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Abstract

Significance: Current open-source Monte Carlo (MC) method implementations for light propa-
gation modeling are many times tedious to build and require third-party licensed software
that can often discourage prospective researchers in the biomedical optics community from fully
utilizing the light propagation tools. Furthermore, the same drawback also limits rigorous cross-
validation of physical quantities estimated by various MC codes.

Aim: Proposal of an open-source tool for light propagation modeling and an easily accessible
dataset to encourage fruitful communications amongst researchers and pave the way to a more
consistent comparison between the available implementations of the MC method.

Approach: The PyXOpto implementation of the MC method for multilayered and voxelated
tissues based on the Python programming language and PyOpenCL extension enables massively
parallel computation on numerous OpenCL-enabled devices. The proposed implementation is
used to compute a large dataset of reflectance, transmittance, energy deposition, and sampling
volume for various source, detector, and tissue configurations.

Results: The proposed PyXOpto agrees well with the original MC implementation. However,
further validation reveals a noticeable bias introduced by the random number generator used in
the original MC implementation.

Conclusions: Establishing a common dataset is highly important for the validation of existing
and development of MC codes for light propagation in turbid media.
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1 Introduction

Light propagation modeling in turbid media such as biological tissues is essential in many
branches of biomedical optics, allowing estimation of various light-related physical properties
that can be measured and further related to the composition and structure of biological tissues.
Through the years, light propagation modeling has found its use in diffuse optical tomography,1–3

optoacoustic imaging,4,5 spatial frequency domain imaging (SFDI),6,7 hyperspectral imaging,8

tissue and sample characterization with integrating spheres,9,10 light delivery and treatment
planning,11,12 and many more.

While light propagation in biological tissues is mathematically well-described by the radi-
ative transfer equation,13 its analytical or approximate solutions are usually constrained to
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idealized, and many times impractical, geometries. For example, in one of our studies, we
have shown that the material layout comprising an optical probe tip at the probe–tissue inter-
face, which cannot be straightforwardly described by an analytical model, significantly affects
the acquired reflectance.14 Moreover, approximate solutions such as the diffusion approxima-
tion are known to be inaccurate near tissue boundaries and light sources, and tissues with high
absorption coefficients.9 To alleviate the limitations of the analytical and approximate solu-
tions, the radiative transfer equation can be solved numerically using the stochastic Monte
Carlo (MC) method.15,16 While at the very start the MC methods were burdened by a sig-
nificant computational cost, requiring hours or days for the simulations to complete, massive
parallelization achieved by graphics processing units (GPUs) enabled the MC method to
become a reference standard in the field of biomedical optics.17,18 In the last decade, the
MC method has seen an immense advancement in various aspects. Apart from the massive
parallelization achieved by GPUs, the MC method has been advanced to model light propa-
gation in heterogeneous configurations of biological tissues using voxel-based18–20 and mesh-
based21–25 approaches and has become more time-efficient for solving inverse problems for
estimation of optical properties of turbid media attributed to the rapid development in hard-
ware and deep learning approaches.26,27

In recent years, numerous free and open-source light propagation modeling packages based on
the stochastic MC method have emerged. Most notably, the Fang group has a track record of
successful publications that established and developed the well-known voxel- and mesh-based
MC methods for accurate simulations of light propagation in complex tissue structures.18,21,28

FullMonte is another excellent mesh-based MC method package developed by the Lilge and
Betz group,24 who have recently also introduced a parallelized version based on CUDA.29

Recently, Leino et al.25 have proposed a mesh-based MC software ValoMC interfaced with
MATLAB® for easier utilization. In the interest of user-friendliness and use in an educational
environment, Marti et al.30 have developed an MCmatlab light transport solver with heat-
diffusion and tissue-damage simulator. While all the proposed implementations have undoubtedly
contributed to wider acceptance and utilization of the MC method, the implementations either
involve complex installation steps or depend on licensed software such as MATLAB.
Consequently, the adaptation of the free and open-source MC-based light propagation packages
is still limited in the biomedical optics community.

On the other hand, the Python programming language is becoming more and more popular in
the scientific community, offering a seamless interface to deep learning, visualization, and highly
optimized numerical tools for scientific computations. Therefore, Python is an ideal candidate
for establishing a collection of computational tools offering cross-platform, freely available, and
user-friendly software that can be shared and distributed through various platforms. Moreover,
Python-based tools can be used in a straightforward manner to introduce students and prospec-
tive researchers to light propagation modeling.

In addition to the limited availability of the open-source and user-friendly MC implemen-
tations, there is also a lack of a good reference dataset comprising estimated physical quan-
tities that can be used for the validation of custom-developed MC methods. At the moment,
such validation usually includes tedious investigation of the available open-source implemen-
tations, which often require time-consuming preparation of specific input files and processing
of data. Moreover, such a dataset can serve as a quick-access lookup table for various esti-
mated physical quantities without requiring MC simulations being run on a local computing
machine.

