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Abstract

Significance: The proposed binary tomography approach was able to recover the vasculature
structures accurately, which could potentially enable the utilization of binary tomography algo-
rithm in scenarios such as therapy monitoring and hemorrhage detection in different organs.

Aim: Photoacoustic tomography (PAT) involves reconstruction of vascular networks having
direct implications in cancer research, cardiovascular studies, and neuroimaging. Various meth-
ods have been proposed for recovering vascular networks in photoacoustic imaging; however,
most methods are two-step (image reconstruction and image segmentation) in nature. We pro-
pose a binary PAT approach wherein direct reconstruction of vascular network from the acquired
photoacoustic sinogram data is plausible.

Approach: Binary tomography approach relies on solving a dual-optimization problem to
reconstruct images with every pixel resulting in a binary outcome (i.e., either background or
the absorber). Further, the binary tomography approach was compared against backprojection,
Tikhonov regularization, and sparse recovery-based schemes.

Results: Numerical simulations, physical phantom experiment, and in-vivo rat brain vasculature
data were used to compare the performance of different algorithms. The results indicate that the
binary tomography approach improved the vasculature recovery by 10% using in-silico data with
respect to the Dice similarity coefficient against the other reconstruction methods.

Conclusion: The proposed algorithm demonstrates superior vasculature recovery with limited
data both visually and based on quantitative image metrics.
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1 Introduction

Photoacoustic tomography (PAT) is an imaging technique that enables us to visualize vasculature
networks at high resolution at depths much greater than optical microscopy.1,2 PAT can also
resolve tissue chromophores such as oxyhemoglobin and deoxyhemoglobin, which allows esti-
mation of tissue oxygentation levels.1,3 Accurate estimation of tissue oxygentation is very impor-
tant in the fields of neuroimaging, cancer diagnostics, and critical care medicine.4,5 PAT involves
collection of broadband acoustic waves generated by thermoelastic expansion of tissue upon
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absorption of light (illuminated at near-infrared wavelengths).6,7 PAT image reconstruction
involves recovery of the acoustic source distribution from the detected broadband acoustic
waves, which can be performed using analytical or model-based methods.8 Analytical methods
are computationally less expensive compared to model-based image reconstruction.8,9 In con-
trary, model-based schemes are known to generate accurate images compared to analytical
schemes, specifically in scenarios where irregular acquisition geometry is involved or limited
data is acquired.9,10 Even with the model-based schemes, PAT inversion becomes difficult
when the number of ultrasound detector positions is limited, and the situation gets aggravated
due to the presence of noise in the data. More recently deep learning-based image postprocess-
ing schemes have been developed for artifact removal and for limited data situations in PAT/
microscopy;11–13 however, these schemes were trained on simulated data and generating large
experimental data is very difficult.

Segmentation approaches were proposed to delineate skin lining in mesoscopic photoacous-
tic images.14 Active contours-based image segmentation was used to obtain the PAT region of
interest (ROI), the obtained ROI was then used to perform fluence correction to make PAT more
quantitative.15,16 Different computational techniques have been reported in the literature to obtain
vascular network in photoacoustic imaging. Vesselness filter has been proposed to enable accu-
rate recovery of vasculature in PAT;17–19 however, questions have been raised on the accuracy of
using the vesselness filter (due to generation of artificial vasculature).20 Probabilistic approach in-
volving different steps such as smoothing and filtering the data, clustering, vessel-segmentation
using clusters, and morphological filling was developed for segmenting vessels in photoacoustic
images.21 More recently convolution neural network-based approaches were also developed for
jointly performing the image reconstruction and segmentation.22 Further, deep learning-based
approach was proposed for segmenting animal boundary using multi-modal photoacoustic and
ultrasound data.23 Further, deep learning-based method has also been developed for animal brain
imaging.24

Notably segmenting vasculature is very important in the context of diagnosis and surgical
guidance, specifically for cardiovascular diseases.25,26 In this work, we developed a binary
tomography approach wherein we assume the reconstruction distribution contains only two
unknowns namely the background and the absorbers. The major contributions of this work
include: (a) application of binary tomographic methods for photoacoustic tomographic imaging
involving spherical wave propagation as opposed to straight line approximation applied in x-ray
computed tomography; (b) showing the utility of binary tomographic methods for improving
photoacoustic tomographic imaging of vasculature; and (c) establishing the binary tomographic
method superiority in photoacoustic tomographic imaging for providing approximate priors to
improve model-based image reconstruction.

