
Algorithm to quantify nuclear features and confidence
intervals for classification of oral neoplasia from

high-resolution optical images

Eric C. Yang,a David R. Brenes,b Imran S. Vohra,b Richard A. Schwarz,b

Michelle D. Williams,c Nadarajah Vigneswaran,d Ann M. Gillenwater,e and
Rebecca R. Richards-Kortumb,*

aBaylor College of Medicine, Houston, Texas, United States
bRice University, Department of Bioengineering, Houston, Texas, United States

cThe University of Texas, MD Anderson Cancer Center, Department of Pathology, Houston,
Texas, United States

dThe University of Texas, School of Dentistry at Houston, Department of Diagnostic and
Biomedical Sciences, Houston, Texas, United States

eThe University of Texas, MD Anderson Cancer Center, Department of Head and Neck Surgery,
Houston, Texas, United States

Abstract

Purpose: In vivo optical imaging technologies like high-resolution microendoscopy (HRME)
can image nuclei of the oral epithelium. In principle, automated algorithms can then calculate
nuclear features to distinguish neoplastic from benign tissue. However, images frequently con-
tain regions without visible nuclei, due to biological and technical factors, decreasing the data
available to and accuracy of image analysis algorithms.

Approach: We developed the nuclear density-confidence interval (ND-CI) algorithm to deter-
mine if an HRME image contains sufficient nuclei for classification, or if a better image is
required. The algorithm uses a convolutional neural network to exclude image regions without
visible nuclei. Then the remaining regions are used to estimate a confidence interval (CI) for the
number of abnormal nuclei per mm2, a feature used by a previously developed algorithm (called
the ND algorithm), to classify images as benign or neoplastic. The range of the CI determines
whether the ND-CI algorithm can classify an image with confidence, and if so, the predicted
category. The ND and ND-CI algorithm were compared by calculating their positive predictive
value (PPV) and negative predictive value (NPV) on 82 oral biopsies with histopathologically
confirmed diagnoses.

Results: After excluding the images that could not be classified with confidence, the ND-CI
algorithm had higher PPV (65% versus 59%) and NPV (78% versus 75%) than the ND
algorithm.

Conclusions: The ND-CI algorithm could improve the real-time classification of HRME images
of the oral epithelium by informing the user if an improved image is required for diagnosis.
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1 Introduction

In recent years, in vivo optical microscopy devices that visualize subcellular tissue features have
been utilized to distinguish cancerous and precancerous tissue from benign tissue at a diverse
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range of anatomic sites.1–4 Compared to traditional tissue biopsies and histopathologic analysis,
these devices are noninvasive and provide real-time results. Their potential application spans
the spectrum of cancer care, from the diagnosis and surveillance of premalignant lesions, to
margin delineation during surgical resections, and monitoring patients following treatment for
recurrence.

Reflectance confocal microscopy, confocal laser microendoscopy, and high-resolution micro-
endoscopy (HRME) are examples of optical microscopy technologies that have been shown to
visualize the morphology of the nuclei in the oral epithelium.5–8 Because abnormal nuclear mor-
phology is a key hallmark of oral neoplasia, numerous clinical studies have demonstrated their
potential to diagnose oral neoplasia.9–16

To reduce subjectivity in image interpretation, automated algorithms have been developed to
calculate statistical features of nuclei that correlate with neoplasia, like nuclear density, mean
nuclear size and variance, nuclear eccentricity, and the nuclear-to-cytoplasm ratio.17–19 These
features can then be used as inputs to machine learning algorithms that distinguish neoplastic
tissue from benign tissue. For example, studies have shown that a feature called the number of
abnormal nuclei per mm2, calculated from HRME images, can distinguish oral cancer and high-
grade dysplasia from benign tissue with high accuracy (the ND algorithm).19,20

One limitation of in vivo microscopy in the oral mucosa is that images frequently contain
regions without reliable information about nuclei. For example, leukoplakias, which are the most
common oral premalignant lesion, contain a highly scattering keratin layer that overlies the epi-
thelium and can prevent visualization of the subsurface nuclei with good contrast.5,6,8

Leukoplakias may also contain nonkeratinized regions that are more amenable to analysis.21

Regions without visible nuclei can also occur due to technical imaging challenges. It can be
difficult to maintain steady contact between confocal imaging probes, which are often rigid and
bulky, and the oral mucosa, particularly in deeper areas of the mouth and in clinical settings
where patients are not sedated.5,6 This can lead to motion blur or poor focus in all or a portion
of an image. HRME, which utilizes a thin, flexible fiber-optic probe, is less prone but not
immune to these issues. Other causes of poor image contrast include uneven tissue surfaces,
which can result in saturation of the image sensor, low signal intensity, and air bubbles in
saliva.

