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Abstract. Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography
angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an
automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on
en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then
used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algo-
rithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm’s output to
manual delineation showed good agreement. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
Age-related macular degeneration (AMD) is the leading cause
of irreversible vision loss in older adults in the developed
world.1 The neovascular form of AMD is characterized by
pathologic new vessels that grow from the choroid, through
Bruch’s membrane (BM), and into the avascular outer retina.
There, the choroidal neovascularization (CNV) can cause sub-
retinal hemorrhage, fluid exudation, or a number of other
deleterious effects that negatively affect vision.2 Fluorescein
angiography (FA) and indocyanine green angiography are stan-
dard methods used to diagnose and evaluate CNV in the clinic.
However, they are two-dimensional and require intravenous
dye injection.

Optical coherence tomography (OCT) is a noninvasive im-
aging technique with micron-scale resolution that is commonly
used in ophthalmology to assess retinal morphology. It is based
on low-coherence interferometry and produces volumetric
images composed of multiple depth-resolved reflectivity pro-
files. Optical coherence tomography angiography (OCTA) is
a functional extension of OCT, which allows for the visualiza-
tion of vasculature by assessing variation in the OCT signal over
time. Regions with high variation represent motion from blood
flow while regions with low variation represent static tissue.
OCTA has generated significant clinical interest as a label-free
method of angiography, and a number of recent studies have
investigated its potential in visualizing CNV in AMD.3–7

Importantly, OCTA was shown to be able monitor changes in
the CNV network over time in response to anti-vascular

endothelial growth factor (anti-VEGF) treatment.8–10 As a result,
identification and quantification of the CNV network may have
important clinical implications.

Despite rising interests, methods for automated detection and
quantification of CNVare lacking. Often, quantification of CNV
vessel area is subjective and relies on manual delineation.4,5

To address this issue, we previously developed a saliency-based
detection algorithm, which could automatically separate the
CNV membrane from noise/artifact on en face angiograms.11

Within the detected CNV membrane, the CNV vessel area
was quantified by thresholding to classify pixels as either vessel
or noise/artifact and converting the pixel count to CNV vessel
area. However, thresholding tended to preserve noise/artifact
near vessel edges. More importantly, CNV vessel area gives
greater weight to larger abnormal vessels, which may make it
a less-sensitive metric to pruning/remodeling of smaller vessel
as a result of anti-VEGF treatment.12,13 Thus, we sought to
develop a level set method to segment neovascular vessels
within the detected CNV membrane and a skeleton algorithm
to determine vessel centerlines to quantify the vessel length of
the CNV network.

2 Materials and Methods

2.1 Patient Selection and Data Collection

Participants diagnosed with neovascular AMD were recruited
from the Casey Eye Institute Retina Service. Diagnosis was
based on clinical presentation, a thorough examination, and
an FA. Participants were enrolled after informed consent in
accordance with an Institutional Review Board/Ethics Committee
approved protocol at Oregon Health and Science University and
in compliance with the Declaration of Helsinki.
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Two volumetric OCTA data sets were collected from the
diseased eyes of nine participants using a commercial 70-kHz
spectral domain OCT system with a center wavelength of
840 nm (Avanti RTVue XR, Optovue, Fremont, CA). The
OCTA scan protocol for a single data set contained two sequen-
tial scans, each of which was acquired in less than 3 s and com-
prised of two repeated cross-sectional B-scans at 304 locations
covering a 3 × 3-mm area with a depth of 1.6 mm. Each B-scan
was made up of 304 A-scans; each A-scan was 512 pixels in
depth. The split-spectrum amplitude-decorrelation angiography
(SSADA) algorithm was used to detect flow.14,15 Briefly,
SSADA contrasts blood flow from static tissues by assessing
the reflectance amplitude decorrelation on repeated B-scans
at the same location. Split-spectrum processing was used to
improve the signal-to-noise ratio of flow detection. For the
first scan in the OCTA scan protocol, the fast scanning direction
was in the transverse X-direction. For the second scan, the fast
scanning direction was in the transverse Y-direction. The two
orthogonal scans were then registered and merged to correct
for motion from microsaccades and form a single data set.16

2.2 Algorithm Overview

The flowchart of the proposed algorithm is shown in Fig. 1.
Following semiautomated segmentation to produce en face
angiograms,17 the detection and quantification of the CNV net-
work was achieved in four steps. First, the previously described
saliency-based method was used to detect the CNV membrane.
Second, thresholding was used to identify the initial CNV vas-
cular region. Next, the CNV vasculature was refined using a
level set method. Finally, a skeleton algorithm was used to locate
the vessel centerlines. Sections 2.3–2.5 will describe the steps in
more detail. The algorithm was implemented with custom soft-
ware written in MATLAB® 2011a (MathWorks, Natick, MA).