In this paper, we briefly introduce a user-friendly open-source Python package PyXOpto
offering light propagation in multilayered or voxelated turbid media based on the stochastic
MC method.31 Subsequently, we propose and describe an open dataset MCDataset, which com-
prises simulated physical quantities such as total and spatially resolved reflectance and trans-
mittance, energy deposition, sampling volume (SV), and reflectance in the spatial frequency
domain. Finally, the data from the MCDataset is validated using the original MC code16 for
multilayered tissues (MCML) and some examples of the simulated physical quantities from the
MCDataset are presented.
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2 Software Package PyXOpto and Datasets

2.1 Description of the Open-Source Package PyXOpto

2.1.1 General structure of the open-source package PyXOpto

The general outline of the package PyXOpto is shown in Fig. 1. While the light propagation core
is based on the PyOpenCL library and written in OpenCL C extension, the supporting modules
are entirely Python-based and form a highly modular structure of the package PyXOpto. The
PyOpenCL library enables massively parallel computations on OpenCL-enabled devices such as
AMD, Intel, Nvidia, Qualcomm, ARM, and more. The light propagation core offers custom-
izable kernel types that can perform single- or double-precision computations and use 32- or
64-bit photon packets counters. This allows more than the usual 232 (4.29 × 109) photon packets
to be processed in a single run.

The package PyXOpto is divided into two subpackages for modeling the light propagation in
multilayered (xopto.mcml) and voxel-based (xopto.mcvox) configurations of tissues. Both xop-
to.mcml and xopto.mcvox share the same principle by using a central module mc from which the
constructorMc can be passed several modules that define the geometry, phase functions, surface
layout of the top or bottom tissue boundary, sources, detectors, fluence accumulators, and trace
accumulators. This configuration makes the PyXOpto package highly flexible since various com-
binations of modules can be used interchangeably and seamlessly without modifying the central
light propagation core. In addition, the package PyXOpto offers various utilities for easier cal-
culations of SVs, a transformation of reflectance to a spatial-frequency domain, scattering phase
functions, and calculations of their subdiffusive quantifiers32–34 (e.g., Legendre moments, γ, δ,
and σ) and various materials (e.g., wavelength-dependent refractive indices). The utilities also
include a module for computing and accessing the presentedMCDataset or generating new data-
sets for custom source, detector, and tissue configurations.

Both xopto.mcml and xopto.mcvox subpackages follow the standard propagation logic of the
photon packets as used in the MCML.16 The details regarding each of the previously mentioned
modules to the Mc constructor are described in the sections below.

2.1.2 Geometry

The geometry description depends on the selection of the PyXOpto subpackages.
For the xopto.mcml, layers are defined in a similar fashion to the MCML except for the phase

function that is further detailed in Sec. 2.1.3. For each layer, the user defines optical properties
including the absorption and scattering coefficients, refractive index, the thickness of the layer,
and phase function. The topmost and bottommost layers correspond to the media surrounding
the tissue and supply only the refractive index mismatch, while other layers are used for photon
packet propagation.

Fig. 1 Schematic of the modular structure of the open-source package PyXOpto. Boxes represent
available modules within the subpackages xopto.mcml and xopto.mcvox or helper utilities.
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For the xopto.mcvox, the three-dimensional (3D) volume is labeled using a 3D matrix and for
each label, the optical properties are defined. Generally, each voxel can be assigned a different
absorption and scattering coefficient, refractive index, and phase function.

2.1.3 Phase function

One of the stronger suits of the proposed light propagation model is that we do not strictly
enforce the generic Henyey–Greenstein (HG) phase function.35 While most of the currently
available free and open-source implementations of the MC method indeed offer only sampling
of the scattering angles according to the HG phase function, such a restriction can significantly
limit the applicability of the light propagation model for tissues exhibiting microscopic refractive
index variations that cannot be accounted for by a single-parameter HG phase function. We have
noted in several of our previous publications that the phase functions significantly influence the
acquired reflectance at small source–detector separations when using optical fiber probes.33,36

Therefore, we have implemented a general lookup-table-based sampling scheme for phase func-
tion with cumulative probability distributions that have no analytical inverse.37 Such an approach
supports the utilization of various scattering phase functions, such as the modified versions of the
HG,32 Gegenbauer kernel,38 and Power of Cosines,32 measured phase functions, and more com-
plex scattering phase functions based on the Mie theory.39 The latter can be used to simulate light
propagation through water-based suspension of spherical microparticles, such as polystyrene
microspheres and is therefore ideally suited for the fabrication of optical phantoms.

The phase function is used as an input to the geometry module that describes the biological
tissue in which the light propagation is modeled. In general, for each layer or voxel, a different
phase function can be applied thus enabling various complex configurations of tissues with spa-
tially varying microstructure.

2.1.4 Surface layout

The surface layout is an optional module and offers a realistic description of the interface
between the tissue and the surrounding medium such as a Lambertian surface or a realistic layout
of the optical fibers and materials comprising the tip of common commercially available optical
fiber probes. We have found that especially the optical probe tip can significantly affect the
acquired reflectance and thus the probe-tissue interface must be precisely described.14 To the
best of our knowledge, the existing MC method implementations lack support for this important
feature. If the surface layout is not set, the simulations are run with laterally uniform boundaries,
which is the “standard” way of performing MC simulations in multilayered tissues.

2.1.5 Source

The source is a mandatory input to the Mc constructor. We have implemented an isotropic
source, line source, collimated Gaussian and uniform beams, optical fiber source, and rectan-
gular sources that can be patched together to form more complex sources. All the sources require
their specific parameters. For example, the optical fiber source depends on the diameter, position,
direction, refractive index, and numerical aperture. Furthermore, the optical fiber and rectangular
source can both accept a custom angular emittance profile measured with a goniometric setup.
More realistic modeling conditions, especially custom emittance profiles, are useful for, e.g.,
health monitoring devices.