Due to the variety of possible causes, image analysis algorithms like the ND algorithm do not
effectively exclude regions without visible nuclei, leading to feature values that do not accurately
represent the tissue. Moreover, even if such regions could be excluded, analyzing an image with
only a small region of reliable information may not yield sufficient information to make a
diagnostic prediction with high confidence. It is not clear how to quantify the impact of the
uncertainty in feature extraction on prediction accuracy.

In this paper, we develop the nuclear density-confidence interval (ND-CI) algorithm to clas-
sify high-resolution images of the oral epithelium, including those containing regions without
visible nuclei, as neoplastic or benign. The algorithm extracts information only from regions in
which nuclei are adequately visualized, and makes diagnostic predictions only if accurate pre-
diction is likely. The diagnostic performance of the ND-CI algorithm is then compared to the ND
algorithm, using histopathology results from 82 biopsies acquired from patients with oral
lesions, as the gold standard.

2 Methods

2.1 High-Resolution Microendoscopy

The HRME uses a fluorescence microscope and a 790-μm diameter fiber-optic probe to acquire
high-resolution images of the nuclei in the superficial oral epithelium.19 The raw images are
1280 × 960 pixels with a lateral resolution of 4.4 μm19 and are automatically cropped to the
active area of the fiber-optic probe, typically about ∼960 × 960 pixels. Neoplasia, which is diag-
nosed histopathologically, is associated with crowded, large, eccentric, and pleomorphic
nuclei.22 Figure 1 shows four examples of HRME images acquired from oral lesions. The cir-
cular fields of view (FOVs) correspond to the areas imaged with the fiber-optic probe; superficial
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epithelial nuclei are visible as white round/oval structures. The image shown in Fig. 1(a) was
acquired from tissue that was histopathologically diagnosed as benign; the nuclei are small,
round, and evenly spaced. In contrast, the image shown in Fig. 1(b) was acquired from histo-
pathologically confirmed neoplasia; the nuclei are crowded, large, eccentric, and more variable
in size and shape.

2.2 ND Algorithm

The ND algorithm calculates a feature called the number of abnormal nuclei per mm2 from HRME
images.19 The algorithm identifies individual nuclei within an image and classifies each as normal
or abnormal based on its size and eccentricity; the number of abnormal nuclei per mm2 is simply
the density of these abnormal nuclei. In a previous study, sites in patients with oral lesions were
imaged with the HRME, and the number of abnormal nuclei per mm2 was used to distinguish
neoplastic from non-neoplastic sites.13 Since that study, an updated version of the HRME instru-
mentation was developed.19 We conducted a similar study (unpublished) using the updated instru-
mentation to update the classification thresholds; in this second study, a decision boundary of 189
abnormal nuclei per mm2 was found to optimally distinguish neoplastic from benign tissue.

The results of the ND algorithm on the four examples are shown in the second column of
Fig. 1(e)–1(h); nuclei classified as normal are outlined in yellow, and nuclei classified as

Fig. 1 Comparison of the ND and ND-CI algorithms on example HRME images from the test set.
(a)–(d) Representative HRME images and corresponding histopathological diagnoses.
(e)–(h) Results of the original ND algorithm, which does not exclude regions without visible nuclei.
Yellow outlines represent nuclei classified as normal, and red outlines represent nuclei classified
as abnormal. The number of abnormal nuclei permm2 (#Abn∕mm2) and classification result are
also shown. (i)–(l) Ground truth masks based on manual segmentation by three raters, delineating
regions with visible nuclei (black) and without visible nuclei (white). Background areas are gray.
(m)–(p) The predictions of the CNN, using the same color scheme as (i)–(l). (q)–(t) Results of the
new ND-CI algorithm, which uses the CNN predictions [(m)–(p)] to exclude regions without visible
nuclei (dimmed for ease of visualization). The color scheme is the same as (e)–(h). The
#Abn∕mm2 in the visible nuclei regions, the 90% CIs for the #Abn∕mm2, and classification results
are also shown.
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abnormal are outlined in red. The number of abnormal nuclei per mm2 in the first two images
was 89 and 286 [Figs. 1(e) and 1(f)], respectively, indicating that the algorithm result agreed with
the histopathological diagnosis in both cases.