Binary tomography problem is solved based on a dual optimization approach with an aux-
iliary variable posed as a constrained optimization problem. We compared the binary tomog-
raphy algorithm against standard backprojection approach and model-based reconstruction
schemes such as Tikhonov regularization and sparsity-based regularization.27 The performance
of these different algorithms was validated with in-silico data, physical phantom, and in-vivo
brain vasculature imaging data.

2 Methods

2.1 Acoustic Forward Problem

The acoustic forward model in PAT can be written as

EQ-TARGET;temp:intralink-;e001;116;153Ax ¼ b; (1)

where A is the system matrix constructed as explained in Refs. 9 and 28, b indicates the acoustic
time series data measured at the detector locations, and x is the initial value of pressure rise at
each pixel of the photoacoustic image. Note that the size of the matrix A is NM × NP (NM
indicates the times series data at different transducer locations and NP indicates the total number
of pixels).
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Backprojection is the simplest approach to reconstruct the photoacoustic image from the
measured acoustic data and is mathematically given as xbp ¼ ATb.29 The reconstructed photo-
acoustic image quality is often very less using the backprojection approach (xbp) especially when
limited data is available.

2.2 Model-Based Reconstructions

2.2.1 L2-Norm-based (Tikhonov) regularization

The Tikhonov regularization method has been used by many researchers in the context of photo-
acoustic imaging. Tikhonov method generates smoother solutions, and the characteristics of the
solution are governed by the choice of the regularization parameter. The Tikhonov regularization
approach minimizes the following objective function:30

EQ-TARGET;temp:intralink-;e002;116;576ΩTikh ¼ min
x
ðkAx − bk22 þ λkxk22Þ; (2)

where the regularization parameter is indicated by λ, which trades-off between the residue of the
linear equations and L2-norm of ðxÞ. Smoother photoacoustic images could be obtained using
higher regularization parameter value. In contrary, a smaller value of λ will increase the noise/
high-frequency information in the reconstructed photoacoustic image. Minimization of the
objective function (ΩTikh) can be performed using normal equations, which results in:9,30

EQ-TARGET;temp:intralink-;e003;116;480xTikh ¼ ðATAþ λIÞ−1ATb: (3)

Further, since the system matrix is having large dimension (i.e., 51;200 × 40;000), a least
squares QR-based dimensionality reduction was used to perform this inversion.9,31 The regulari-
zation parameters used in the Tikhonov regularization approach was chosen heuristically to
result in the best possible figure of merit.

2.2.2 L1-Norm-based (sparsity) regularization

Photoacoustic imaging is widely used for cardiovascular imaging due to its ability to image
vasculature networks, hence it is reasonable to assume that PA images are sparse in nature.
Therefore, it is expected that using non-smooth regularizers, such as the L1-norm-based
approach could reconstruct accurate photoacoustic images. Many numerical optimization tech-
niques were proposed for performing sparse recovery-based reconstruction.9,32,33 The L1-norm-
based objective function is given by33–35

EQ-TARGET;temp:intralink-;e004;116;290Ωl1
¼ min

x
ðkAx − bk22 þ λkxk1Þ; (4)

where k:k1 represents the L1-norm. A majorization minimization framework was utilized to
solve the L1-norm-based minimization in PAT, as explained in Refs. 32 and 35. The reconstruc-
tion parameters used in the majorization minimization approach were chosen heuristically to
result in the best possible figure of merit.