2.1.6 Detector and fluence

Detection of photon packets can be performed using a surface detector or a 3D accumulator
which we refer to as fluence.

Implemented surface detector can be divided into groups of specular, top, and bottom.
Specular detectors merely record the fractions of the photon packets that have reflected due
to the surrounding medium-tissue or source-tissue refractive index mismatch. Top and bottom
sample surface allow different configurations of the detectors which can be selected from total
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detectors for quantities such as reflectance and transmittance, radial detectors for spatially
resolved reflectance and transmittance, Cartesian detectors, detector configurations related to
commercially available optical fiber probes such as the six-around-one and linear-arrays and
finally a detector based on custom arrays of optical fibers for special use cases. As in the case
of the source definitions, detectors accept various parameters including minimum acceptance
cosines in the case of radial and Cartesian detectors and numerical aperture for fiber-based detec-
tors. Finally, detectors can be specified with a custom angular acceptance measured with a gonio-
metric setup.

The absorbed weight of the photon packets can also be recorded volumetrically using the so-
called fluence accumulator. The latter can record energy deposition or true fluence depending on
the additional flag that is specified to the constructor.

2.1.7 Trace and sampling volume

The photon packets can optionally be traced by recording the photon packet position, direction,
and weight at each absorption, scattering, or refraction event. The traces can be recorded inde-
pendently of the selected detector and easily filtered according to the desired final direction and
position of the photon packets. The filtered traces can be transformed into a voxelated SV, where
each voxel contains path lengths of the photon packets multiplied by their respective terminal
weights. The SV can be used to represent a 3D heat map indicating the probability of a photon
packet to travel through a particular voxel from the source to the detector.40 The processing of the
photon packet traces in our implementation utilizes the PyOpenCL implementation that signifi-
cantly accelerates the computations of the SVs.

2.2 Structure and Parameter Specifications of the Datasets

In this section, we present the structure and parameters of the MCDataset. The MCDataset is
segmented into five subsets, each corresponding to a specific configuration described in the
following sections.

2.2.1 MCML comparison dataset

The MCML comparison dataset is used for comparison to the MCML by Wang et al.16 It com-
prises three subsets, namely one-layer-1-mm, one-layer-100-mm, and two-layer-100-μm-1-mm
corresponding to different layer arrangements and thicknesses, and optical properties (see Fig. 2,
geometry). The source is an infinitely narrow perpendicular line (pencil beam). The optical prop-
erties of the single or top layer are varied across all combinations given by the outer product of
the anisotropy factor g, absorption coefficient μa, and reduced scattering coefficient μ 0

s (other
optical properties and parameters remain constant). The specular detector stores total specular
reflectance relative to the initial number of photon packets N. The radially accumulated photon

Fig. 2 Configuration of the MCML comparison dataset. The colored dots correspond to different
layer arrangements, thicknesses, and optical properties (see geometry).
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packets at the top and bottom surface of the sample hold the spatially resolved reflectance and
transmittance provided relative to N and per surface area of the annular ring (1∕m2). Note that
the transmittance is different from zero only for the one-layer-1-mm and two-layer-100-μm-
1-mm subsets. The photon packets are collected for all exit angles (numerical aperture equal
to 1.0). Finally, the energy deposition is stored in the fluence accumulator and is given relative
to N and the volume of the voxel (1∕m3). TheMCML comparison dataset comprises 81 different
configurations. Each configuration was simulated with 108 photon packets.

2.2.2 MCML dataset

The MCML dataset is considerably more extensive than the MCML comparison dataset and
includes various phase functions, surface layouts, sources, and detectors. The dataset comprises
seven groups of subsets that are color-coded and presented in Fig. 3. Each color represents a
different source type. The number of subsets in each group depends on the number of different
parameters defined for each source type. For example, the group corresponding to the collimated
Gaussian beam source includes a single subset with the FWHM of the beam equal to 100 μm,
while the group corresponding to the single-fiber source includes four subsets where the diam-
eter of the fiber core and cladding varies from 100 and 120 μm to 800 and 820 μm. In total,
the MCML dataset comprises 11 subsets. The subsets were selected according to various source
and detector configurations that we have found in the literature.41–43 Each subset is assigned its
corresponding geometry, surface layout, source, and detector according to the colored dots given
in Fig. 3.

For example, the fiber dataset is based on a single semi-infinite layer geometry with the
refractive index nabove above the tissue equal to 1.462 representing a laterally uniform fiber-tissue
boundary (no surface layout). Furthermore, the fiber dataset includes all the phase functions, a
source with a fiber core and cladding diameter of 200 and 220 μm, the numerical aperture of 0.22
and refractive index of the core equal to 1.462, a detector of total specular reflectance, and top
and bottom radial detectors with numerical apertures of 0.22 and 1.0, respectively, spanning from
0 to 5 mm with 500 bins. It should be noted that the refractive index nabove is for the fiber subset
deliberately set to 1.462 (fused silica). This way, the spatially resolved reflectance given by the
radial detector can then be integrated to obtain an estimate of reflectance for a detector fiber at a
given source–detector separation. In other cases, such as six-around-one, six-linear-array, or
single-fiber, the proper probe-tissue boundary is achieved by the surface layout selection and

c

Fig. 3 Configuration of the MCML dataset. The colored dots represent subsets of the MCML
dataset with specifically assigned geometry, surface layout, source, and detector types.
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thus the refractive index nabove is set to 1.0 as it represents the refractive index of the air sur-
rounding the metal housing of the probe. Photon packets incident within the area of the probe tip
reflects from the metal housing with the reflectivity set to 60%. Finally, for the six-linear-array
or single-fiber, the parameter Nfib represents the number of fibers in the layout. For example,
Nfib ¼ 6 corresponds to one fiber being used simultaneously as a source and detector and the
remaining five fibers as detectors in a tightly packed manner (i.e., the smallest source–detector
separation is equal to the diameter of the fiber cladding). As expected, the value of Nfib for the
single-fiber setup is set to 1.