Unfortunately, HRME images often contain regions without visible nuclei, as illustrated in
the third column of Figs. 1(i)–1(l)]. White represents regions without visible nuclei, black rep-
resents regions where nuclei are clearly visible, and gray represents background outside the
active area of the probe. The first image has two regions where the image intensity exceeded
the camera dynamic range and the image is saturated; these regions likely correspond to areas of
tissue with overlying debris that is highly scattering [Fig. 1(i)]. The second image has a saturated
region at the bottom right and a dim region, possibly due to poor contact between the probe and
tissue surfaces, near 10 o’clock [Fig. 1(j)]. The third image [Fig. 1(c)] was obtained from a
hyperkeratinized region, with a horizontal band of nuclei visible through the center [Fig. 1(k)].
The final image [Fig. 1(d)] was obtained from tissue with visible nuclei; however, the entire
image had very poor contrast, possibly due to a low HRME LED battery, and it is difficult
to visualize the morphology of individual nuclei.

The ND algorithm attempted to segment all regions of the images, including dim, saturated,
and keratinized regions; information from these regions resulted in misclassification of the
images shown in Figs. 1(c) and 1(d). The image in Fig. 1(c) was histopathologically diagnosed
as neoplasia but was misclassified as benign [Fig. 1(g)]. The image in Fig. 1(d) was histopa-
thologically benign but was misclassified as neoplastic [Fig. 1(h)], because many abnormal
nuclei were erroneously identified.

2.3 ND-CI Algorithm

The ND-CI algorithm (Fig. 2) addresses these limitations of the ND algorithm. The first step is to
identify the image regions containing visible nuclei. Probabilistic methods are then used to cal-
culate a 90% confidence interval (CI) for the true value of the number of abnormal nuclei
per mm2 using only these regions. The CI is then compared to the decision boundary of 189:
if the full range is above the decision boundary ðCIhigh > CIlow > 189Þ, then the image is clas-
sified as neoplastic; if the full range is below the decision boundary ðCIlow < CIhigh < 189Þ, then
the image is classified as benign. However, if the CI includes the decision boundary
ðCIlow < 189 < CIhighÞ, then the image cannot be classified with confidence because the CI spans
more than one diagnostic category.

Fig. 2 Flowchart of the ND-CI algorithm.
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2.3.1 HRME image acquisition

To develop the ND-CI algorithm, a databank of 811 HRME images was acquired from the oral
mucosa of 169 patients with oral lesions as part of protocols approved by the Institutional
Review Boards at Rice University, MD Anderson Cancer Center, and the UTHealth School
of Dentistry, all in Houston, Texas. Written informed consent was acquired before imaging.
A head and neck surgeon (A. G.) or an oral pathologist (N. V.) examined the patients, who
were presenting for regularly scheduled clinic visits or for surgical resection of their oral
lesion(s), then saved HRME images at sites of interest. After imaging, clinically indicated biop-
sies or surgical resections were performed, and the resulting tissue specimens were processed
and diagnosed histopathologically in accord with standard clinical procedures and diagnostic
criteria. Histopathological diagnoses of moderate dysplasia, severe dysplasia, or cancer were
considered neoplastic; otherwise, they were considered benign.

2.3.2 Identification of regions with visible nuclei

The first step in the ND-CI algorithm (Fig. 2) is to identify regions with visible nuclei. To accom-
plish this, we trained, validated, and tested a convolutional neural network (CNN) that classifies
each pixel within an HRME image as “visible nuclei,” “no visible nuclei,” or “background.”

Patients in the databank were randomly partitioned into training, validation, and test sets with
a 50/20/30 split. To acquire a ground truth, three of the authors (E. Y., D. B., and I. V.) manually
classified each pixel of each image as visible nuclei or no visible nuclei. Pixels outside the cir-
cular FOV were considered background. The ground truths were then combined into a composite
ground truth; pixels deemed no visible nuclei by at least two of the three raters were set as no
visible nuclei, and all other nonbackground pixels were set as visible nuclei.

