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Three-dimensional angular scattering simulations
inform analysis of scattering from single cells

Kaitlin J. Dunn and Andrew J. Berger *
University of Rochester, Institute of Optics, Rochester, New York, United States

ABSTRACT. Significance: Organelle sizes, which are indicative of cellular status, have
implications for drug development and immunology research. At the single cell level,
such information could be used to study the heterogeneity of cell response to drugs
or pathogens.

Aim: Angularly resolved elastic light scattering is known to be sensitive to changes
in organelle size distribution. We developed a Mie theory-based simulation of angu-
lar scattering from single cells to quantify the effects of noise on scattering and size
estimates.

Approach: We simulated randomly sampled organelle sizes (drawn from a log nor-
mal distribution), interference between different organelles’ scattering, and detector
noise. We quantified each noise source’s effect upon the estimated mean and stan-
dard deviation of organelle size distributions.

Results: The results demonstrate that signal-to-noise ratio in the angular scatter-
ing increased with the number of scatterers, cell area, and exposure time and
decreased with the size distribution width. The error in estimating the mean of the
size distributions remained below 5% for nearly all experimental parameters tested,
but the widest size distribution tested (standard deviation of 600 nm) reached 20%.

Conclusions: The simulator revealed that sparse sampling of a broad size distri-
bution can dominate the mismatch between actual and predicted size parameters.
Alternative estimation strategies could reduce the discrepancy.
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1 Introduction
Studying organelle sizes and dynamics in single cells provides unique insight compared with
measurements that are averaged over ensembles of cells, for which conclusions can only be
drawn about the entire cell population. For example, investigating individual cells allows
scientists to compare the response of immune cells with specialized roles, to observe cell differ-
entiation, and to study heterogeneity in tumors.1 The use of DNA sequencing and other single
cell analysis techniques has spurred discoveries in drug development, cancer treatment,1 and
immunology.2

Organelle behavior and morphology provide a window into assessing cellular state. In par-
ticular, mitochondrial dynamics are an indicator of metabolic demand and cell response;
mitochondria undergo fission to a fragmented state during periods of rest when there is low
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respiratory activity and fuse into connected networks during times of high metabolic demand.3 In
addition, the dysfunction of mitochondria has been linked to neurogenerative diseases,4 cancer,5

and metabolic conditions.6 This motivates the recent push for developing therapeutics that spe-
cifically target mitochondrial function5 and demonstrates that mitochondrial function can char-
acterize a cell’s state. Other strong scatterers include lysosomes7 and lipid droplets. Lipid
droplets play an important role in energy storage and cellular metabolism.8 Furthermore, lipid
droplet sizes have been linked to distinct functional roles.9

Optical techniques such as microscopy have long been used to image cells, with fluores-
cence staining providing organelle-specific information. However, such labeling-based tech-
niques have the potential to disrupt the very organelle function that is under study.10 Angularly
resolved light scattering, a measurement of scattered intensity versus deflection angle, is a label-
free technique that is sensitive to the size and refractive index of scatterers such as organelles.
Mitochondria-sized organelle populations in cell ensembles have been sized using all or part of
the forward-directed angular scattering range between 0 deg and 90 deg. For example, Wilson
et al. used angular scattering to size populations of subcellular scatterers in ensembles of cells by
assuming functional forms for the size distributions and fitting to their forward scattering using a
Mie theory-based forward model.11,12 Boustany et al. quantified the increase in the ratio of low to
high angle scattering as elongated organelles rounded up into spherical particles during calcium
overload.13 In addition, Wilson et al. used a coated sphere model to explain changes in angular
scattering as mitochondria swelled in response to oxidative stress.12 Angular light scattering is
therefore a promising tool for studying mitochondrial dynamics as a marker of cell response and
metabolic state.

Although non-nuclear organelle populations in cell ensembles have been sized using angular
scattering, bringing this capability to the single-cell level requires a deeper understanding of the
noise sources that influence angular scattering-based size estimates. Because knowledge of the
ground truth of scatterer sizes in a single cell is difficult to obtain, we turn to simulations to gain
insight into the ability to size organelle populations in single cells. The ground truth scatterer
sizes are known in simulations, so the effects of various noise sources on the ability to accurately
invert size distributions can be investigated.

1.1 Ideal Forward Model and Noise Sources
Before discussing what we define as noise sources, it is useful to describe what the ideal model of
scattering from a single cell consists of. We define the idealized cell to contain spherical organ-
elles suspended in a homogeneous cytosol, the diameters of which are represented by a size
distribution. In the ideal forward scattering model, the only scattering comes from the index
contrast between the organelles and the cytosol. Mie theory14 is used to model this scattering
by summing the scattering from each organelle in intensity, assuming no interference. The
sources of noise (i.e., deviation from this model) to be investigated in this simulation work are
(1) “sampling noise,” or deviations from the assumed size distribution, (2) interference noise due
to the coherent addition of scattering from spatially offset organelles, and (3) detector noise.

1.2 Simulating Measurements of Angular Scattering
To generate organelles for a cell simulation, a size distribution function is randomly sampled
repeatedly to generate scatterer sizes. The scattered field is computed in the Fourier domain for
each organelle, with a phase term added to account for its particular ðx; y; zÞ location. The fields
for all organelles are summed coherently and Fourier transformed to the spatial domain to arrive
at the complex field scattered by the sample as would be measured in the object plane (z ¼ 0).
Although sampling and interference noise only depend on the simulated sample, the effect of
detector noise is dependent on the method of measuring angular scattering. Detector noise must
be added to the intensity images in the domain at which measurements are made, and any digital
processing steps must be simulated to determine how the noise propagates to the final angular
scattering intensity measurement.

There are a variety of methods for measuring angular scattering, including direct intensity
measurements such as goniometry or imaging the sample’s Fourier plane. A method known as
Fourier transform light scattering (FTLS)15 is better suited for single cell analysis because it
allows for digitally isolating a single cell or region of interest rather than measuring scattering
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from an entire field of view that could contain multiple cells. In FTLS, the complex field of the
sample is measured with a quantitative phase imaging (QPI) technique, and the digitally selected
region is Fourier transformed to the angular domain to obtain the angular scattering intensity.
FTLS has been used for sizing beads with accuracy on the order of 10s of nanometers16 and
measuring the angular scattering response of single HeLa cells,17 red blood cells,18 bacteria,19

and nuclei.20

Similarly, there are many QPI approaches that can be used to measure the complex field of
light scattered by samples. To simulate detector noise in a way that matches our experimental
system, we simulate the steps of a technique known as Fourier phase microscopy (FPM),21 which
is described in further detail in Sec. 2. The effect of detector noise on angular scattering and size
estimates can then be investigated by adding detector noise to the intensity measurements and
processing them using the same procedure used for experimental data to compute angular
scattering.