The explanation for the parameters of various phase functions used in the dataset can be
found in one of our recent publications.37 The Mie phase function was derived for polystyrene
and fused silica microspheres ranging in diameter from 0.25 to 4 μm as given in Fig. 3. The
refractive index of polystyrene and fused silica was obtained from Nikolov and Ivanov44 and
Malitson45 for the wavelength of light equal to 500 nm. The surrounding medium was set to
water with a refractive index of 1.337 obtained from Daimon and Masumura.46 All the refractive
indices can be retrieved from the utility materials in the package PyXOpto.

The MCML dataset comprises 11 subsets corresponding to different sources, each simulated
for 30,870 combinations of optical properties and phase functions, resulting in a total number
of 339,570 configurations. Each configuration was simulated with 108 photon packets except
for the linear-array subset configuration, where 109 photon packets were used to achieve an
acceptable signal-to-noise ratio (SNR) at the most distant optical fiber.

2.2.3 MCVOX dataset

TheMCVOX dataset is based on a two-layered skin model with an embedded blood vessel. Light
propagation modeling for this dataset is performed using the xopto.mcvox subpackage from
PyXOpto. The optical properties of the epidermis, dermis, and blood vessel were obtained from
Jacques47 and are given in Fig. 4 along with dimensional parameters of the skin model. In this
dataset, a line (pencil beam) was used as a source. The energy deposition was accumulated using
the fluence module and the reflectance and transmittance using a Cartesian type detector. The
details of the voxelization of the energy deposition are given in Fig. 4. The MCVOX dataset
comprises 26 geometrical configurations in which the depth of the embedded vessel is varied
uniformly from 0.2 to 0.8 mm as is illustrated in Fig. 4. Each configuration was simulated using
109 photon packets.

2.2.4 SV dataset

The SV dataset is based on a single geometrical configuration given in Fig. 5 and comprises an
SV for an optical fiber probe with the source and detector fibers separated by 500 μm. The two
fibers are embedded in a metal housing with reflectivity of 60% that is implemented through the

Fig. 4 Configuration of the MCVOX dataset. Energy deposition is normalized by the product of
the voxel volume and the total weight of the launched packets (m−3).

Bürmen, Pernuš, and Naglič: MCDataset: a public reference dataset of Monte Carlo simulated quantities. . .

Journal of Biomedical Optics 083012-7 August 2022 • Vol. 27(8)



surface layout module. The dimensions of the probe and optical properties of the tissue are fur-
ther given in Fig. 5. The photon packet traces were recorded by storing up to 1000 events per
photon packet. It should be noted that the capacity of the trace can be changed and was in this
case determined beforehand since the photon packets that reach the detector rarely undergo
>1000 events. The traces of the photon packets were filtered using the specifications of the
detector fiber, which were the same as for the source fiber, i.e., numerical aperture equal to
0.22, core refractive index equal to 1.462, and core and cladding diameters equal to 200 and
220 μm. The SV was then prepared using the embedded utility of the PyXOpto package. The
spans and number of bins for the voxelization of the SV are given in Fig. 5.

2.2.5 SFDI dataset

The SFDI dataset comprises two subsets of simulated spatial frequency domain reflectance span-
ning spatial frequencies from 0 to 0.8 mm−1 using 81 uniformly distributed points. The two
subsets are color-coded in Fig. 6 and differ in terms of the detectors. Detectors in the first subset
include total specular reflectance and top and bottom spatially resolved reflectance acquired
perpendicularly to the tissue with a 10 deg acceptance cone using 4000 logarithmically spaced
radially symmetric bins spanning from 0 to 150 mm. We have recently shown that such a con-
figuration is necessary for the accurate discrete transformation of the spatially resolved reflec-
tance into the spatial frequency domain.48 While the detectors in the second subset also include
the total specular reflectance, the spatially resolved reflectance is acquired through a detector
tilted by 20 deg with an acceptance cone equal to 10 deg using 8000 logarithmically spaced
x-symmetric bins (infinite in the y-direction) spanning from −150 to 150 mm. The latter

Fig. 5 Configuration of the SV dataset.

Fig. 6 Configuration of the SFDI dataset.
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configuration more accurately represents the realistic case where the tissue is illuminated per-
pendicularly, and the backscattered light is acquired with a tilted camera. Finally, it should
be noted that for the first subset the spatial frequency domain reflectance can be obtained using
the Hankel transformation since the spatially resolved reflectance is radially symmetric. For the
second subset, one-dimensional Fourier transformation must be performed along the x-direction,
since the spatially resolved reflectance is symmetric across the x-axis. The spatial frequency
domain reflectance is unitless. The SFDI dataset comprises 2205 different configurations of
optical properties for each subset resulting in a total number of 4410 configurations. Each con-
figuration was simulated with 109 photon packets to yield an acceptable SNR at long distances
from the source.