The CNN architecture was based on the U-Net, an architecture popular for semantic
segmentation.23,24 The U-Net consists of an encoder path, which captures image context infor-
mation, and a decoder path, which provides localization information.25 To develop the CNN,
multiple hyperparameters were explored, including the optimization algorithm, the learning rate
and schedule, L2 regularization, batch size, and data augmentation with reflections and random
crops with resizing. Various architectural parameters, including the number of layers, the channel
depth of the layers, and use of batch normalization layers,26 were also explored. Each network
was trained to minimize the cross-entropy loss, averaged across pixels in the FOVs. The con-
tribution of no visible nuclei and visible nuclei pixels to the loss was weighted in proportion to
their prevalence in the training set. Background pixels were already known and therefore did not
contribute to the loss. The validation set cross-entropy loss was calculated at each epoch as the
networks were trained, which continued at least until the validation loss reached a minimum.
Networks were trained in Python 3.6 using the Pytorch 1.54.0 framework on a Linux desktop
with two Nvidia GeForce GTX 2080 Ti GPUs.

The network with the minimal validation set intersection over union (IoU; defined later in this
section) was selected as the final network [Fig. 3(a)]. This network first preprocessed the input
HRME image by transforming its pixel intensities from a range of [0, 1] to ½−1;1� using the
formula inew ¼ 2ðiold − 0.5Þ, where i was the pixel intensity (thick, unfilled right arrow).
The images were then rescaled to 512 × 512 pixels. The preprocessed array was fed into the
encoder path [Fig. 3(a), left half], which consisted of five repetitions of a six-layer group (thick,
filled right arrows), with 2 × 2 maxpool layers (thick, filled down arrows) between each rep-
etition. The six-layer group consisted of two repetitions of a 3 × 3 convolution layer with zero
padding, a batch normalization layer, and a ReLU layer. The first convolution layer in each six-
layer group modified the channel depth; the first convolution layer in the first six-layer group
increased the channel depth from 1 to 32, and the remaining four each doubled the chan-
nel depth.

The output of the encoder path was fed into the decoder path [Fig. 3(a), right half], which
consisted of a 2 × 2 deconvolution layer (thick, filled up arrow), followed by four repetitions of
the six-layer group, with additional deconvolution layers between repetitions. The deconvolution
layers halved the channel depth, and their outputs were concatenated to the encoder path array
with the same channel depth (dotted arrows) before the next six-layer group. Unlike the
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encoder path, the first convolution in the six-layer groups halved rather than doubled the chan-
nel depth.

Next, a 1 × 1 convolution layer (thin, right arrow) decreased the channel depth from 32 to 3,
such that each of the remaining channels represented one of the three classes (visible nuclei, no
visible nuclei, and background). This three-channel array was postprocessed (thick, gray right
arrow) to generate the final classification mask. Because its height and width were smaller than
those of the input image due to the border pixels lost in the convolutions and initial image rescal-
ing, bilinear interpolation was used to upsample the array to the height and width of the original
input image. The softmax function was then applied to the visible nuclei and no visible nuclei
channels to predict the probability that each pixel was visible nuclei or no visible nuclei. The
probabilities were binarized at 0.5, and background pixels were set as background. CNN param-
eters were optimized with the Adam algorithm27 with α ¼ 1 × 10−4, β1 ¼ 0.9, β2 ¼ 0.999, and
an L2 regularization penalty of 1 × 10−4. The learning rate was decayed by a factor of 0.9 every
10 epochs. The batch size was five images; data augmentation with horizontal and vertical reflec-
tions and random crops with resizing was also utilized.

The final, trained CNN was used to classify every image in the databank. Because the test set
was not used to train or validate the final CNN, the test set predictions were fully prospective. To
evaluate CNN performance, four metrics were calculated: the accuracy, the sensitivity, the speci-
ficity, and the IoU. The sensitivity was defined as the fraction of no visible nuclei pixels that were
correctly classified, and the specificity was defined as the fraction of visible nuclei pixels that
were correctly classified. The IoU is a summary metric that equals the average of the IoU of the
two classes (visible nuclei and no visible nuclei). The IoU of each class is equal to the number of
pixels of that class that are correctly classified, divided by the number of pixels that are, or are
predicted to be, of that class. IoUs for sets of images were calculated on a pixel basis.
Background pixels were not considered in performance evaluation.