Simulations of angular light scattering from single cells were used to determine the effect of
sampling noise, interference noise, and detector noise on the uncertainty in angular light scatter-
ing measurements. Mie theory-based fits to the angular scattering intensity were used to estimate
the mean and standard deviation of the log-normal size distribution from which scatterer sizes
were drawn. The effect of each noise source on the estimated size parameters was characterized
by tuning the experimental parameters that vary the amount of each noise source and assessing
the statistics of many simulations and fits. These simulations and fits lent insight into the degree
to which each noise source limited the ability to accurately estimate scatterer sizes in single cells.

2 Methods

2.1 Simulation Overview
In the presented simulations of a single cell’s scattering, we model the organelles as an ensemble
of homogeneous spheres suspended within a three-dimensional (3D) volume. The physics-based
model then combines Mie theory with Fourier optics to compute the angular scattering. Figure 1
shows the simulation procedure. We use a single log-normal size distribution model, in which the
user defines the number of scatterers N and the mean μ and width σ of the log normal. This is a
simplification of real cells (e.g., ignoring larger scatterers such as the nucleus). The choice of a
log-normal is motivated byWilson et al.’s results,11 which showed that intact cellular scattering is
well represented by two log-normal size distributions. In this work, we reverted to a single log
normal to simplify quantification of the relationship between simulation parameters and size

Fig. 1 Block diagram of simulation procedure for generating a 1D angular scattering intensity IðθÞ
for an ensemble of N scatterers sampled from a log normal distributon nðμ; σÞ.
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estimate accuracy. Scatterer sizes are obtained by randomly sampling the size distribution, and
the locations are randomized within a user-defined region representative of a single cell’s vol-
ume. Mie theory14 is used to compute the complex field of the light scattered by each sphere upon
illumination by a monochromatic, linearly polarized plane wave. For each scatterer, the phase of
the field in the angular domain is modified to account for its 3D location by adding the appro-
priate tilt or defocus term. These complex fields are then summed coherently over all scatterers to
compute the total scattered field, which accounts for the interference between organelles. This
field is inverse Fourier transformed to the image domain, so the FPM imaging system can be
simulated with detector noise. The noised data are then processed the same way as experimental
data, by Fourier transforming back to the angular domain to compute the two-dimensional (2D)
angular scattering. The individual steps are described in further detail in the remainder of this
section.

The values used for simulations in this paper are given in Table 1 and were chosen to match
experimental conditions in our angular scattering microscope described by Draham et al.16 and to
realistically model scattering from single cells. The LED’s center wavelength λ, the photon flux
density, and the exposure times were chosen to match our experimental setup. The minimum and
maximum scattering angle are determined by the region phase shifted by the spatial light modu-
lator (SLM) in our Fourier phase microscope and the numerical aperture of our microscope
objective, respectively. The indices of refraction for the cytoplasm and organelles are from the
literature.22 As was previously described, we used a single log normal functional form as a simple
approximation of mitochondria-sized scatterers because mitochondria have a strong contribution
to the scattering from intact cells.12 We simulated size distributions with a mean of 1.1 μm and
widths between 100 and 600 nm, inspired by the fits to mitochondria-sized scatterers in Wilson
et al.’s work.11,12 We used between 50 and 1000 scatterers23 to model mitochondria in a single
cell and simulated cell widths of between 25 and 55 μm and axial thicknesses of 5 μm.

2.2 Sampling Noise from Forward-Model Mismatch
A popular forward model choice for fitting size distributions with light scattering assumes a
continuous distribution (e.g., a log normal). However, the finite number of scatterers contained
within a cell limits the ability of the actual size distribution’s scattering to match that of the
continuous model assumed for fitting. In addition, any random deviation from the assumed dis-
tribution’s functional form is a source of forward model mismatch between reality and the fitting
model. The effects of having a finite number of scatterers and random deviations from the

Table 1 Simulation parameters.

λ 780 nm

texp 0.1 to 2 s

Photon flux density 30,000 photons/pixel/second

θmin 5 deg

θmax 55 deg

ncytoplasm 1.37

norganelles 1.4

nðdÞ LNðμ; σ; dÞ

μ 1.1 μm

σ 100, 300, 600 nm

N scatterers 40 to 1000

Cell width 25 to 55 μm

Cell thickness 5 μm
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assumed scatterer model are hereafter referred to as “sampling noise,” which becomes especially
important to explore at the single cell level due to the small number of organelles available to
sample a size distribution. Therefore, the simulation tool allows for varying the number of scat-
terers, the functional form of the size distribution, and the ability to add randomness. This enables
studying the effect of sampling noise on the accuracy with which size estimates can be inverted.

Any functional form of a size distribution nðdÞ can be used to generate scatterer sizes. To
randomly sample the size distribution, we use the discrete inverse transform sampling
method,24,25 which takes advantage of the fact that cumulative distribution functions range
between 0 and 1. The goal is to obtain a discrete random variable D sampled N times from
the probability distribution function pðdÞ. The cumulative distribution function is given as

EQ-TARGET;temp:intralink-;e001;117;616FðdiÞ ¼
Z

di

0

n̂ðxÞdx; (1)

where n̂ðxÞ is the normalized size distribution, i.e., the probability distribution function pðdÞ. N
uniformly distributed random numbers u are generated on the interval 0 < u < 1, and each ran-
dom sample D is then defined as

EQ-TARGET;temp:intralink-;e002;117;545D ¼ di; if Fðdi−1Þ < u < FðdiÞ: (2)

2.3 Interference Between Organelles
To simulate a cell’s scattering, an idealized model that assumes a collection of spherical organ-
elles surrounded by a homogeneous cytoplasm is used. The complex field scattered by each
organelle is modeled using Mie theory,14 which computes the complex field scattered from lin-
early polarized light incident on a homogeneous sphere located at the origin. We also include the
appropriate tilt and defocus phase terms associated with the lateral ðx; yÞ and axial ðzÞ offset of
each scatterer from the origin. The scattering from all organelles is summed coherently in field to
yield the total angular scattering intensity, which includes the interference between the organ-
elles. The angular-domain phase term for the j’th scatterer located at ðxj; yj; zjÞ is

EQ-TARGET;temp:intralink-;e003;117;400Pj ¼ exp

�
−i2π

�
fxxj þ fyyj þ

zj
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλfxÞ2 − ðλfyÞ2

q ��
; (3)

where the zj term is the propagation transfer function that contains the defocus due to z-offset, the
fx and fy terms are lateral spatial frequencies, the xj; yj terms are the phase tilt terms associated

with a lateral shift in the image domain,26 λ is the wavelength in the medium, and i ¼ ffiffiffiffiffiffi
−1

p
.