2.2.6 Organization of the MCDataset

The MCDataset is publicly available on GitHub (https://github.com/xopto/mcdataset) and can
be generated, customized, and accessed using the dataset utility within the PyXOpto package.

3 Validation of the PyXOpto Package and Examples from the
MCDataset

3.1 Validation of the xopto.mcml

The subpackage xopto.mcml was validated by comparing the total reflectance and transmittance,
spatially resolved reflectance and transmittance, and energy deposition to the values computed
by the MCML. For this purpose, we have utilized the MCML comparison dataset, which was
also simulated with the MCML using the same configuration and 107 photon packets. All the
relative differences between the xopto.mcml and MCML were calculated by subtracting the
results of the MCML from the xopto.mcml and dividing the difference by the results of
xopto.mcml. This way, the relative error was less affected by the simulation noise that was
present due to a smaller number of photon packets that were launched during the simulations
with the MCML.

3.1.1 Total reflectance and transmittance

Figures 7 and 8 show relative differences between the total reflectance and transmittance for the
subset two-layer-100-μm-1-mm with various combinations of μa, μ 0

s, and g varied in the top
layer. In principle, we can observe excellent agreement between the estimations is given by the
xopto.mcml and the MCML for the total reflectance and transmittance. The absolute relative
errors never exceed 0.32%. However, we do observe a slight positive and negative bias in the
total reflectance and transmittance, which we attribute to the choice of the random number gen-
erator (RNG) in the MCML code, which is further discussed in Sec. 3.1.2. Figures 17 and 18
in the Appendix show that replacing the RNG in the MCML code with a cryptographic-grade

Fig. 7 Relative errors between the xopto.mcml and MCML simulations of the total reflectance
for the dataset MCML comparison and subset two-layer-100-μm-1-mm.
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RNG reduces the relative differences to negligible values. Note that subsets one-layer-1-mm and
one-layer-100-mm exhibited similar errors.

3.1.2 Spatially resolved reflectance and transmittance

Figures 9 and 10 show spatially resolved reflectance and transmittance for the subset one-layer-
1-mm for various combinations of optical properties μa, μ 0

s, and g. The spatially resolved reflec-
tance and transmittance completely overlap with the calculated relative errors indicating no bias.
The relative errors are higher at longer distances due to the simulation noise.

Fig. 8 Relative errors between the xopto.mcml and MCML simulations of the total transmittance
for the dataset MCML comparison and subset two-layer-100-μm-1-mm.

Fig. 9 Spatially resolved reflectance as simulated by the xopto.mcml (black, blue, and green solid
lines) and MCML (red dashed lines) for various combinations of optical properties μa, μ 0

s, and g
in the dataset MCML comparison and subset one-layer-1-mm. Relative errors are denoted with
the same colors. Scale is provided at the right-hand side of the graphs.

Fig. 10 Spatially resolved transmittance as simulated by the xopto.mcml (black, blue, and green
solid lines) and MCML (red dashed lines) for various combinations of optical properties μa, μ 0

s,
and g in the dataset MCML comparison and subset one-layer-1-mm. Relative errors are denoted
with the same colors. Scale is provided at the right-hand side of the graphs.
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3.1.3 Energy deposition and effect of the random number generator

The energy deposition maps as simulated by the xopto.mcml and MCML are given in Fig. 11.
While the maps seem similar and show no apparent differences, Fig. 12(a) clearly shows a pro-
nounced positive and negative bias. This bias is even more pronounced in Fig. 13 (black solid
line), which shows the relative errors of the energy deposition maps projected onto the z or r axis.

Further investigation of the MCML code showed that the bias is apparently due to the
RNG ran3 from the Numerical Recipes in C.49 To confirm our hypothesis, we have modified
the MCML code to accept large sets of random bytes that can be generated using for example
cryptographic-grade RNG of the OpenSSL library.50 Using the random numbers generated by
the latter RNG and repeating the simulations of the dataset MCML comparison removed all
the apparent bias present in the total reflectance and transmittance (Figs. 7 and 8) and energy
deposition in Fig. 11. This is confirmed by Figs. 12(b) and 13 (blue line) which show that the
remaining errors are mostly governed by the simulation noise.

(a) (b)

Fig. 11 Deposited energy map simulated by (a) xopto.mcml and (b) MCML for μa ¼ 2.5 cm−1,
μ 0
s ¼ 30 cm−1, and g ¼ 0.9.

(a) (b)

Fig. 12 The relative errors between the energy deposition maps simulated by (a) xopto.mcml
and MCML and (b) xopto.mcml and MCML with a modified RNG based on the cryptographic-grade
RNG of the OpenSSL library. Deposited energy was simulated for a medium with μa ¼ 2.5 cm−1,
μ 0
s ¼ 30 cm−1, and g ¼ 0.9.