2.3 Determining the Initial CNV Vascular Region

To visualize inner and outer retinal circulations, en face
angiograms were constructed by maximum flow projection

within slabs defined by segmented boundaries using semiauto-
mated software.17 The inner retinal slab includes tissue layers
between the inner limiting membrane and outer boundary of
the outer plexiform layer (OPL), and the outer retinal slab
includes layers between the outer boundary of OPL and BM.

In healthy eyes, the outer retina is typically avascular.
However, OCTA suffers from shadowgraphic flow projection
artifacts, whereby flow from superficial circulations can be
replicated on deeper structures. Application of our previously
developed saliency-based algorithm allowed for detection of
the CNV membrane in the en face outer retinal angiogram.11

Thresholding was then used to try and separate vessels from
noise/artifact to generate the initial CNV vascular region. The
threshold was set at two standard deviations above the mean
decorrelation value in the foveal avascular zone.

2.4 Vascular Boundary Delineation

Thresholding tended to preserve noise/artifact near vessel edges.
The flow signal within the initial CNV vascular region was thus
inhomogeneous. We used a level set method with a local
intensity clustering criterion to better separate the flow signal
belonging to vessels from remaining noise/artifact.18 Image
inhomogeneity could be described as

EQ-TARGET;temp:intralink-;e001;326;491I ¼ bJ þ n; (1)

where I is the measured flow signal in the outer retinal angio-
gram, J is the true signal, b is some bias field, and n is noise.
The bias field represents scan and subject related variation in the
OCTA signal caused by factors such as focus, aberrations, and
attenuation from ocular media. Given an image I: Ω → R,
where Ω is a continuous domain, the aim was to segment the
image into two disjoint regions Ωi (i ¼ 1;2), where Ω1 is the
vessel region and Ω2 is the background region. Let the terms
x and y refer to pixels within the image. As the bias field b likely
varied across the entire image, the separation of flow signal from
noise/artifact was done in a circular neighborhood Oy centered
at pixel y within Ω with a small radius ρ. Assuming b varied
slowly, the value of b for some pixel x within Oy denoted as
bðxÞ could be approximated by a constant bðyÞ. The values
bðxÞJðxÞ in each subregion can then be approximated by
bðyÞci, where ci is an approximation of J and represents the
detected flow signal in the vessel or background region.
Standard K-means clustering was used to separate each pixel
with IðxÞ ≈ bðyÞci þ nðxÞ for x ∈ Oy as belonging to Ω1 or
Ω2 based on iterative minimization of a clustering criterion
function18

EQ-TARGET;temp:intralink-;e002;326;227εy ¼
X2
i¼1

Z
Ωi

Kðy − xÞjIðxÞ − bðyÞcij2dx; (2)

where bðyÞci are the cluster centers to be optimized. Kðy − xÞ is
a truncated Gaussian function, which gave larger weights to data
closer to y and would equal 0 for jy − xj > ρ.

The above-defined local clustering criterion function classi-
fied the flow signal only within the circular neighborhood Oy.
The integral of the local clustering criterion function εy for all y
over the domain Ω constituted the overall function ε. The
minimization of ε meant the joint minimization of εy for all
y over the domain Ω and was done using a level set approach.
In the level set method, ϕ was the level set function. The vessel
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Fig. 1 Overview of the CNV vessel skeleton and quantification
algorithm.
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region was Ω1 ¼ fx∶ϕðxÞ > 0g and the background region
Ω2 ¼ fx∶ϕðxÞ < 0g. Their corresponding membership func-
tions were defined as MiðϕÞ, where M1ðϕÞ ¼ HðϕÞ and
M2ðϕÞ ¼ 1 −HðϕÞ. H was a smoothed Heaviside function.19

The level set formulation was then as follows:18

EQ-TARGET;temp:intralink-;e003;63;697εðϕ; c; bÞ ¼
Z X2

i¼1

eiðxÞMi½ϕðxÞ�dx; (3)

where ei is defined as

EQ-TARGET;temp:intralink-;e004;63;636eiðxÞ ¼
Z

Kðy − xÞjIðxÞ − bðyÞcij2dy: (4)

Two regularization terms were combined with εðϕ; c; bÞ to
generate the variational level set formulation as follows:

EQ-TARGET;temp:intralink-;e005;63;571

Fðϕ; c; bÞ ¼ εðϕ; c; bÞ þ ν ·
Z

j∇HðϕÞjdx

þ μ ·
Z

pðj∇ϕjÞdx: (5)

The second term on the right side of the equation computed
the length of the zero level set function and was used to smooth
the zero level set contour.19 The third term was the distance regu-
larization term, and it was used to maintain the signed distance
property during the level set evolution.20,21

Pixel classification into Ω1 or Ω2 was achieved by minimiz-
ing the function F in an iterative process. A standard gradient
descent approach based on the Gâteaux derivative ∂F∕∂ϕ was
applied to minimize the function with respect to the variable ϕ
for fixed c and b. The gradient flow formulation was18

EQ-TARGET;temp:intralink-;e006;63;391

−
∂F
∂ϕ

¼ ∂ϕ
∂t

¼ −δðϕÞðe1 − e2Þ þ ν · δðϕÞ · div
�

∇ϕ
j∇ϕj

�

þ μ · div½dpðj∇ϕjÞ∇ϕ�: (6)

For fixed ϕ and b, the function was minimized with respect to c
as follows:

EQ-TARGET;temp:intralink-;e007;63;307ci ¼
R ðb � KÞIuidyR ðb2 � KÞIuidy

; i ¼ 1;2; (7)

where uiðyÞ ¼ Mi½ϕðyÞ�. Then, for fixed ϕ and c, the function
was minimized with respect to b as follows:

EQ-TARGET;temp:intralink-;e008;63;239b ¼ ðIJð1ÞÞ � K
Jð2Þ � K ; (8)

where Jð1Þ ¼ P
2
i¼1 ciui and Jð2Þ ¼ P

2
i¼1 c

2
i ui.

In our implementation, the truncated Gaussian function KðuÞ
had a scale parameter σ ¼ 4, and the mask size of the convo-
lution kernel K was 17 × 17. The radius ρ was then 8.5. Other
parameters were as follows: τ ¼ 1 in the smoothed Heaviside
function Hτ, the coefficient which modifies the first regulariza-
tion term in Eq. (5) μ ¼ 1, ν ¼ 0.001 × 3042 which is a scale
parameter that modifies the region size for the second regulari-
zation term in Eq. (5), and Δt ¼ 0.1 for the gradient flow
step size.

2.5 Vessel Skeleton and Quantification

The level set method separated vessels from background noise/
artifacts to produce the CNV vascular region. This then allowed
for the application of a skeleton algorithm on the binary image
of the CNV vasculature. We used the Zhang–Suen22 parallel
thinning algorithm and implemented it over a 3 × 3 pixel win-
dow. Briefly, the algorithm iteratively removes pixels until only
a skeleton remains. In the first subiteration, south–east boundary
and north–west corner pixels are considered. In the second sub-
iteration, north–west boundary and south–east corner pixels are
considered.

Quantification of CNV vessel area and vessel length was
then performed on the binary image of the CNV vascular region
and CNV skeleton, respectively. CNV vessel area was the sum
of nonzero pixels converted to mm2. Vessel length was the sum
of the pixels making up the skeleton converted to mm.

2.6 Verification of Results

The automated algorithm was applied to both OCTA scans from
an eye, and within-visit repeatability was assessed using coef-
ficient of variation. The CNV skeleton from the algorithm was
compared to manual delineation of the CNV centerlines done by
an experienced grader. The expert grader delineated the vessel
centerlines of the CNV from the en face angiogram of the outer
retinal slab. The grader had access to the inner retinal angiogram
for reference. The Jaccard similarity metric was used to compare
results from the automated algorithm and manual delineation:

EQ-TARGET;temp:intralink-;e009;326;440JðIa; ImÞ ¼
jIa ∩ Ibj
jIa ∪ Imj

; (9)

where Ia is the result from the automated algorithm and Im from
manual delineation. However, due to the single pixel width of
the skeletons, the union of results would be low. Thus,
we broadened the centerlines from manual delineation using
a dilation operator where the structure element was a disk with
a radius of 1 pixel. Ib was the broadened skeleton from manual
delineation. The Jaccard coefficient was between 0 and 1, with 1
denoting identity and 0 the complete dissimilarity. Errors rates
were computed with the manually delineated vessel skeletons
as the standard. False-positive error was the ratio of the total
number of pixels in the algorithm-derived vessel skeleton that
were not in the manually delineated vessel skeleton to the total
number of pixels in the manually delineated vessel skeleton.
False-negative error was the ratio of the total number of pixels
in the manually delineated vessel skeleton that were not in the
algorithm-derived vessel skeleton to the total number of pixels
in the manually delineated vessel skeleton.