Because the forward-scattered angular distribution of linearly polarized light scattered by
organelle-sized spheres is highly azimuthally symmetric, it is useful to average the intensity
within annular bins of constant θ. This performs some averaging over the interference noise
and yields a one-dimensional (1D) vector of scattered intensity versus polar angle θ, or IðθÞ.

2.4 Fourier Phase Microscopy
Simulations of interference noise, computed by coherently combining the scattered field from
each organelle as described in the previous section, are general to any angular scattering detection
method. Simulating the effects of detector noise is more specific to the imaging modality. For
techniques that require complex field measurement, different interferometry techniques and the
computational processing required for obtaining the complex field will affect the propagation of
noise to the final angular scattering data. To match our experimental setup, we simulate FPM to
compute the complex field scattered by the sample. As noted earlier, we use FTLS to obtain the
angular scattering.

FPM involves measuring four intensity interferograms. As shown in Fig. 2, an SLM located in
a Fourier plane applies a phase shift of ϕ ¼ mπ

2
for m ¼ 0;1; 2;3 to a small central spot where the

unscattered light hits the SLM. At the image planeO 0, this creates them’th phase-shifted reference
wave Er, which interferes with the field scattered by the sample, or Es. The corresponding four
interferograms are

EQ-TARGET;temp:intralink-;e004;117;94Imðx; yÞ ¼ jErj2 þ jEsðx; yÞj2 þ 2jErjjEsðx; yÞj cos
�
ϕsðx; yÞ þ

mπ

2

�
(4)
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for each phase shift. The amplitude of the sample beam is computed from the four measured
intensity images from27

EQ-TARGET;temp:intralink-;e005;114;567jEsðx; yÞj ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI3 − I1Þ2 þ ðI0 − I2Þ2

q
; (5)

when the plane wave Er is assumed to have unit amplitude for simplicity. The phase of the scat-
tered field is similarly computed by

EQ-TARGET;temp:intralink-;e006;114;509ϕsðx; yÞ ¼ atan 2ðI3 − I1; I0 − I2Þ: (6)

The complex field is then Fourier transformed to arrive at the angular scattering. The field’s ampli-
tude is squared to compute the irradiance and azimuthally averaged to obtain IðθÞ.

2.5 Simulating Detector Noise
For a given input photon flux, the irradiance of the reference field and Mie theory-derived sample
field are scaled as shown in Appendix A. The sample and reference fields are then added in
complex field and squared to compute the irradiance. This is then converted to photoelectrons
emðx; yÞ by

EQ-TARGET;temp:intralink-;e007;114;389emðx; yÞ ¼ η
Imðx; yÞApixtexp

Ephoton

; (7)

where η is the quantum efficiency (a spectrally dependent parameter that describes the photon to
electron conversion efficinency,) Imðx; yÞ is the irradiance in W∕m2, Apix is the CCD pixel area,
texp is the exposure time, and Ephoton ¼ hc∕λ is the photon energy. The detector noise is simulated
by adding dark noise and shot noise to the raw intensity images.

Shot noise is due to the Poisson process of detection and has a Poisson distribution. For large
numbers of photoelectrons, the noise is well approximated as additive white Gaussian noise with
the variance σ2e equaling the mean number of photoelectrons μe. The contribution at each pixel
due to shot noise is randomly sampled from Nð0; emðx; yÞÞ, where Nðμ; σ2Þ is a random number
sampled from a normal distribution with mean μ and variance σ2. Finally, dark noise σd must be
added, and it depends on both the read noise σr and the dark current μI . It is also modeled as
additive white Gaussian noise with variance

EQ-TARGET;temp:intralink-;e008;114;214σ2d ¼ σ2r þ μItexp; (8)

and mean μIt. These parameters were measured experimentally, as described in the next section.
After adding shot noise and dark noise, the number of photoelectrons e 0

mðx; yÞ at each pixel is
given as

EQ-TARGET;temp:intralink-;e009;114;153e 0
mðx; yÞ ¼ emðx; yÞ þ Nð0; emðx; yÞÞ þ NðμIt; σ2dÞ: (9)

The final number of counts on the detector is given as

EQ-TARGET;temp:intralink-;e010;114;116cmðx; yÞ ¼ maxðroundfKe 0
mðx; yÞ þ c0g; 2k−1Þ; (10)

where K is the detector sensitivity, c0 is the constant readout, and k is the number of bits in the
detector. The max operation accounts for the potential saturation of the detector. The four images

Fig. 2 Conceptual diagram of a Fourier phase microscope; the light scattered by the sample (O) is
imaged to the CCD array (O 0) and the unscattered light focuses to the center of a SLM at the
Fourier plane (F ), where four different phase shifts are applied.
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cmðx; yÞ, which aside from noise are proportional to the irradiance Iðx; yÞ, are fed directly into
Eqs. (5) and (6) to compute the noised amplitude (to within a scalar constant) and phase of the
scattered field, respectively. The camera parameters in Table 2 were measured experimentally as
described by the EMVA Linear Standard28 and in Appendix B. The quantum efficiency is the
only parameter that cannot be easily measured, and it was taken from the camera specifications.