(a) (b)

Fig. 13 Relative errors between the energy deposition projected onto the (a) x and (b) r axis.
The black solid line represents relative differences between xopto.mcml and MCML, while the
blue solid line represents relative differences between the xopto.mcml and MCML with a modified
RNG based on the cryptographic-grade RNG of the OpenSLL library.
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3.2 Validation of the xopto.mcvox

The subpackage xopto.mcvox was validated using the simulated total reflectance and transmit-
tance and energy deposition as obtained by the subpackage xopto.mcml for the dataset MCML
comparison. We, therefore, generated the same relative error maps as given in Figs. 7, 8, and 12
in which the estimations by the xopto.mcvoxwere subtracted from the xopto.mcml and the differ-
ence divided by xopto.mcml. Figures 19–22 given in the Appendix show no apparent bias in the
errors between the xopto.mcml and xopto.mcvox simulated total reflectance, transmittance, and
energy deposition thus proving that the xopto.mcvox essentially performs equally well as the
previously validated subpackage xopto.mcml.

3.4 Energy Deposition from the MCVOX Dataset

Figure 14(a) shows an example of the simulated energy deposition averaged along the y-direc-
tion for a two-layered skin model with the blood vessel embedded at zvessel ¼ 0.5 mm utilizing
the subpackage xopto.mcvox. Note that due to the higher absorption coefficient of the top layer
and the blood vessel, the energy deposition is clearly much higher in the two regions than in the
bottom layer. The whole dataset MCVOX is presented as Video 1 which shows an animation of
the projected energy deposition by varying the depth of the embedded blood vessel from 0.2 to
0.8 mm [see Fig. 14(a) for further details].

3.5 Sampling Volume from the SV Dataset

Figure 14(b) shows the SV averaged along the y-direction for an optical fiber probe with a
source–detector separation of 500 μm as detailed in the SV dataset. The SV clearly indicates
that the photon packets that contribute to the detected reflectance are more likely to travel along
the “banana-shaped” path from the source to the detector fiber.

4 Computation Time

We compared the computation times of xopto.mcml and xopto.mcvox to other established mas-
sively parallel implementations of the MC method. The evaluation was done on a Windows 11
system (Intel® Core™ i7-8700K 3.70 GHz, 64 GB DDR4, Nvidia GeForce RTX 2800Ti). The
performance of the multilayered xopto.mcml was compared with CUDAMCML developed by
Alerstam et al.,17,51 while the voxelated xopto.mcvox was compared with MCX 1.8 (v2020,
Furious Fermion) Rev. a6bc5a developed by Fang and Boas.18,52 It is important to note that

(a) (b)

Fig. 14 (a) Energy deposition averaged along the y -direction simulated for a two-layered skin
model with an embedded vessel utilizing the xopto.mcvox. The whole MCVOX dataset is available
as Video 1 (mp4, 130 kB) and shows the change in the averaged energy deposition when the
depth of the embedded vessel is varied from 0.2 to 0.8 mm. (b) SV averaged along the y -direction
simulated for an optical fiber probe with a source–detector separation of 500 μm utilizing the SV
utility in the PyXOpto package (Video 1, mp4, 130 kB [URL: https://doi.org/10.1117/1.JBO.27.8
.083012.1]).
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for a fair comparison all the implementations should do the same workload, which includes
processing the same number of photon packets and producing the same SNR of the simulated
quantities.

Since xopto.mcml and CUDAMCML utilize the same photon packet stepping method based
on the variant of the Albedo–Weight (AW) method,53 they exhibit the same SNR of the simulated
quantities. Both implementations were evaluated on a single configuration from theMCML com-
parison dataset with optical properties μa ¼ 0.0 cm−1, μ 0

s ¼ 35.0 cm−1, and g ¼ 0.9, which
yield the longest computation time within the dataset. The computation times were estimated
by launching 108 photon packets per simulation and averaging three consecutive simulation
runs. Based on the achieved computation times, which are given in Table 1, slightly better per-
formance of xopto.mcml is observed over CUDAMCML. It should be noted that for the purpose
of the comparison, the CUDAMCML code was recompiled for the GPU Nvidia GeForce RTX
2800Ti with 7.5 compute capability.

On the other hand, xopto.mcvox offers three different selectable variants of the photon packet
stepping methods based on the AW, Albedo–Reject (AR) and Microscopic Beer–Lambert law
(MBL) methods, while MCX utilizes a variant of the MBL method.53 Although all the methods
are equivalent and converge towards equal results, they differ in the way they calculate and
deposit the energy. It should be noted that in xopto.mcvox the voxelated grids of the sample
and fluence/deposition accumulators are in general fully independent and that the packets are
propagated according to the sample grid. Our implementation of the AW method deposits the
absorbed weight at extinction events that are fully independent of the voxelated deposition grid.
The AR method, which is many times referred to as the ballistic method, deposits the full photon
packet weight only at an absorbing extinction event which depends on the albedo (ratio of the
scattering and extinction coefficients) and is also fully independent of the voxelated deposition
grid. At the absorbing extinction event, the photon packet is also terminated. The MBL method
deposits the absorbed energy at scattering events and at each crossing of the sample voxel
boundary.