3 Results
The en face outer retinal angiogram from a participant with neo-
vascular AMD was used as an example to show the workflow of
the algorithm. Figure 2(a) shows the original outer retinal angio-
gram with CNV and projection artifacts. The CNV membrane
[Fig. 2(b)] could be detected and extracted using a saliency-
based approach.11 We then used thresholding within the CNV
membrane to generate the initial CNV vascular region shown
[Fig. 2(c)]. The CNV vascular region contained noise/artifacts
which would result in overestimation when quantifying CNV
vessel area. The binary image of the CNV and its boundaries
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[red contours in Fig. 2(c)] were used to initialize the level set
method. The level set method iteratively performs the following:
(1) estimate the flow signal in the vessel (c1) and background
(c2) regions based on Eq. (7) (where u in the first iteration is the
image used to initialize the level set method); (2) reclassify pix-
els as belonging to vessel or background based on Eq. (6); and
(3) estimate the bias field (b) based on Eq. (8). After the level set
function converged (ci and b change becomes minimal), the
final vessel boundaries were smooth and not surrounded by
obvious noise/artifact [Fig. 2(d)]. The CNV vasculature shown
in Fig. 2(e) was binarized and skeletonized. Figure 2(f) shows
the vessel skeletons used to analyze the vessel length. The level
set method and skeleton algorithm required 13 s to execute on
an Intel Xeon CPU (E3-1226, 3.3 GHz); 93% of that time was
spent on the level set evolution.

Data from nine participants with neovascular AMD were
analyzed. Two volumetric data sets from each eye were evalu-
ated to assess within-visit repeatability. Figures 3 and 4 show the
results from one volumetric data set from the other eight partic-
ipants. The cases included both type I and type II CNV with
a wide range of sizes. Compared to determining CNV vessel
area by thresholding, the level set method reduced the CNV
vessel area measurement by 24.6� 12.1% (mean� standard

deviation). The level set method improved within-visit repeat-
ability, from a coefficient of variation of 7.3% with thresholding
to 5.9%.

The skeleton algorithm was then applied to the initial CNV
vascular region (thresholding vessel skeleton) and the output
after level set evolution (level set vessel skeleton). The vessel
skeleton results were compared to manual delineation of vessel
centerlines. The level set vessel skeletons showed good
agreement with manual delineation, with a Jaccard similarity
metric of 0.69� 0.12. This was an improvement (paired t-test
P < 0.001) over thresholding vessel skeletons compared to

manual delineation, which had a Jaccard of 0.36� 0.07. A com-
parison of false-positive and false-negative errors (Table 1)
showed improvement in both with the level set approach
(P < 0.001). A greater change was seen in the false-positive
error metric, indicating that the level set method removed
noise/artifact pixels to prevent an overly complex vessel skel-
eton. The vessel length within-visit repeatability as assessed
with coefficient of variation was 1.8% for the level set vessel
skeleton and 8.1% for manual delineation.

4 Discussion
OCTA is a relatively new approach to assessing CNV, and quan-
titative analysis of the CNV network may have important clini-
cal implications. In this work, we developed a level set method
to segment neovascular vessels and skeleton algorithm to deter-
mine vessel centerlines. The algorithm first identifies the CNV
membrane using saliency-based detection. Next, thresholding is
used to obtain the initial CNV vascular region. A level set
method then refines the CNV vasculature, using local informa-
tion to remove remaining noise/artifacts. Finally, a skeleton
algorithm is applied to delineate the vessel centerlines based
on the output from the level set method. The results of the algo-
rithm as applied to nine eyes with neovascular AMD were
shown. A comparison of the vessel skeleton from the algorithm
to manual delineation showed good agreement with an average
Jaccard similarity metric of 0.69.