2.6 Fitting Algorithm
The forward model for computing angular scattering from a number distribution of scatterers,
n, is

EQ-TARGET;temp:intralink-;e011;117;498I ¼ Tn; (11)

where I is a column vector of the scattered intensity versus angle (IðθÞ) and T is a matrix with
columns that are the scattered intensity as a function of angle for scatterer diameters between dmin

and dmax, as computed by Mie theory. In this work, the minimum and maximum scatterer diam-
eters simulated were 0.01 and 4 μm, and steps were taken every 10 nm. The inverse problem is to
solve for the number density n, given a measurement of I, and the known Mie theory table T.
This is known to be an ill-conditioned inverse problem, meaning small variations in the noise on
I are magnified to cause large changes in the estimate of n.29,30

To solve this ill-conditioned inverse problem, a priori information must be introduced. A
common approach is to assume a functional form for the number density n, often a log normal for
particle size distributions.29 The log normal size distribution as a function of diameter d and input
variables mean μ and standard deviation σ is defined as

EQ-TARGET;temp:intralink-;e012;117;343nðd; μ; σÞ ¼ 1

dS
ffiffiffiffiffi
2π

p exp

�
−
ðln d −MÞ2

2S2

�
; (12)

for dmin ≤ d ≤ dmax, where

EQ-TARGET;temp:intralink-;e013;117;293M ¼ ln

�
μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ σ2
p �

and S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
1þ

�
σ

μ

�
2
�s
: (13)

The optimization problem is then to choose the ðμ; σÞ values that minimize the l2 norm of
the χ2 error between the scattering IðθÞ from Eq. (11) and the measured IdðθÞ, or

EQ-TARGET;temp:intralink-;e014;117;224ðμ̂; σ̂Þ ¼ arg min
μ>0;σ>0;

���� Itheoryðμ; σÞ − Id
S2

����2
2

; (14)

where S is a diagonal matrix containing the elements

EQ-TARGET;temp:intralink-;e015;117;173si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
ϕ
fIðθi;ϕÞg
pðθiÞ

vuut
; (15)

which are the azimuthal standard deviations of Iðθi;ϕÞ normalized by the square root of the
number of pixels pðθiÞ in each annular bin. The pðθiÞ weighting de-emphasizes the annular
bins with the fewest pixels over which to average. Equation (14) is solved using Matlab’s built
in fmincon optimizer.

Table 2 Parameters of Andor Luca CCD camera.

Readout c0 504 counts

Sensitivity K 0.59

Quantum efficiency η 0.23

Read noise σr 14.1 electrons

Dark current μI 0.44 electrons2∕s
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Because we are not estimating the number of scatterers present and detector noise has the
effect of adding an offset to the 1D angular scattering (as described in more detail in Sec. 4), the
fitting procedure allows for an arbitrary scaling and offset factor between the theory and data, or

EQ-TARGET;temp:intralink-;e016;114;700Itheory ¼

2
66664
ðTnÞ1 1

ðTnÞ2 1

: :
: :
: :

3
77775
�
c1
c0

�
; (16)

with the constant offset c0 and scaling factor c1. These values are determined during each iter-
ation of the optimization algorithm for a given (μ; σ) pair by finding the least squares fit between
the data and scaled theory.

Note that the forward model both samples from a smooth, analytic size distribution and does
not attempt to solve for the locations of the scatterers. Sparse sampling of size distributions,
interference between scatterers, and detector noise all introduce uncertainty into size distribution
parameter estimates. The next section describes how we quantify the effect of each of these noise
sources and compare them to understand what limits the accuracy of size estimates.

2.7 Quantifying the Effect of Noise on Size Estimates
To quantify the noise added by sampling, interference, or detector processes, many simulations
are run while changing a parameter, such as the number of scatterers, their locations, or the
random detector noise. The collection of corresponding angular scattering plots gives a sense
of how that noise source is carried through to the angular scattering. The signal-to-noise ratio
(SNR) at each scattering angle is computed by dividing the mean value across all simulations by
the standard deviation, or

EQ-TARGET;temp:intralink-;e017;114;435SNRðθÞ ¼ meaniðIðθ; iÞÞ
stdiðIðθ; iÞÞ

; (17)

where Iðθ; iÞ is the angular scattering from the i’th run of the simulation. A mean SNR value
SNR across all angles is computed as

EQ-TARGET;temp:intralink-;e018;114;373SNR ¼ meanθðSNRðθÞÞ: (18)

Although one use of simulations is to understand how various noise sources contribute to
noise in the angular domain, it is important to take this a step further to consider how it prop-
agates through the fitting process and affects size estimates. This result depends significantly on
the algorithm used to estimate size distributions. In this paper, we used a “best fit” approach that
models the simulated size distributions with a single log normal distribution, as described in the
previous section. Other approaches to solving the inverse problem are briefly noted in Secs. 4
and 5.

To quantify the error in estimated size distributions, we defined a fractional error in the
estimated mean of the scatterer ensemble as

EQ-TARGET;temp:intralink-;e019;114;239fμ ¼
jμest − μsampj

μsamp

; (19)

and similarly a fractional error for the standard deviation as

EQ-TARGET;temp:intralink-;e020;114;189fσ ¼
jσest − σsampj

σsamp

; (20)

where the parameters μsamp and σsamp are the mean and standard deviation of the scatterer sizes
generated using the inversion sampling method previously described, respectively. The estimated
parameters indicated by subscript “est” are the mean and standard deviation of the estimated size
distribution over the range dmin ≤ d ≤ dmax. The mean SNR and the fractional error in size esti-
mates are useful parameters for comparing the effects of each noise type. A slightly modified
SNR definition is used for detector noise and is described in a later section.
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3 Simulation Results

3.1 Noise Sources
An example of a cell’s simulated scattering and its fit is shown in Fig. 3. The histogram in
Fig. 3(a) shows the scatterer diameters from sampling a μ ¼ 1.1 μm, σ ¼ 300 nm log normal
with 200 scatterers. These are then randomly placed in a 40 × 40 × 5 μm region and used to
generate the four intensity images measured by the camera under different phase shifts.
Figure 3(b) shows the zero phase-shift intensity image of the sample with the detector noise
added (visible in enlarged inset). The sample’s complex field computed from Eqs. (5) and
(6) is Fourier transformed to arrive at the 2D scattered intensity plot in Fig. 3(c), where the inner
dashed line is polar angle of 5 deg and the outer dashed line is 55 deg. Finally, this 2D scattering
is azimuthally averaged to arrive at the 1D angular scattering in Fig. 3(d), which is shown with its
Mie theory fit of μ ¼ 1.09 μm and σ ¼ 250 nm. The log normal size distribution corresponding
to this fit is plotted with the histogram in Fig. 3(a).

The remainder of Sec. 3.1 establishes the relationships between simulation parameters (num-
ber of scatterers, log normal width σ, cell size, and exposure time) and their effects upon angular
scattering by individual noise sources (sampling, interference, and detector noise) in isolation.
Section 3.2 then considers the three noise sources acting in combination and the resulting effect
upon the accuracy of size distribution parameter estimates.