Since the AR method is known to require an extremely high number of photon packets for an
adequate SNR, we more thoroughly compared the AW and MBL methods in terms of the SNR
and computation times utilizing the xopto.mcvox and MCX implementations. Note that for an
easier distinction, we use xopto.mcvox (AW) and xopto.mcvox (MBL) with the selected photon
packet stepping method provided in parentheses. When the voxel size is significantly smaller
than the mean free path length, the AWmethod less frequently accesses the global memory of the
GPU to accumulate the absorbed energy and is, therefore, faster than the MBL method.
However, this results in a lower SNR of the simulated energy deposition than in the case of
the MBL method. We have found that this is exactly the case for the MCVOX dataset, where
the voxel size is extremely small 5 × 5 × 5 μm. For example, the mean free path of the photon
packet in the dermis (with optical properties μa ¼ 45.9 cm−1 and μs ¼ 356.5 cm−1) is approx-
imately l ¼ 1∕ðμa þ μsÞ ¼ 25 μm. Consequently, the AW and MBL methods were compared
on a single configuration from the MCVOX dataset with the blood vessel embedded at zvessel ¼
0.5 mm and with a larger voxel size of 50 × 50 × 50 μm (21 × 21 × 20 voxels). With the latter
adjustment, AW and MBL methods should produce energy depositions of comparable quality
and thus enable a fair comparison. It should be noted that the above-described drawback of the
AW method does not apply to reflectance or transmittance simulations.

Figure 15 shows relative errors of energy deposition at y ¼ 0 mm for the xopto.mcvox (AR)
[Fig. 15(a)] and xopto.mcvox (MBL) [Fig. 15(b)] in comparison to the MCX utilizing the MBL

Table 1 Average computation times for (a) multilayered and (b) voxelated MCmethods evaluated
on a single configuration from the MCML comparison and MCVOX datasets, respectively. See
text for further details.

(a) (b)

xopto.mcml CUDAMCML xopto.mcvox (AW) xopto.mcvox (MBL) MCX

26.2 s 32.1 s 4.54 s 5.16 s 7.95 s
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method. In both cases, a nice agreement is observed without any apparent bias between the two
MC implementations and photon packet stepping methods. Furthermore, we evaluated the SNR
distribution for xopto.mcvox and MCX, which was calculated as a ratio of the mean and standard
deviation of 20 simulations of energy deposition at y ¼ 0 mm. Each simulation was performed
by launching 108 photon packets. The SNR distributions are shown in Fig. 16 and suggest that
xopto.mcvox and MCX exhibit similar SNR. However, upon further evaluation of the mean SNR
for each MC implementation and photon packet stepping method, we found that the xopto.mcvox
(AW) exhibits a slightly lower SNR (51.45 dB) than xopto.mcvox (MBL) (53.62 dB) and MCX
(53.76 dB).

Figures 15 and 16 suggest that the xopto.mcvox (MBL) and MCX yield energy deposition of
similar quality, while the xopto.mcvox (AW) yields a slightly lower SNR of the energy depo-
sition. With this in mind, we evaluated the computation times required to simulate energy dep-
osition for a single configuration from the MCVOX dataset (as described above) by launching
2 × 109 photon packets and averaging three consecutive simulation runs. The number of threads
and block size in the xopto.mcvox are chosen automatically by the OpenCL platform (usually
termed as the workgroup size). The simulations by MCX were done by setting the flag “−A” to
1, which automatically determines the number of threads and block size. We have also observed
that such a configuration is optimal for MCX. The benchmark input files that the readers can use
to assess the computation times can be found here.54 According to the computation times pro-
vided in Table 1, slightly better performance of the xopto.mcvox is observed over the MCX
regardless of the selected photon packet stepping method. However, it should be noted that
a fair comparison can only be made between the xopto.mcvox (MBL) and MCX since xopto.mc-
vox (AW) exhibits a slightly lower SNR. To achieve the same SNR for the xopto.mcvox (AW),
more photon packets would have to be launched, which would increase the computation time.

(a) (b)

Fig. 15 Relative errors of energy deposition at y ¼ 0 mm between (a) xopto.mcvox (AW) and
MCX and (b) xopto.mcvox (MBL) and MCX.

(a) (c)(b)

Fig. 16 Relative SNR of energy deposition at y ¼ 0 mm as calculated by (a) MCX with a mean
value of 53.76 dB, (b) xopto.mcvox (AW) with a mean value of 51.45 dB, and (c) xopto.mcvox
(MBL) with a mean value of 53.62 dB. Relative SNR was calculated using 20 simulations with
108 launched photon packets.
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While we believe that the comparison of the computation times has been done objectively, the
obtained values should be taken more as a demonstration that our proposed PyXOpto package
can compete with the established and more modern multilayered and voxelated MC method
implementations.

5 Conclusion

In this paper, we have presented a new open-source, user-friendly, and versatile tool PyXOpto
that includes a light propagation model based on the MC method implemented for the multi-
layered and voxelated tissues and various utilities for processing and transforming the simulated
physical quantities and providing various material properties such as refractive indices. Unlike
the CUDA computing platform, which requires Nvidia GPUs, the light propagation core of the
PyXOpto is based on the PyOpenCL package, which enables photon packet processing in a
highly parallelized manner on various OpenCL-enabled devices. Finally, the modular structure
of PyXOpto enables easy customization of the tissue geometry, phase functions, source, detec-
tors, and other modules. To this end, PyXOpto offers simple simulations like the MCML and
more complex voxelated tissue geometries with a realistic description of the source and detector
configurations such as metal-housed optical fiber probes.