2.3 Binary Tomography

Binary tomography tries to reconstruct imaging volumes having binary distribution, i.e.,
x ∈ ðu0; 0; u1Þ with few number of detection positions.36 Performing reconstruction with limited
data is particularly essential in the context of PAT, which has direct implication in terms of data-
acquisition time or system cost. Binary tomography will try to directly estimate the segmented
output from the acquired photoacoustic data. The binary tomography problem is defined as36
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EQ-TARGET;temp:intralink-;e005;116;735

x� ¼ argmin
x

�
infΦ

�
1

2
kAx − bk2

��

subjected to x ¼ sgnðΦÞ; (5)

where sgnð:Þ denotes element wise signum function [with sgnð0Þ ¼ 0] and Φ is the auxiliary
variable. As can be seen, the above minimization problem is trying to estimate the solution that
will have binary distribution based on the sign of the auxiliary variable. The Lagrangian for the
above problem is given as36

EQ-TARGET;temp:intralink-;e006;116;635Lðx;Φ; vÞ ¼ 1

2
kAx − bk2 þ vTðx − sgnðΦÞÞ: (6)

The variable v is the Lagrangian multiplier associated with equality constraint, i.e.,
x ¼ sgnðΦÞ. The above optimization can be solved using a dual optimization approach:

EQ-TARGET;temp:intralink-;e007;116;568v� ¼ arg maxv½gðvÞ�; (7)

where gðvÞ is the dual function, which is given as

EQ-TARGET;temp:intralink-;e008;116;525gðvÞ ¼ infΦ;x½Lðx;Φ; vÞ�: (8)

The dual problem in the case of binary tomography (with u0 < u1) comes out to be

EQ-TARGET;temp:intralink-;e009;116;481v� ¼ arg minv∈RN

�
1

2
kv − ATbkðATAÞ þ pðvÞ

�
; (9)

where pðvÞ ¼ P
iðju0jmaxð−vi; 0Þ þ ju1jmaxðvi; 0ÞÞ is an asymmetric one-norm. The primal

solution is given as x� ¼ u0 þ ðu1 − u0ÞHðv�Þ, withHð:Þ being a heavy-side function. This dual
problem is solved using proximal gradient descent. The proximal operator for the binary tomog-
raphy problem (the above given asymmetric one-norm function) is given by asymmetric soft-
thresholding operation, which is defined as

EQ-TARGET;temp:intralink-;e010;116;376

Sa<bðtÞ ¼ t − jbj ∀ t ≥ jbj
Sa<bðtÞ ¼ tþ jaj ∀ t ≤ −jaj
Sa<bðtÞ ¼ 0 − jaj < t < jbj: (10)

It is important to note that the binary tomography approach is trying to assign a class to the
solution based on the sign of the auxiliary variable, hence a direct segmented output will be
obtained from the acquired acoustic time series data. This will in essence avoid a two-step
approach of reconstructing the image and then performing image segmentation.

2.4 Figure of Merit

The proposed scheme was evaluated using a Dice similarity coefficient, which is used to measure
the similarity between two sets of data. Let xtrue be the ground truth and xrecon be the recon-
structed image and then the Dice similarity coefficient is computed as

EQ-TARGET;temp:intralink-;e011;116;187DC ¼ 2jxtrue ∩ xreconj
jxtruej þ jxreconj

; (11)

where j:j indicates the number of elements (cardinality) in the image.

2.5 Numerical Simulations and Experiments

The different methods explained here were assessed with two numerical phantoms namely the
Derenzo phantom (to understand the ability to recover objects of different sizes at different
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locations in the imaging domain) and a blood vessel phantom (as the main aim of PAT is to
recover vasculature structures). The photoacoustic pressure intensity was considered as
1 kPa and speed of sound was considered to be homogeneous and constant at 1500 m∕s.
Note that numerical simulations are used to evaluate the different algorithms as it is difficult
to compare the capabilities of different algorithms with realistic in-vivo cases due to unknown
ground truth.