3.1.1 Sampling noise

To demonstrate the meaning of sampling noise, simulations were run while only changing the
sizes of the scatterers. Figure 4(a) shows an example of two histograms generated by randomly
sampling a log normal curve with μ ¼ 1.1 μm and σ ¼ 300 nm and distributing 50 scatterers
using the procedure described in Sec. 2.2. Despite being drawn from the same log normal, these

Fig. 3 (a) Histogram of scatterer diameters from randomly sampling a μ ¼ 1.1 μm, σ ¼ 300 nm log
normal with 200 scatterers, and estimated log normal corresponding to Mie theory fit.
(b) Corresponding intensity image of the scatterers placed at different ðx; y ; zÞ locations, with
detector noise added. Field of view is 40 μm on a side. (c) 2D scattering intensity after Fourier
transform of the complex field; inner/outer dashed lines indicate 5/55 deg. (d) 1D scattering (blue,
solid) from azimuthally averaging the 2D scattering and Mie theory fit (orange, dashed).

Fig. 4 (a) Two realizations of sampling the same μ ¼ 1.1 μm, σ ¼ 300 nm size distribution with 50
scatterers, and (b) the corresponding angular scattering without varying the scatterer locations or
detector noise. (c) SNR dependence on number of scatterers for μ ¼ 1.1 μm and σ ¼ 100, 300,
and 600 nm.
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two sampled distributions have different angular scattering, shown unnormalized in Fig. 4(b).
This variation due to sampling of the size distribition is the “sampling noise.” Sampling noise
decreases as the number of scatterers increases, and as the distribution width approaches zero. To
quantify these trends, we ran 100 simulations while varying only scatterer sizes to compute the
mean SNR over all angles as defined in Eq. (18). We repeated this for cells with between 50 and
1000 scatterers and for distribution widths of 100, 300, and 600 nm, yielding the plots in Fig.
4(c). As expected, the SNR increases as the number of scatterers increases and as σ decreases.

3.1.2 Interference noise

To study the influence of interference noise, the scattering is compared for an ensemble of scat-
terer sizes in which only their locations are changed and not their sizes or the detector noise. The
variations in the angular scattering are then due to the changes in interference between scatterers.

Figure 5(a) shows two examples of scattering in which only the scatterer locations are
changed for a 40 × 40 × 5 μm cell with 200 scatterers. The difference between the two plots
is due to the high frequency changes in the interference pattern. The SNR is again computed
over 100 simulation runs to quantify the effect of interference noise. The results are shown in
Fig. 5(b) for changing the D ×D × 5 μm cell size for between D ¼ 25 and 55 μm and in
Fig. 5(c) for changing the number of scatterers between 40 and 1000 for D ¼ 40 μm.

3.1.3 Detector noise

Bead calibration. To validate our simulation tool’s ability to accurately model detector
noise, we first compared experimental and simulated scattering at several exposure times for
a bead immersed in glycerol. This sample has signal levels close to a mitochondrion’s scattering
in a cell due to the comparable size and refractive index contrast. As shown in Fig. 6(a), a Mie
theory fit to the texp ¼ 2 s experimental data yielded a size estimate of 0.972� 0.039 μm, where
the uncertainty is where the χ2 error metric doubles. The texp ¼ 2 s data were chosen for fitting,
so the effect of the detector noise on the fit accuracy is minimized, making the data closest to an
ideal Mie curve.

Noise effects. To demonstrate the difference between the detector noise-free Mie theory fit
and the experimental measurements, the fit in this example did not allow for the offset c0
described in Eq. (16); had this been allowed, the three curves at different times would have
collapsed onto each other. By varying the exposure time both in experiments and in simulations,
we can see changes in the scattering signal that are due to detector noise. The photon flux in the
simulations was set to 14,000 photons/pixel/s to match the LED’s irradiance on the day of meas-
urement, as was measured by plotting the average number of counts in a bead-free region of the
sample versus exposure time. The data in Fig. 6 are normalized by the exposure time, so the

Fig. 5 (a) Two realizations of interference noise from changing the positions of 200 scatterers
within a 40 × 40 × 5 μm cell. (b) SNR computed over 100 simulations of randomizing 200 scatterer
locations for a μ ¼ 1.1 μm, σ ¼ 300 nm distribution for cell widths between 25 and 55 μm. (c) SNR
computed over 100 simulations of randomizing the locations of between 40 and 1000 scatterers for
a μ ¼ 1.1 μm, σ ¼ 300 nm distribution, and for a cell width of 40 μm.
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shape of the scattering can be compared. The experimental and simulated results in Figs. 6(a) and
6(b) show the same effect of the noise floor being raised as exposure time decreases due to the
presence of additional shot noise. On the semi-log scale, this effect is most evident between
40 deg and 55 deg. This gives us confidence that the simulation of FPM is inducing detector
noise effects consistent with the experimental measurements. We later show with simulations of
scatterer ensembles that this detector noise effect contains a large DC “offset” term in the angular
domain, which requires the use of the offset c0 to accurately fit scatterer ensembles.

To demonstrate the effect of detector noise on cell simulations, an example cell was simu-
lated multiple times using the exact same scatterers and locations while only varying the detector
noise. The simulated photon flux was set here to 30,000 photons/pixel/s to match the typical
irradiance of the LED. A “detector-noise-free” version of the scattering was also generated for
comparison, where detector noise was not added to the raw interferograms. Figure 7(a) shows the
angular scattering intensity with two realizations of detector noise on the same cell, and the
“unnoised” data (i.e., without adding detector noise). In Fig. 7(b), we show on a linear scale
the difference between the noised and unnoised plots scaled by the exposure time, or

EQ-TARGET;temp:intralink-;e021;117;373

noiseðθÞ
texp

¼ IðθÞ − Ino−det−noiseðθÞ
texp

; (21)

where IðθÞ includes the detector noise and Ino−det−noiseðθÞ does not. This noise can be expressed
as the sum of a constant DC term and an angle-varying AC term. Note that when scaled by the
exposure time, the AC term increases with exposure time (best seen at the noisier low angles,
where fewer pixels are averaged over), whereas the DC term decreases with exposure time (best
seen at the high angles, where more pixels are averaged over). The presence of a DC term in the
detector noise suggests the need for a DC offset term in the fitting procedure. To demonstrate the
importance of allowing for an offset during the fitting procedure in the presence of detector noise,
Fig. 7(c) shows an example cell with a fit both with and without the offset. Note that the Mie fit
only resembles the angular scattering when the offset term is included in the fitting procedure.
Because the DC component of the detector noise does not affect the fit when the offset is allowed,

Fig. 6 (a) Experimental angular scattering for bead immersed in glycerol at exposure times of 0.2
(blue solid), 0.5 (orange dotted), and 2 s (yellow thick) with a Mie theory fit (purple dashed) showing
a diameter estimate of 0.972 μm. (b) Simulated angular scattering from a single 0.972 μm bead
immersed in glycerol for the same exposure times and without detector noise.