As a central part of the paper, we have proposed an openly availableMCDataset that includes
various configurations that can be easily accessed and used to validate custom-developed MC
code. Since the proposed dataset is publicly available on the GitHub repository, it is possible for
any member of the biomedical optics community or any other community for that matter to enter
a discussion regarding a specific dataset or raise an issue when a certain dataset cannot be
matched to the results of a custom-developed MC method. This is an important feature that
should encourage fruitful communications between researchers inducing a pathway to a more
consistent comparison between the available implementations of the MC method.

While the main benefit of theMCDataset should be easy access to validation data,MCDataset
can in fact also be used for fast lookup of various physical quantities such as reflectance and
transmittance from desired optical properties without having to run simulations. Since the optical
properties in the MCDataset are densely distributed, physical quantities that do not correspond
precisely to the ones given in the MCDataset can be approximated using interpolation.

Finally, it should be mentioned that the PyXOpto could be utilized as a teaching tool,
allowing the easier introduction of MC methods to students and prospective researchers in bio-
medical optics.

6 Appendix

6.1 Comparison Between xopto.mcml and MCML with a Modified RNG

Figures 17 and 18 show relative errors between the total reflectance and total transmittance,
respectively, from the dataset MCML comparison and subset two-layer-100-μm-1-mm as

Fig. 17 Relative errors between the total reflectance simulated by the xopto.mcml and MCML
with a modified RNG for the dataset MCML comparison and subset two-layer-100-μm-1-mm.
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simulated by the xopto.mcml and MCML with a modified RNG based on the cryptographic
grade RNG of the OpenSSL library. Note that the relative errors are virtually insignificant
in comparison to Figs. 7 and 8.

6.2 Validation of the xopto.mcvox

Figures 19–21 show relative errors between the total reflectance, total transmittance, and
energy deposition, respectively, simulated by the xopto.mcml and xopto.mcvox for the dataset
MCML comparison and subset two-layer-100-μm-1-mm. Note that the relative errors do not
exhibit bias. The projected relative errors for the energy deposition are presented in Fig. 22.

Fig. 18 Relative errors between the total transmittance simulated by the xopto.mcml and
MCML with a modified RNG for the dataset MCML comparison and subset two-layer-100-
μm-1-mm

Fig. 19 Relative errors between the total reflectance simulated by the xopto.mcml and xopto.
mcvox for the dataset MCML comparison and subset two-layer-100-μm-1-mm.

Fig. 20 Relative errors between the total transmittance simulated by the xopto.mcml and
xopto.mcvox for the dataset MCML comparison and subset two-layer-100-μm-1-mm.
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9. P. Naglič et al., “Suitability of diffusion approximation for an inverse analysis of diffuse
reflectance spectra from human skin in vivo,” OSA Continuum 2(3), 905 (2019).

10. N. Verdel et al., “Physiological and structural characterization of human skin in vivo using
combined photothermal radiometry and diffuse reflectance spectroscopy,” Biomed. Opt.
Express 10(2), 944 (2019).

11. J. Cassidy, V. Betz, and L. Lilge, “Treatment plan evaluation for interstitial photodynamic
therapy in a mouse model by Monte Carlo simulation with FullMonte,” Front. Phys. 3
(2015).

12. C. Ash et al., “Effect of wavelength and beam width on penetration in light-tissue interaction
using computational methods,” Lasers Med. Sci. 32(8), 1909–1918 (2017).

13. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in
tissue I. Models of radiation transport and their application,” Laser Med. Sci. 6(2), 155–168
(1991).
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37. P. Naglič et al., “Lookup table-based sampling of the phase function for Monte Carlo
simulations of light propagation in turbid media,” Biomed. Opt. Express 8(3), 1895
(2017).

38. L. O. Reynolds and N. J. McCormick, “Approximate two-parameter phase function for light
scattering,” J. Opt. Soc. Am. 70(10), 1206 (1980).

39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles,
Wiley, New York (1983).

40. I. V. Meglinsky and S. J. Matcher, “Modelling the sampling volume for skin blood oxy-
genation measurements,” Med. Biol. Eng. Comput. 39(1), 44–50 (2001).

41. A. L. Post et al., “Subdiffuse scattering model for single fiber reflectance spectroscopy,”
J. Biomed. Opt. 25(1), 015001 (2020).

42. A. Kozhuhov et al., “Implementation of a six-around-one optical probe based on diffuse
light spectroscopy for study of cerebral properties in a murine mouse model of autism spec-
trum disorder,” Appl. Opt. 59(23), 6809 (2020).

43. P. Thueler et al., “In vivo endoscopic tissue diagnostics based on spectroscopic absorption,
scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).

44. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible
and the near-infrared regions,” Appl. Opt. 39(13), 2067 (2000).

45. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt.
Soc. Am. 55(10), 1205–1209 (1965).

46. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from
the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811 (2007).

47. S. L. Jacques, “mcxyz.c,” https://omlc.org/software/mc/mcxyz/index.html (accessed 15
Nov. 2021).
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Bürmen, Pernuš, and Naglič: MCDataset: a public reference dataset of Monte Carlo simulated quantities. . .

Journal of Biomedical Optics 083012-20 August 2022 • Vol. 27(8)

https://github.com/fangq/mcx
https://github.com/fangq/mcx
https://doi.org/10.1364/JOSAA.29.002110
https://github.com/xopto/publications/tree/master/jbo-2022-pyxopto
https://github.com/xopto/publications/tree/master/jbo-2022-pyxopto
https://github.com/xopto/publications/tree/master/jbo-2022-pyxopto