A two-dimensional imaging region of size 20.1 × 20.1 mm (corresponding to 402 ×
402 pixels) was considered, and this imaging region housed the Derenzo phantom and the numeri-
cal blood vessel phantom. A larger computational grid having of size 50.1 × 50.1 mm (corre-
sponding to 1002 × 1002 pixels) was considered for propagating the acoustic wave fields
(forward model) and detecting the pressure signals by transducer. A total of 60 or 80 detectors
(transducer positions) were placed on the circle of radius 22 mm. The detected simulated data were
then added with additive white Gaussian noise to result in an SNR of 30, 40, and 60 dB in the
in-silico data. Further, the transducer was modeled to have a center frequency of 2.25 MHz (with
bandwidth of 70%), resulting in maximum detectable frequency as 3.0375 MHz. A total of about
512 samples were acquired with a sampling period of 50 ns (simulating a typical data acquisition
(DAQ) sampling rate used in experiments). The in-silico data were then used to reconstruct the
photoacoustic image using the different algorithms explained in Secs. 2.1–2.3. Note that the for-
ward model was run on a finer grid, i.e., 20.1 × 20.1 mm (corresponding to 402 × 402 pixels),
whereas the reconstruction was performed on a coarser domain, i.e., 20.1 × 20.1 mm (correspond-
ing to 201 × 201 pixels) to avoid inverse crime. The dimension of the model matrix in the case of
60 detectors was 30;720 × 40;401 (corresponding to 40,401: 201 × 201 reconstruction grid and
30,720: 60 detector position each acquiring 512 time samples), and for the case of 80 detectors is
40;960 × 40;401 (corresponding to 40,401: 201 × 201 reconstruction grid and 40,960: 80 detector
position each acquiring 512 time samples). The speed of sound in all these cases was considered to
be constant at 1500 m∕s.

Next, these different algorithms were evaluated using experimental photoacoustic data.
Initially, a horse-hair phantom was built. This phantom was arranged in a triangular shape, with
side-length and diameter of hair measured to be 10 and 0.15 mm, respectively, these three hairs
were glued to the pipette tips adhered on acrylic slab. Photoacoustic signals from the horse-hair
phantom data were acquired using the experimental setup shown in Fig. 2 of Ref. 37. The phan-
tom was illuminated with a Q-switched Nd:YAG laser operating at 532 nm having a pulse width
of 5 ns with 10 Hz repetition rate. The nanosecond laser pulses were delivered on the sample
using Four right-angle uncoated prisms (PS911, Thorlabs) and one uncoated plano-concave lens
(LC1715, Thorlabs). Note that the light fluence at the sample was about 9 mJ∕cm2. The laser and
the DAQ systems were synchronized using a sync signal from the laser. An ultrasound transducer
having 13 mm diameter active area and about 70% nominal bandwidth (with center frequency of
2.25 MHz) was rotated around the sample (over 360 deg) for recording the photoacoustic sig-
nals. The generated PA signals due to photoacoustic effect were first amplified and then filtered
using a pulse amplifier (Olympus-NDT, 5072PR). The amplified signals were then recorded
using a DAQ card (GaGe, compuscope 4227) with a sampling frequency of 25 MHz. The exper-
imental data were reconstructed using a model matrix with a size of 51;200 × 40;000 (corre-
sponding to 40,000: 200 × 200 reconstruction grid and 51,200: 100 detector position each
acquiring 512 time samples). In-vivo rat brain imaging data were collected using the same exper-
imental setup.37 These in-vivo data were used to compare the reconstruction performance of
different algorithms. The reconstructions presented in this work were implemented on a system
with Intel i9-9920X processor with 3.50 GHz, 288 cores, and 128 GB memory.

3 Results and Discussions

Figure 1 shows the reconstructed images obtained using the different algorithms with the
Derenzo phantom and 80 detector position. Figures 1(a)–1(c) indicate the reconstruction results
corresponding to the backprojection approach with 30, 40, and 60 dB signal-to-noise ratio in
data (SNRd). The reconstruction results corresponding to the L2-norm-based reconstruction
for different SNRd (30, 40, and 60 dB) are shown in Figs. 1(d)–1(f). As expected, the
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reconstructions obtained using the L2-norm approach are more accurate compared to the back-
projection algorithm, particularly in reducing the streak artifacts. The L1-norm-based recon-
struction outputs are shown in Figs. 1(g)–1(i) for different SNRd values, and it can be seen
that the L1-norm-based reconstruction shows improved resolution characteristics compared
to L2-norm-based reconstruction. Figures 1(j)–1(l) show the reconstruction corresponding to
the binary tomography approach with different levels of noise in the data, as can be seen the
reconstruction outputs using the binary tomography approach is able to localize the objects of
different sizes with reduced blur. Further, the contrast using the proposed approach is found to be
higher compared to other reconstruction schemes.