2.3.3 Confidence interval estimation formula

The second step in the ND-CI algorithm (Fig. 2) is to use the regions of the image with visible
nuclei to calculate the CI for the “true” number of abnormal nuclei per mm2, had nuclei been
visible in the entire FOV. To accomplish this, we developed a formula to estimate the CI, then
performed an experiment to validate the formula.

The number of abnormal nuclei per mm2 within the regions with visible nuclei is p̂ðn̂∕ÂÞ,
where p̂ is the proportion of the nuclei within the regions that are abnormal, n̂ is the total number

Fig. 3 CNN architecture and training. (a) CNN architecture based on the U-Net. The arrows re-
present the layers of the CNN, and the rectangles represent the arrays outputted by the layers.
The length of each rectangle corresponds to the height and width of the array, and the width of
each rectangle represents the channel depth of the array. The channel depth is also displayed
numerically above each rectangle. The HRME image (top left rectangle) is preprocessed, then fed
into the encoder path (left half) and the decoder path (right half). The output (top right rectangle) is
a mask of the predicted classifications for each pixel. (b) The cross-entropy loss of the selected
CNN for the training and validation sets during training. Epoch 92 (arrow) was selected for pro-
spective evaluation.
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of nuclei within the regions, and Â is the area of the regions inmm2. (p̂ and n̂ are calculated using
the methods of the ND algorithm.) Using these definitions, the density of nuclei within the

regions equals ðn̂∕ÂÞ. Similarly, the true number of abnormal nuclei per mm2 equals pðn∕AÞ,
where p, n, and A represent the same quantities in the full FOV. Then the uncertainty in the true
number of abnormal nuclei per mm2 is due to uncertainty in the proportion of nuclei that are

abnormal (if p ≠ p̂) and uncertainty in the density of nuclei (if n∕A ≠ n̂∕Â). To derive the for-

mula for the CI, we assume that n∕A ¼ n̂∕Â and estimate the uncertainty in p by modeling
abnormal nuclei as a binomial distribution and utilizing the Clopper–Pearson exact method for
binomial proportion CIs,28 which calculates a CI for p at an arbitrary confidence level using n̂
and p̂. Then the desired CI (CIlow to CIhigh) for the true number of abnormal nuclei per mm2 is

plowðn̂∕ÂÞ to phighðn̂∕ÂÞ.
To validate this formula, we selected 48 HRME images that had visible nuclei throughout the

entire FOV and therefore had a known true number of abnormal nuclei per mm2. These images
were selected to have a diverse range of nuclear morphologies; the original ND algorithm clas-
sified 24 as benign, and 24 as neoplastic. 240,000 circular ROIs were randomly generated within
these 48 HRME images. The 240,000 circular ROIs consisted of 200 ROIs at random locations
for each of 25 possible radii, for each of the 48 images (200 � 25 � 48 ¼ 240;000). The possible
radii ranged from 41 pixels to the radius of the full FOV, and the center of each ROI was located
such that the ROI was fully within the FOVof the image. To accomplish this, the center of each
ROI was randomly located within the circle concentric to the FOV with radius ðRFOV − RROIÞ,
where RFOV and RROI were the radius of the FOVand the ROI, respectively. An ROI with a center
outside this circle would not be fully contained within the FOV.

The nuclei within each ROI were used to estimate CIs for the true number of abnormal nuclei
per mm2 for the whole FOV using the formula at several confidence levels (50%, 60%, 70%,
80%, and 90%). The percentage of the CIs that included the true number of abnormal nuclei
per mm2, also called the coverage probability, was then calculated for each confidence level. The
CI formula is valid if the coverage probability is equal to the intended confidence level.

2.3.4 Testing the ND-CI algorithm

With both components developed, the full ND-CI algorithm was assessed by comparing its pos-
itive predictive value (PPV) and negative predictive value (NPV) on the test set to that of the ND
algorithm, using biopsy-confirmed histopathology, where available, as the gold standard. In
some cases, multiple HRME images corresponded to a single biopsy. For those biopsies, the
image with the worst classification that could be made with confidence was chosen to represent
the biopsy. For example, a hypothetical biopsy that corresponded to three images classified by
the ND-CI algorithm as neoplastic, benign, and “cannot classify” would have an ND-CI clas-
sification of neoplastic. A biopsy corresponding to images classified by the ND-CI algorithm as
benign and cannot classify would have an ND-CI classification of benign.