Compared to thresholding when calculating CNV vessel
area, the level set method reduced the value of the measurement
by 24.6%. Inspection of the images showed that this reduction
generally was removal of noise/artifact pixels near the edge of
vessels. Unfortunately, it also removed pixels that may have
been vessels with weak flow. For example (Fig. 5), in the par-
ticipant shown in Fig. 2, there was removal of noise pixels near

(a) (b) (c)

(d) (e) (f)

Fig. 2 The automated vessel skeleton algorithm. (a) Original outer retinal angiogram (3 × 3 mm) from
a participant with neovascular AMD showing projection artifacts and CNV. (b) The CNV membrane
obtained by saliency-based detection. (c) The CNV vascular region was contoured (green) and used
to initialize the level set method. (d) The vessel boundaries segmented by the level set method.
(e) The final CNV vascular region. (f) The vessel skeletons of the CNV.
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Fig. 3 Analysis of en face OCT angiograms from participants with neovascular AMD. The top row (a1)–
(a4) shows the en facemaximum flow projection angiogram from the outer retinal slab (3 × 3 mm) without
any additional processing. The second row (b1)–(b4) shows the CNV following saliency-based detection
and thresholding (b1) 0.943 mm2, (b2) 0.135 mm2, (b3) 0.245 mm2, (b4) 1.253 mm2. The third row
(c1)–(c4) shows the vessel skeletons derived from the corresponding panel in (b): (c1) 31.549 mm,
(c2) 6.493 mm, (c3) 9.967 mm, (c4) 37.934 mm. The fourth row (d1)–(d4) shows the CNV after
the level set method (d1): (d1) 0.668 mm2, (d2) 0.129 mm2, (d3) 0.202 mm2, (d4) 0.804 mm2. The
fifth row (e1)–(e4) shows the vessel skeletons derived from the corresponding panel in (d):
(e1) 18.493 mm, (e2) 3.355 mm, (e3) 4.579 mm, (e4) 20.842 mm. The sixth row (f1)–(f4) shows the
vessel skeletons in (e) on the original angiogram. The last row (g1)–(g4) shows the manually delineated
vessel centerlines, which were used as the reference standard, on the original angiogram
(g1) 21.355 mm, (g2) 3.622 mm, (g3) 5.477 mm, (g4) 23.743 mm.
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Fig. 4 Analysis of en face OCT angiograms from participants with neovascular AMD. The layout is the
same as in Fig. 3. (b1) 0.855 mm2; (b2) 0.230 mm2; (b3) 0.088 mm2; (b4) 0.093 mm2. (c1) 13.057 mm;
(c2) 8.901 mm; (c3) 2.359 mm; (c4) 3.099 mm. (d1) 0.578 mm2; (d2) 0.191 mm2; (d3) 0.054 mm2;
(d4) 0.066 mm2. (e1) 9.800 mm; (e2) 5.763 mm; (e3) 1.066 mm; (e4) 2.388 mm. (g1) 10.329 mm;
(g2) 6.375 mm; (g3) 1.411 mm; (g4) 2.625 mm.
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the edge of the CNV [green arrows in Figs. 5(b) and 5(c)], but
also removal of vascular pixels within loops of the CNV net-
work [yellow arrows in Figs. 5(b) and 5(c)]. A more quantitative
evaluation of the impact of the level set method on CNV vessel
area may prove insightful for future adjustments or modifica-
tions to the level set algorithm. Nevertheless, the application
of the level set method to refine the CNV vasculature region
simplified and improved the output from the skeleton algorithm
[compare Figs. 5(d)–5(f)].

The CNV skeleton derived from skeletonization of the output
from the level set method was generally comparable to manual
delineation. Discrepancies occurred when the CNV detection
missed parts of the CNV that had weak flow signal. For exam-
ple, in participant 6, the grader drew vessels near the bottom of
the CNV network [Figs. 6(a) and 6(b)] that were not included in
the initial CNV vascular region [Fig. 4(b2)]. In addition, how
the grader interpreted the vessel centerlines within a mass of
flow signal did not always align with the algorithm output
[Figs. 6(c) and 6(d)]. These issues suggest avenues for future
improvement.

While the algorithm was capable of quantifying CNV vessel
area and vessel length in the participants of this small study,
additional studies with a larger number of diseased eyes are
needed. Such a study would provide a better evaluation of
the repeatability of the algorithm. Furthermore, it would be
particularly insightful to test the algorithm’s ability to detect
changes in the CNV network as part of the natural progression
of the disease or, alternatively, in response to treatment.

5 Conclusion
We developed an automated algorithm based on level set seg-
mentation and skeletonization to delineate centerlines of CNVas
visualized on en face OCT angiograms. Level set segmentation
to refine CNV vessel edges preceding skeletonization was
essential to improving the vessel skeleton output. CNV vessel
skeleton results from the algorithm applied to OCTA scans from
participants with neovascular AMD showed good within-visit
repeatability and agreement with manual delineation.
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