Next numerical experiments were performed by reducing the number of detector positions to
60. Figure 2 shows the reconstructed images obtained using with the Derenzo phantom and 60
detector position. Figures 2(a)–2(c) show the reconstruction results obtained using the backpro-
jection algorithm with SNRd as 30, 40, and 60 dB, respectively. In comparison with 80 detector
locations, the smaller absorbers were not resolved accurately while using only 60 detector loca-
tion [as shown with red arrows in Figs. 2(a)–2(c) and green arrows in Fig. 1(a)]. However, these
smaller absorbers were accurately resolved using other methods with 60 detector positions (as
can be seen in Fig. 2). The reconstruction results corresponding to the Tikhonov regularization
approach for different SNRd (30, 40, and 60 dB) is shown in Figs. 2(d)–2(f). The results indicate
that the Tikhonov approach was successful in resolving smaller absorbers compared to back-
projection approach. The L1-norm regularization-based reconstruction images are shown in
Figs. 2(g)–2(i) for different SNRd values. As can be seen with red arrows in Figs. 2(g)–2(i),
there are few locations in the imaging domain with large negative values resembling
artifacts.16,38 Figures 2(j)–2(l) show the reconstruction results corresponding to the binary
tomography approach with different levels of noise in the data, as can be seen the reconstruction
outputs using the binary tomography approach has reduced blur and is able to localize the objects
of different sizes. Further, the obtained contrast using the proposed approach seems to better
compare to other reconstruction schemes. However, it can be seen that spurious artifacts do arise
using the proposed approach, and the larger circular absorbers seem to have donut shape [as can
be seen with red arrows in Fig. 2(l)]. The line profile along the dashed red line shown in Fig. 1(j)
for SNRd ¼ 30 dB and having 80 and 60 detectors is given in Fig. 3. Figure 3 indicates that the

Fig. 1 Reconstruction results using Derenzo phantom and 80 detector positions using
(a)–(c) backprojection approach and SNRd ¼ 30, 40, and 60 dB, respectively; (d)–(f) Tikhonov
regularization approach and SNRd ¼ 30, 40, and 60 dB, respectively; (g)–(i) L1-norm approach
and SNRd ¼ 30, 40, and 60 dB, respectively; and (j)–(l) binary tomography approach and
SNRd ¼ 30, 40, and 60 dB, respectively.
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proposed method is able to accurately recover the bigger circles compared to other reconstruc-
tion methods. Note that the line-profile with binary tomography and other reconstructions is
having smaller size compared to the ground truth. This might be due to lesser number of detector
positions, limited bandwidth of the transducer, and the choice of threshold being considered
during reconstruction.

Another numerical experiment using blood vasculature structure was taken up next.
Figure 4 shows the results pertaining to blood vasculature phantom and 80 detector locations.
Figures 4(a)–4(c) show the vasculature distribution using the backprojection approach at
different SNRd values. Figures 4(d)–4(f) indicate the reconstruction distribution obtained using
L2-norm regularization with SNRd values being 30, 40, and 60 dB, respectively. The L1-norm
regularization-based reconstruction at SNRd ¼ 30, 40, and 60 dB is shown in Figs. 4(g)–4(i),
respectively. As in earlier cases, the L2-norm-based approach seems to have lesser artifacts com-
pared to backprojection approach; L1-norm regularization seems to have better resolution char-
acteristics compared to L2-norm regularization, which is in accordance with earlier works.33,35

Fig. 3 The line plot comparison for the different algorithms (L2-norm, L1-norm, and binary tomog-
raphy cases) with SNRd ¼ 30 dB and having 80 and 60 detectors.

Fig. 2 Similar effort as Fig. 1, with 60 acoustic detector positions.

Prakash et al.: Binary photoacoustic tomography for improved vasculature imaging

Journal of Biomedical Optics 086004-7 August 2021 • Vol. 26(8)



Note that L1-norm reconstruction produces reconstructions with improved resolution compared
to L2-norm reconstruction due to the presence of soft-thresholding operation during L1-norm
minimization. Finally, Figs. 4(j)–4(l) show the reconstruction results corresponding to the binary
tomography algorithm. Overall, Fig. 4 indicates that the binary tomography approach is able to
recover the vasculature distribution. However, the binary tomography approach seems to present
few discontinuities while recovering the vasculature like distribution [shown by green arrows
in Fig. 4(k)]. Finally, Figs. 1–4 collectively indicate that binary tomography approach holds
potential while recovering structures with binary contrast.