3 Results

3.1 Identification of Regions with Visible Nuclei

Of the 169 patients, 82 patients (from which 391 images were acquired) were assigned to the
training set, 33 patients (from which 167 images were acquired) were assigned to the validation
set, and 54 patients (from which 253 images were acquired) were assigned to the test set
(Table 1). Seventy-nine percent of the FOVs were found to contain visible nuclei based on the
composite ground truth, distributed roughly evenly among the three sets.

Figure 3(b) shows the cross-entropy loss of the selected CNN for the training set (solid line)
and validation set (dotted line) during training. The training set loss decreased throughout train-
ing, whereas the validation set loss stabilized, and gradually began to overfit. Epoch 92 (arrow)
had the highest validation IoU and was selected for prospective evaluation. The performance of
the CNN was highest for the training set and slightly lower for the validation and test sets,
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indicating a slight overfit (Fig. 4), since the test set results were fully prospective. The accuracies
for the training/validation/test sets, respectively, were 0.88/0.89/0.86, the sensitivities were 0.71/
0.65/0.75, the specificities were 0.93/0.95/0.89, and the IoUs were 0.72/0.70/0.68.

3.2 Confidence Interval Estimation Formula

Figure 5(a) shows one of the 48 HRME images selected to validate the CI formula. Note that
nuclei are visible in the entire FOV. Three of the 240,000 randomly positioned circular ROIs
generated for this image, each with a different radius, are shown (white circles).

The coverage probabilities are plotted as a function of ROI area in Fig. 5(b) for each of the
intended confidence levels, which are indicated by the horizontal dotted lines. Except for ROIs
with areas <0.07 or >0.75, the coverage probabilities were close to the intended confidence
levels, indicating that the CI formula is valid. ROIs with areas <0.07 or >0.75 had coverage
probabilities greater than the intended confidence level, indicating that the CIs are wider than
necessary.

3.3 Testing the ND-CI Algorithm

3.3.1 Results on example images

The final two columns of Fig. 1 show the results of the ND-CI algorithm applied to the example
images, all of which were in the test set and therefore fully prospective. Results of the CNN are
shown in the fourth column [Fig. 1(m)–1(p)]. The main, central saturated region in the first
image was correctly identified by the CNN, although the borders differed slightly
[Fig. 1(m)]. The saturated and dim regions in the second image were also correctly identified,

Fig. 4 CNN performance. The accuracy, sensitivity, specificity, and IoU of the CNN in distinguish-
ing pixels from regions with visible nuclei and regions with no visible nuclei. Regions with no visible
nuclei were considered the positive class to calculate the sensitivity and specificity.

Table 1 Image databank.

Number of patients Number of images
Percentage of the FOVs of

the images with visible nuclei

Training set 82 391 78

Validation set 33 167 81

Test set 54 253 79

Total 169 811 79
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although the CNN more aggressively segmented the saturated region [Fig. 1(n)]. The CNN also
accurately identified the horizontal band of nuclei in the third image [Fig. 1(o)]. Finally, the CNN
appropriately determined that none of the nuclei in the fourth image [Fig. 1(p)] could be
segmented.

The final column [Fig. 1(q)–1(t)] shows nuclei identified in regions with visible nuclei. The
number of abnormal nuclei per mm2 and 90% CIs for the images were 73 (53 to 98), 277 (233 to
325), 155 (117 to 198), and N/A (N/A to N/A). Therefore, two of the images were classified
correctly, as benign [Fig. 1(q)] and neoplasia [Fig. 1(r)], whereas the other two images could not
be classified with confidence [Figs. 1(s) and 1(t)].

Like the original ND algorithm, the ND-CI algorithm correctly classified the first two
images. However, the ND-CI algorithm addressed issues that caused the original ND algorithm
to misclassify the third and fourth images. By excluding the hyperkeratinized region of the third
image, the ND-CI algorithm determined that the image could not be classified. By excluding the
entire fourth image, the ND-CI determined that the image could not be classified.

3.3.2 Comparison of ND algorithm and ND-CI algorithm

Eighty-two biopsies were acquired from the 54 patients in the prospective test set, of which 36
were histopathologically neoplastic and 46 were histopathologically benign. A confusion matrix
summarizing the classifications of the ND and ND-CI algorithm on the test set biopsies is shown
in Table 2.