Fig. 7 (a) Scattering from two realizations of detector noise and without detector noise.
(b) Difference between noised and unnoised signal scaled by the exposure times. (c) Example
fits to simulated scattering with and without allowing for constant offset in the fit. (d) SNR [as
defined in Eqs. (22) and (18)] versus exposure time.
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it should not be included as a noise term when computing the SNR. Furthermore, because the DC
component of the noise remains the same for different realizations of detector noise with the same
exposure time, the SNR definition must be modified so that it is not erroneously included as part
of the signal. We therefore define the detector-noise-related SNRðθÞ as

EQ-TARGET;temp:intralink-;e022;114;493SNRðθÞ ¼ meaniðIno−det−noiseðθ; iÞÞ
stdiðIðθ; iÞ − Ino−det−noiseðθ; iÞÞ

; (22)

so the detector noise-induced constant offset is not counted as part of the signal. The angle-aver-
aged metric SNR is still computed using Eq. (18). The SNR is plotted for exposure times between
0.1 and 2 s, which corresponds to between 3000 and 60,000 photons/pixel.

3.2 Effect of Noise Sources on Size Estimates
To study the impact of sampling, detector, and interference noise on the accuracy of size esti-
mates, we now include all three noise types in the simulated data, so the noise characteristics are
representative of experimental cell scattering. We rely on the dependence we have established
between the simulation parameters and the SNR in the results shown in Figs. 4–7, namely that
distribution width σ and number of scatterers N control the level of sampling noise, cell size D
controls the interference noise, and texp controls the detector noise. To explore the effect of noise
sources on size estimates, the level of only one noise source was changed at a time by changing
the relevant experimental parameter, and 100 simulations were run to generate each datapoint.
Although the other noise sources were also present, the levels of those noise sources were held
constant. In Fig. 8(a), the level of sampling noise was varied by changing the distribution width σ
and the number of scatterersN to see how the ensuing noise variations affected the size estimates.
In Fig. 8(b), the level of interference noise was varied by changing the cell size. The level of
detector noise was held constant by holding the field of view fixed at 55 × 55 μm while the cell
size was varied. In Fig. 8(c), the level of detector noise was varied by changing the exposure time.
For all of these results, the fractional error in size estimates tends to decrease as the SNR
increases. Finally, Fig. 8(d) combines the fμ results from Figs. 8(a)–8(c) on the same axes for
comparison.

4 Discussion

4.1 Noise Sources
Each of the noise sources investigated manifests itself differently in the angular domain. The
characteristics of the noise sources determine the degree to which each noise source affects the
Mie theory fit.

Fig. 8 Comparison of fractional error in μ (filled markers) and σ (open markers) versus mean SNR
for (a) varying number of scatterers varied between 40 and 1000 and varying size distribution width
σ ¼ 100, 300, and 600 nm, and for fixed parameters μ ¼ 1.1 μm, D ¼ 55 μm, and texp ¼ 2 s.
(b) Varying the cell’s lateral dimensions between 25 and 55 μm and with fixed parameters
μ ¼ 1.1 μm, σ ¼ 300 nm, 750 scatterers, and texp ¼ 2 s. (c) Varying texp between 0.1 and 2 s and
fixed parameters μ ¼ 1.1 μm, σ ¼ 300 nm, 750 scatterers, andD ¼ 55 μm. (d) Compiled f μ results
from (a)–(c) plotted on the same axes for comparison. Error bars (some smaller than markers)
indicate standard error of the mean over 100 simulations and fits.
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4.1.1 Sampling noise

Sampling error is characterized by slowly varying changes in the angular scattering distribution.
The two example histograms in Fig. 4(a) result in the two scattering intensities in Fig. 4(b). Note
that there are regions of the angular range where cell 2’s scattering is consistently higher than cell
1’s, such as from 15 deg to 25 deg and from 37 to 50 deg. This indicates a slowly varying noise
component relative to the high frequency ripples also visible in the data (which are mostly from
interference noise). The noise-free Mie theory-based angular scattering used to fit the data tends
to be a smooth, monotonic signal for broad distributions of organelle-sized scatterers. Therefore,
one would expect these low-frequency variations due to sampling noise to affect the Mie theory
fits substantially, as discussed with the fit results.

Before looking at fit stability, we look at the SNRmetric to quantify the impact of number of
scatterers N and distribution width σ. It is intuitive that the moments of the sampled distribution
become closer to the simulated distribution as the number of scatterers N increases (i.e., law of
large numbers). This also means that different realizations of sampling the same population are
more consistent for larger N, resulting in less variation in the angular scattering signal and there-
fore higher sampling-related SNR. This is seen in the increasing SNR with N in Fig. 4(b).
Notably, this trend is most significant between 40 and 200 scatterers. There is a larger improve-
ment in SNR between 40 and 200 scatterers than from 200 to 1000 scatterers. This may have
implications for which types of single cells are least amenable to robust estimates of organelle
size distribution parameters via angular scattering. In addition, having a narrower distribution
means that the SNR is greater than 12 dB even forN ¼ 40. The curves of SNR versus the number
of scatterers are shown for widths of 100, 300, and 600 nm in Fig. 4(c) to demonstrate that the
SNR is higher for narrower distributions.

4.1.2 Interference noise

For interference noise, SNR is strongly affected by the cell size. This is because the farthest
separation between scatterers in the spatial domain determines the highest spatial frequency
of interference fringes that can occur in the angular domain. Larger cell dimensions have greater
maximum scatterer separations and smaller interference features. Because finer (high spatial fre-
quency in the 2D angular scattering) interference fringes are averaged out more than coarser
features, the large cell sizes improved SNR. This result is visible in Fig. 5(b), where SNR

increases with cell size parameter D. Interestingly, increasing the number of scatterers while
keeping the cell size the same does not affect the SNR plot in Fig. 5(c), implying that the density
of scatterers or average separation between scatterers does not determine the spatial size of inter-
ference noise. We note that this simulation platform assumes spatially coherent illumination
across the cell. The effect of cell size on interference noise would be different if there were finite
spatial coherence because the spatial coherence area would limit the maximum distance at which
organelles could interfere.