The Dice similarity scores were also computed for the different in-silico cases demonstrated
in Figs. 1–4, and the same has been shown in Table 1. The Dice similarity scores indicate that
the proposed binary tomography approach seems to generate the most accurate representation to
the ground truth. For the cases of backprojection, Tikhonov regularization, and L1-based

Fig. 4 Same effort as Fig. 1 with 80 detectors and blood vessel phantom.

Table 1 Dice similarity scores for the different methods shown in Figs. 1–4. The best results are
shown in bold.

Phantom
(data noise) Backprojection

Tikhonov
regularization

L1-based
regularization

Binary
tomography

Fig. 1 (30 dB) 0.8575 0.9002 0.9553 0.9752

Fig. 1 (40 dB) 0.8579 0.9013 0.9576 0.9753

Fig. 1 (60 dB) 0.8583 0.9012 0.9590 0.9756

Fig. 2 (30 dB) 0.8558 0.8859 0.9560 0.9740

Fig. 2 (40 dB) 0.8559 0.8863 0.9600 0.9743

Fig. 2 (60 dB) 0.8562 0.8863 0.9609 0.9742

Fig. 4 (30 dB) 0.8485 0.8903 0.9401 0.9697

Fig. 4 (40 dB) 0.8483 0.8932 0.9464 0.9704

Fig. 4 (60 dB) 0.8487 0.8929 0.9465 0.9705
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regularization, the reconstructed output was first made non-negative by thresholding with 0, and
then segmentation was performed by choosing the mean value as the segmentation threshold.

Next, the binary tomography approach was evaluated using experimental data. Initially,
horse-hair physical phantom data were reconstructed using the backprojection, L2-norm regu-
larization, L1-norm regularization, and binary tomography approaches. The results correspond-
ing to the same is shown in Fig. 5. Similar to numerical simulations, the L2-norm regularization
scheme [Fig. 5(b)] is found to reconstruct images devoid of artifacts compared to backprojection
scheme [shown by red arrow in Fig. 5(a)]. Similarly, the L1-norm regularization-based recon-
struction seems to be having increased resolution at cost of amplified noise [shown by red arrow
in Fig. 5(c)]. The binary tomography approach is able to generate accurate reconstruction of the
horse-hair phantom; however, a discontinuity is observed on one of the hair [same is the case
with other methods too; shown by red arrows in Figs. 5(b)–5(d)]. Finally, the different algorithms
explained in Sec. 2 were used to reconstruct the in-vivo rat brain vasculature distribution. The
reconstruction of the vasculature in the rat brain using backprojection approach is shown in
Fig. 6(a). The L2-norm and L1-norm-based regularized reconstruction is shown in Figs 6(b)

Fig. 5 Reconstruction results corresponding to horse hair phantom experiment using (a) back-
projection, (b) Tikhonov regularization; (c) L1-norm regularization, and (d) binary tomography.

Fig. 6 Reconstruction results corresponding to rat brain imaging experiment using (a) back-
projection, (b) Tikhonov regularization, (c) L1-norm regularization, and (d) binary tomography.
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and 6(c), respectively. Figure 6 indicates that L2-norm and L1-norm-based regularized recon-
struction seems to outperform the backprojection type reconstruction. Finally, Fig. 6(d) shows
the reconstruction results pertaining to the binary tomographic approach. It is evident from Fig. 6
that binary tomography is able to recover larger vasculature; however, the noise and spurious
structures seem to appear using the binary tomography approach [double-edge-like structure
shown by red arrows in Fig. 6(d)]. Note that it is difficult to compare the reconstructed outputs
for experimental data cases using quantitative metrics due to the unavailability of ground truth.
Further, metrics such as signal-to-noise ratio and peak-signal-to-noise ratio might heavily bias
the comparison toward the binary tomography approach [as background is suppressed (see
Figs. 5 and 6)], therefore, we have avoided reporting the quantitative metrics.

To demonstrate the visual comparison of different methods, the segmented results obtained
using the backprojection, Tikhonov regularization, and L1-norm regularization are shown in
Figs. 7(a)–7(c), respectively. The reconstructions were performed with 80 detector positions and
SNRd ¼ 30 dB. Note that the image segmentation was performed using a k-means clustering
algorithm having two classes. The images shown here are the image pairs compared to the
ground truth, wherein the green color indicates the false positive outcomes and pink color indi-
cates the false negative outcomes. The results corresponding to the binary tomography approach
are shown in Fig. 7(d). Note that there are very few artifacts observed using the binary tomog-
raphy approach compared to the other standard reconstruction schemes.