Table 2 Results of ND algorithm and ND-CI algorithm.

ND algorithm ND-CI algorithm

Neoplastic
(per pathology)

Benign
(per pathology)

Neoplastic
(per pathology)

Benign
(per pathology)

Neoplastic (per algorithm) 27 19 17 9

Benign (per algorithm) 9 27 7 25

Cannot classify (per algorithm) N/A N/A 12 total including:
10 true positives
2 false negatives
by ND algorithm

12 total including:
2 true negatives
10 false positives
by ND algorithm

Fig. 5 Experimental validation of CI estimation. (a) Example of an HRME image selected to val-
idate the CI formula. The white circles are examples of the circular ROIs randomly generated
within this image. (b) The coverage probability, plotted as a function of ROI area (expressed
as a fraction of the area of the full FOV), for each of the intended confidence levels (horizontal
dotted lines).
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The ND algorithm had an accuracy of 66% (54/82), PPV of 59% (27/46), and a negative
predictive value (NPV) of 75% (27/36) (Fig. 6). The ND-CI algorithm performed better, with
an accuracy of 72% (42/58), PPV of 65% (17/26), and an NPV of 78% (25/32), although the
differences were not statistically significant (two-tailed z-test; p ¼ 0.41, p ¼ 0.58, and
p ¼ 0.76, respectively), possibly due to insufficient sample size. However, the ND-CI algorithm
could not classify 24 biopsies, including one-third of the neoplasia. If the results of the ND-CI
algorithm had been available in real time, it could signal the provider to acquire additional
images from the same area with the goal of achieving a sufficiently small CI to predict tissue
type with the desired level of confidence.

4 Discussion

In this paper, we developed the ND-CI algorithm to classify HRME images of the oral epi-
thelium, including those containing regions without visible nuclei, as benign or neoplastic.

The first step of the algorithm was to train a CNN to exclude regions without visible nuclei
with good performance on a prospective test set. The example images (Fig. 1) demonstrated
that the CNN learned to exclude several types of regions, including saturated, dim, keratinized,
and low-contrast regions. Motion blur, optical distortion, and air bubble regions were success-
fully excluded in other images not shown. Despite these successes, room for improvement
remains. Some of the prediction masks had sharp edges and small, noisy regions, which
could be addressed with postprocessing steps like removing regions below a size threshold
or smoothing region borders. Performance could also be improved by utilizing strategies for
training neural networks on unbalanced data, transfer learning, or more state-of-the-art network
architectures.25,29–31

We then developed and validated a formula that used the visible nuclei to estimate the CI for
the number of abnormal nuclei per mm2. For ROIs with an area between 7% and 75% of the full
FOV, the coverage probabilities of the CIs approximately equaled the desired confidence levels,
confirming the formula’s validity. However, for small and large ROIs, the coverage probabilities
were greater than the confidence levels.

These deviations can be contextualized by examining the two assumptions used to derive the

formula: (1) n∕A ¼ n̂∕Â (i.e., the nuclear density in the full FOV equals the nuclear density in
the regions with visible nuclei) and (2) that abnormal nuclei can be accurately modeled with a
binomial distribution. When the regions containing visible nuclei are small, nuclear density
could differ due to chance. The second assumption that abnormal nuclei follow a binomial dis-
tribution was used to estimate a CI for p, the proportion of nuclei in the full FOV that are abnor-
mal. The binomial distribution describes successes in samples drawn from an infinite population.
For finite populations, the binomial distribution is still accurate if the sample size is small relative
to the population size. For high-resolution images, the population is the nuclei in the FOV, sam-
ples are composed of visible nuclei, and a success is an abnormal nucleus. Because the number
of nuclei in an image (i.e., the population) is finite, the binomial assumption loses accuracy for
images with visible nuclei regions that are large relative to the area of the full FOV, resulting in

Fig. 6 Accuracy, PPV, and NPV of the ND algorithm and ND-CI algorithm.
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excessively broad CI estimates for p. This could explain why the coverage probabilities in the
validation experiment were larger than desired for large ROIs. The hypergeometric distribution,
which describes successes in samples drawn from a finite population, would be a better model of
abnormal nuclei. However, techniques to calculate hypergeometric proportion CIs are poorly
established, complicated to implement, and computationally expensive.32 Alternatively, correc-
tion factors applied to the binomial distribution for finite populations meant to approximate the
hypergeometric distribution33,34 could improve the coverage probabilities.