4.1.3 Detector noise

Without doing a detailed analysis of noise propagation through Eqs. (5) and (6), it is nevertheless
possible to gain insight into how detector noise influences angular scattering, as shown in Fig. 7.
Most notably, the constant offset component shown in Fig. 7(b) that decreases with exposure
time can be explained by the noise power spectrum of white noise. For an image with indepen-
dent, identically distributed noise (i.e., independent pixels, each with the same probability dis-
tribution), the ensemble average of the Fourier transform’s modulus squared is constant. Because
the reference plane wave dominates the overall signal in all of the raw intensity images, it is a
good approximation that the detector noise in those intensity images is white noise. When azi-
muthally averaged, this noise therefore contributes a DC component in the angular domain that
scales approximately as the square root of exposure time. Because the Mie scattering itself
increases linearly with time, the relative contribution of the noise-induced DC component
increases as exposure time decreases, in agreement with Fig. 7(b) as time decreases from
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2.0 to 0.2 s. The white noise also contributes AC components to the angular scattering, idiosyn-
cratic to the particular distribution of signal in the four intensity images.

Although these simulations provide insight into the nature of the exposure time-dependent
offset in the angular domain, it is also apparent that this noise has a minimal effect on the ability
to fit size distributions for the range of exposure times explored in this paper. Figure 8(c) shows
that the metric fμ remains below 3% error for all values of exposure time explored, and the value
of fσ is below 6%. Furthermore, it should always be possible experimentally to increase the
source brightness or exposure time to an acceptable level, so shot noise is not the limiting factor
in estimating size distributions. In particular, the light levels used in the simulations corresponded
to a low-power LED, whereas a superluminescent diode would have higher irradiance in the field
of view.

4.2 Effect of Noise on Size Estimates
Although we have described the relationships that experimental and cell parameters have on
SNR, this metric does not automatically map 1:1 to the accuracy with which the size distribu-
tion’s mean μ and width σ are estimated. Although the error metric generally decreases as SNR
increases, there is not a fixed relationship between the SNR and size estimate error. This means
that some of the plots in Fig. 8(d) have different error metric values despite overlapping in their
SNR range. The slopes also differ between the plots; notably the blue plot fμ for changing the
number of scatterers in a distribution with σ ¼ 600 nm drops sharply from 20% error to <10%
error between SNR ¼ 7 and 10 dB, whereas the black plot from increasing the exposure time
only changes by <3% over more than 6 dB. Increasing the cell size (and thereby reducing inter-
ference noise) also has a notably steep slope (purple plot), although it covers <2 dB of SNR
values.

There are several other reasons for the differences in error metric values and slope. Factors
such as the shape of the angular scattering curve also influence the stability of solving the inverse
problem and therefore of estimating size distributions. For example, the mean of the widest dis-
tribution with σ ¼ 600 nm has a higher error than for σ ¼ 300 nm, despite the overlap in the
SNR range. This is likely due to the fact that wider distributions have a more featureless angular
scattering shape because any minima or other features are averaged over a wide range of angular
locations from different scatterer sizes (e.g., compare the minimum in the single 0.972 μm scat-
terer in Fig. 6 with the monotonically decreasing angular scattering plot in Fig. 3(d) from a log-
normal distribution). These monotonically decreasing (aside from the high frequency interfer-
ence noise) scattering curves have fewer features, making the fitting process more susceptible to
noise. There is also no notable difference in fitting performance between the 100 and 300 nm
wide distributions, despite the difference in SNR. This is because interference noise begins to
limit the fitting accuracy when the sampling noise is low enough.

In addition, each type of noise source has a different behavior in the angular domain. The
SNR metric is an averaged parameter that obscures the angular dependence of the SNR. For
example, the azimuthal averaging reduces the relative effects of interference and the AC com-
ponent of the detector noise at the highest scattering angles where there are more pixels in an
annular bin. However, the sampling error is an azimuthally symmetric effect that does not benefit
from averaging over more pixels. In addition, the spatial frequency content of the error in the 1D
azimuthal plot plays an important role. For example, the slowly varying sampling noise has a
large effect on the Mie theory fits (and thus the error metrics fμ and fσ) because the Mie scatter-
ing has similar spatial frequencies in the angular domain. The high spatial frequency fluctuations
of the interference noise, however, affect the fit accuracy less, for example, as seen in the fit
through the data in Fig. 3(d).

Overall, the sampling noise causes the highest fμ and fσ values when σ ¼ 600 nm. The fμ
values are larger than 10% for this widest log normal distribution and are smaller than 5% for all
other sets of simulation parameters. This suggests that the distribution width of a cell’s scatterers
is significant in determining whether this fitting approach is capable of estimating organelle sizes
accurately. For such wide distributions, a large number of scatterers (more than 750) is need to
bring fμ to below 10%. This indicates that the scattering from a finite number of scatterers with
widely distributed sizes is poorly modeled by a continuous size distribution. This sampling

Dunn and Berger: Three-dimensional angular scattering simulations inform analysis. . .

Journal of Biomedical Optics 086501-14 August 2023 • Vol. 28(8)



“error” is equivalent to an inaccurate assumption of the distribution’s functional form, meaning
that it could potentially be addressed by different approaches to the inverse problem.

5 Conclusion
To our knowledge, this is the first effort to characterize how accurately angularly resolved light
scattering can size organelle populations representative of a single cell’s contents. We used sim-
ulations to investigate the experimental and cell parameters that influence various noise types and
then studied how the levels of each noise source influence the size-distribution estimation accu-
racy. The results provide insight into the properties of sampling, interference, and detector noise,
as well as their impact upon angular scattering fits. Although the detector noise is specific to the
FPM and FTLS methods of data collection, the interference noise and sampling noise are gen-
eralizable to any angular scattering method because they are properties of the cell rather than the
measurement system. We chose ranges of simulation parameters to represent experimental con-
ditions and cell properties as closely as possible, including experimental measurements of our
detector properties. Although the simulations presented in this work assumed full spatial coher-
ence, a future version could include variables to model partial spatial coherence. This would
capture the effects of interference noise more accurately because scatterers separated by more
than the spatial coherence length at the sample would not coherently interfere.