The results indicate that the proposed binary tomography approach is able to directly recon-
struct and delineate the absorbers from the experimental projections; this avoids the two-step
approaches (of performing image segmentation after reconstruction). The results also show the
appearance of artifacts with the binary tomography approach. However, the binary tomography
scheme could be used to obtain the approximate distribution, which can be used as initial seed
points for advanced segmentation approaches. Note that the reconstructions obtained using the
binary tomography scheme provide only two classes (background and the absorber), making this
algorithm to be useful in identifying the vasculature networks. Application like quantification of
venous sinus distention for the diagnosis of intracranial hypotension relies more on accurate
identification of the size of vasculature than the actual signal strength.39 However, in the case
of multiscale vasculature, i.e., big arteries/veins to smaller capillaries, this problem can be posed

Fig. 7 Segmentation comparison with the ground truth using (a) backprojection, (b) Tikhonov
regularization, (c) L1-norm regularization, and (d) binary tomography. Here, green color indicates
the false positives, and pink color indicates the false negatives obtained using the different
algorithms.
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as multiple classes and the binary tomography scheme could fail. In situations of multiple class
problems, we could use a discrete tomographic reconstruction approach, which will be taken
up as future work. PAT involves reconstruction of the initial pressure rise distribution, which
directly relates to the absorbed energy density; however, the emphasis of binary tomography
is to recover the vasculature structures accurately, thereby enabling its utility in scenarios such
as therapy monitoring and hemorrhage detection in different organs.

The reconstruction times for the Tikhonov, L1-norm, and binary tomography reconstructions
are 75.12, 1968.83, and 15.68 s, respectively. Further, the L1-norm-based reconstruction tends to
be more noisy, as the L1-norm is not defined close to zero and the derivative of the L1-norm will
be an approximation thereby amplifying the noise. The regularization parameters were chosen to
result in the best possible reconstruction using the Tikhonov, L1-norm, and binary tomography
methods. The regularization parameter does have an influence on the image quality, and the same
was modeled and removed using a two-step approach as explained in Refs. 9 and 40. However,
in this work, we have chosen the value optimally to result in the best possible figure of merit and
avoid biasing the comparison. Notably the quantitative results obtained (in terms of Dice sim-
ilarity scores) using the binary tomography approach is the best among the different methods
with an advantage of being single step scheme. The proposed approach directly works with the
acquired photoacoustic data (being robust at different noise levels as found in simulations) and
hence does not require large training data to perform image segmentation using learning
methods.22 Also recent works have focused on performing accurate reconstruction methods with
limited angle photoacoustic data,41 evaluation of binary tomography reconstruction with limited
angle data will be taken up as future work. Importantly, our work has focused on two-dimen-
sional image reconstruction of vascular networks; extending the same to three-dimensional
geometry should be straight forward as the proposed approach relies on optimization framework
(extending the same will be similar to other three-dimensional inversion schemes33,42). Finally,
the proposed approach can also be extended to image vasculature networks at mesoscopic depths
wherein photoacoustic imaging demonstrated many clinical and preclinical applications.43

4 Conclusion

The proposed binary PAT method is capable of providing accurate reconstruction of vascular
networks directly from the photoacoustic sinogram data. Binary tomography approach relies on
solving a dual optimization problem, wherein the primal solution is defined based on a heavy-
side function. Further, the dual optimization problem was solved using proximal gradient
descent approach with proximal operator being asymmetric soft thresholding. Notably, the
reconstructed solution will have a binary distribution based on the sign of the auxiliary variable
introduced during the optimization. The binary tomography algorithm was compared with back-
projection, Tikhonov regularization, and L1-norm-based regularization approach with in-silico,
physical phantom, and in-vivo brain vasculature data. The results showed that the proposed
approach was able to produce results that were closer to the ground truth and the same was
reflective from the Dice similarity coefficient. Binary tomography approach could be potentially
useful for many applications in the context of photoacoustic microscopy, mesoscopy, and
tomography.
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