Images with a CI that included the decision boundary were excluded from classification by
the ND-CI algorithm. This concept of classification with a reject option has been explored in
other literature;35–37 however, the rejection criteria used by other authors differs from the CI
approach used here. In those works, observations with feature(s) of interest (or a posterior prob-
ability calculated from the features) within some intermediate range of values (or probabilities)
are rejected because they cannot be classified with certainty. While useful, these approaches do
not account for the uncertainty in the value of the feature itself, which the CI approach is
based on.

Overall, the ND-CI algorithm had better accuracy, PPV, and NPV than the original ND algo-
rithm, when prospectively compared to histopathology, although the differences did not reach
statistical significance. The improved performance was likely due to the region exclusion leading
to a more accurate number of abnormal nuclei per mm2, and the 90% CI estimates enabling the
exclusion of images for which confident classification was not possible. If implemented in real-
time, a “cannot classify” results would signal to the provider to acquire additional images with a
greater number of visible nuclei. The PPV and NPV were chosen to evaluate the algorithm
because they are directly relevant to this use case: they represent the performance, after an image
has been deemed satisfactory. Interpreting metrics like sensitivity and specificity is less straight-
forward due to the “cannot classify” category.

However, the ND-CI algorithm could not classify nearly 30% of the images. In practice, the
greatest effect of this was to reduce the number of false positives, although false negatives, true
negatives, and true positives were also excluded. Images that could not be classified either had a
number of abnormal nuclei per mm2 close to the decision threshold, or a broad CI. All else equal,
an image with a larger excluded region would have fewer visible nuclei, widening the CI and
increasing the chance that it would fall into the “unable to classify” category. Therefore, the
number of excluded images can be tuned by adjusting the CNN binarization probability (affect-
ing size of the excluded region), or the prespecified confidence level.

Overall, the ND-CI algorithm represents an important step toward translating in vivo optical
microscopy of oral lesions into clinical practice. The algorithm enables images with keratinized
tissue and other defects to be analyzed, if possible, or informs the user that a better image is
required. Although there is no guarantee that a better image can be acquired, based on our empir-
ical experience we believe that it can be done a substantial portion of the time. If not, the algo-
rithm is still beneficial: it informs the clinician that the imaging results should not be used to
guide clinical management.

Commercially available diagnostic adjuncts for the evaluation of oral lesions include tolui-
dine blue dye, cytology, autofluorescence imaging (AFI), and tissue reflectance imaging. In
recent years, optical imaging approaches including fluorescence lifetime imaging, reflectance
confocal microscopy, confocal laser microendoscopy, and optical coherence tomography have
also been explored; however, these technologies are still under development and there have not
been any well-designed, prospective studies to estimate their diagnostic accuracy. In 2017, an
American Dental Association (ADA) panel published a meta-analysis to estimate the sensitivity
and specificity of the major commercially available adjuncts on nonsuspicious and suspicious
lesions.38 Excluding cytology, which cannot be interpreted at the point-of-care, AFI had the
highest sensitivity (90%) and specificity (72%) to classify clinically suspicious lesions.
However, the sensitivity and specificity of AFI were only 50% and 39%, respectively, for non-
suspicious lesions. Furthermore, the panel also found that the evidence was of low quality and
volume: most studies had a high risk of bias and applicability concerns, interpretation of the
adjuncts was based on subjective criteria, and for three adjunct/lesion type combinations, only
a single study satisfied their inclusion criteria. Ultimately, the panel recommended against the
routine use of any adjunct.39
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Although this study was not designed to evaluate the sensitivity and specificity of HRME for
clinically suspicious or nonsuspicious lesions, the performance of the HRME in this study is
comparable to or exceeds that of the adjuncts included in the ADA meta-analysis. With the
ND-CI algorithm, the HRME also has the added advantage of fully automated analysis and
image classification.

To better understand the impact and benefits of the ND-CI algorithm, future work will
include studies, in which the algorithm is used in real-time to guide image acquisition. With
this additional data, techniques like ROC analysis could also be used to optimize the thresholds
to tailor the performance characteristics to various clinical scenarios. For example, a high sen-
sitivity would likely be desirable for screening.
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