We found that, for σ ≈ 300 nm, the fractional errors due to sampling, interference, and detec-
tor noise are comparable and remain below 5% error in the fμ [c.f. Fig. 8(d)], with as few as 40
scatterers. For wider size distributions (σ ≈ 600 nm), the sampling noise dominates the error in
size estimates and requires more than 750 scatterers to estimate the mean with <10% error [c.f.
Fig. 8(a)]. One important implication of this result is that there is little to gain from reducing
detector or interference noise in regions of parameter space where the fitting accuracy is domi-
nated by the sampling error. This motivates using inversion approaches that do not require
assuming the functional form of size distributions; this is an approach that we plan to explore
in future work.

It is also worth considering the simplifications in this simulation work that are not repre-
sentative of experimental cell scattering. For example, this work assumed an idealized cell model
with a homogeneous and identical refractive index for all scatterers, no nucleus-sized scatterers,
and all spherical scatterers. In addition, the results indicate that the log-normal assumption might
be the limiting factor in estimating size distributions accurately, especially for distributions with
widths at or beyond 600 nm. This suggests that it is worth investigating the validity of these
assumptions for single cells. We are currently using tomographic refractive index maps of single
cells to investigate the agreement between these model simplifications and real cells. Although
spheroids are known to scatter on average similar to their area equivalent spheres,31 future work
could also include a more sophisticated simulation model to model spheroidal scatterers, for
example, using T-matrix theory.32,33

6 Appendix A: Scaling Reference Beam Strength in Simulation
To simulate the four interferograms, the strength of the scattered field must be scaled relative to
the incident plane wave’s strength. Given an input photon flux corresponding to an incident plane
wave with irradiance I0, the radiant flux Φs scattered by a microscopic object is

EQ-TARGET;temp:intralink-;e023;117;202Φs ¼ I0Csca; (23)

where Csca is the scattering cross section in units of meters squared. For a dielectric sphere, a
scattering cross section is computed by Mie theory34 over the solid angle subtended by a micro-
scope objective as

EQ-TARGET;temp:intralink-;e024;117;142Csca ¼
Z

2π

0

Z
θmax

0

jχj2
k2

sinðθÞdθ dϕ; (24)

where jχj2
k2 is the differential scattering cross section. 34
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With Φs thus defined via Eq. (23), the average irradiance of the entire field of view is then

EQ-TARGET;temp:intralink-;e025;114;724Is ¼
Φs

Aobj

; (25)

where Aobj is the detector field of view demagnified through the imaging system to the object
plane. The scattered field Esðx; yÞ computed by Mie theory is then scaled such that

EQ-TARGET;temp:intralink-;e026;114;663

P
x;yjEsðx; yÞj2
Npixels

¼ Is; (26)

meaning that the average irradiance of the scattered light is Is. The interferograms are then com-
puted by summing the sample field and the reference field for each phase shift and taking the
modulus squared, which is equivalent to Eq. (4).

7 Appendix B: Characterizing Detector Noise
Detector noise is specific to the detector used because the quantum efficiency, sensitivity, and
readout noise are dependent on the individual detector’s performance. A series of simple experi-
ments can be used to characterize detector performance because not all parameters are provided
on specification sheets. Our experimental Fourier phase microscope, described in further detail in
Ref. 15, uses an Andor Luca DL-685M electron multiplying CCD-camera, operating without
electron multiplication. To accurately simulate measurements of the camera with the correct lev-
els of detector noise, it is important to know some basic properties of the camera performance,
including dark noise, camera sensitivity, readout, read noise, and quantum efficiency. Quantum
efficiency cannot be measured easily, so the value was taken from the specification sheet to be
η ¼ 0.23 at the illumination wavelength of 780 nm.

The readout, read noise, dark current, camera sensitivity, and readout levels were measured
experimentally as described in the EMVA Linear Standard.28 First, the readout c0 was measured
by taking the average pixel count for 100 dark frames, with the sensor covered and a short expo-
sure time (1 ms) to minimize dark current buildup. The mean pixel value over 100 dark frames
was c0 ¼ 504 counts, with a standard error of the mean of <1e − 6 counts. Camera sensitivity K
is the average number of counts cm that a pixel reads per incident photoelectron em. This relation-
ship is defined as

EQ-TARGET;temp:intralink-;e027;114;350cm ¼ Kem: (27)

Experimentally determining the sensitivity takes advantage of the relationship between the
pixel mean and variance,28 or

EQ-TARGET;temp:intralink-;e028;114;302σ2c ¼ K2σ2d þ Kðμc − c0Þ; (28)

where σ2c is the pixel variance and μc is the pixel mean in counts.28 The sensitivity was measured
by measuring 100 frames at exposure times between 0.1 and 5 s and computing each pixel’s
variance across the 100 frames. For each exposure time, the mean pixel variance across the image
was then plotted versus the mean pixel value with the readout subtracted off to only include the
photo-induced signal. This plot is shown in Fig. 9(a). Using Eq. (29), the slope of this curve is the
sensitivity K, which was found to be 0.59 counts/electron.

The read noise and dark current were computed by measuring 100 dark frames for a
sequence of exposure times while the sensor was covered, so the only detected signal was dark
noise. Hot pixels and cosmic rays were removed from consideration by thresholding the pixel
values that were more than four standard deviations larger than the mean pixel value of each
exposure time. This was found to reduce the standard error of the mean. For each exposure time,
each pixel’s variance was computed across all frames and then averaged over the frame. A linear
fit was then performed to a plot of the pixel variance versus exposure time as shown in Fig. 9(b).
The shaded region denotes error bars of the standard error of the mean pixel variance.
Equation (8) shows that dark noise scales linearly with exposure time, so the slope m of the
line determines the dark current, or
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EQ-TARGET;temp:intralink-;e029;117;548μI ¼
m
K2

; (29)

yielding μI ¼ 0.44 electrons2∕s. The y-intercept b of the plot determines the read noise because
it corresponds to the noise level at zero exposure time, where dark current has not built up. The
standard deviation of the read noise is

EQ-TARGET;temp:intralink-;e030;117;486σr ¼
ffiffiffi
b

p

K
; (30)

giving a read noise of σr ¼ 14.1 electrons.
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