributing tissue to this study were prophylactic for high-risk
women or to address other gynecological issues. In some
cases, tissue was received from patients with confirmed ovarian
cancer, but the particular samples received for the study did not
show signs of cancer upon independent-pathological evaluation.
These challenges make studying human ovarian cancer develop-
ment difficult. The investigators have previously shown the abil-
ity to follow disease development in a mouse model of ovarian
cancer;28 however, that carcinogen-driven model did not mimic
the usual development of ovarian cancer in women. Imaging of a
mouse model that accurately mimicked the development of
human ovarian cancer would enable the determination of the
earliest stage at which MFI could accurately detect cancer.

Second, tissues were measured postresection and do not
reflect the in vivo state. All samples were imaged within 2 h
of removal and most typically from 30 to 60 min after removal.
In research on resected human colon tissue, it has been noted
that different fluorophores decay at different rates after resec-
tion. For example, reduced nicotinamide adenine dinucleotide
decays exponentially with a half-life of 118 min, while collagen
and FAD remain relatively constant.47,48 One sample in this
study containing two ovaries and two fallopian tubes was
imaged twice with a 4-min delay between acquisition sequences.
With all other variables being equal, the average image intensity
of ovarian samples 1 and 2 decreased by 0.09% and 0.90%,
respectively, while the average image intensity of fallopian
tube samples 1 and 2 decreased by 3.27% and 3.34%, respec-
tively. These results suggest that future studies should endeavor
to image samples as soon as possible after resection and at a
consistent time after resection. They also suggest that there
will be differences between image intensities seen in this ex
vivo study and future in vivo studies.

Future work will involve more sophisticated image process-
ing and hardware modifications. Ratiometric imaging can be uti-
lized to help decouple the effects of tissue absorption and
scattering on fluorescence. For example, fluorescence images
can be divided by green reflectance images (R555) to help iso-
late relative intrinsic fluorescence strength from blood
absorption.45,49,50 Using this ratiometric imaging approach, it
may be possible to create image contrast proportional to the
changes in endogenous fluorescence demonstrated by spectro-
scopic analysis.11,24,40

Work to integrate the MFI imaging system into an endoscope
designed to image inside the fallopian tubes and at the ovary is
in progress.51 The xenon arc lamp can be replaced with laser
sources coupled into a multimode illumination fiber. Based
on laser availability, wavelengths of 250 nm (tripled
Alexandrite), 375 nm (doubled Alexandrite), 442 nm (He:
Cd), 543 nm (green He:Ne), and 638 nm (diode) are initially
planned for an endoscopic system. These wavelengths provide
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images most similar to the F280, F370, F440, F440red, F555,
R370, R440, and R555 image types utilized in this study.
Running the QDA model with these eight image types produced
six multivariate normal subsets with only two resubstitution
errors (two benign tissue samples misclassified as normal—
all normal and cancer samples were accurately classified), sug-
gesting that these wavelengths are reasonable initial choices.
With a large field of view, MFI will also serve for navigation.
Endoscopic in vivo imaging adds the challenge of a complex
tissue geometry being imaged over a wide field of view and
with a large depth of focus. Correcting the dynamically chang-
ing nonuniform radiometric distribution across the image for
comparison of absolute tissue intensities is impractical. In addi-
tion to the benefits of ratiometric imaging mentioned above,
using real-time ratiometric imaging can help normalize the
image intensities across the field. Proper ratiometric combina-
tion of image types can create images in which suspicious
regions have high relative contrast compared to adjacent normal
tissue. A high-resolution technique (OCT) can be added to inter-
rogate suspicious areas, potentially heightening accuracy of the
overall system. Adaption of the system for future in vivo fallo-
pian tube and ovary endoscopic imaging may provide a mini-
mally invasive and highly sensitive screening device for
ovarian cancer without the use of exogenous contrast agents.
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