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Abstract. Measurements of dynamic near-infrared (NIR) light attenuation across the human head together with
model-based image reconstruction algorithms allow the recovery of three-dimensional spatial brain activation
maps. Previous studies using high-density diffuse optical tomography (HD-DOT) systems have reported
improved image quality over sparse arrays. These HD-DOT systems incorporated multidistance overlapping
continuous wave measurements that only recover differential intensity attenuation. We investigate the potential
improvement in reconstructed image quality due to the additional incorporation of phase shift measurements,
which reflect the time-of-flight of the measured NIR light, within the tomographic reconstruction from high-density
measurements. To evaluate image reconstruction with and without the additional phase information, we simu-
lated point spread functions across a whole-scalp field of view in 24 subject-specific anatomical models using an
experimentally derived noise model. The addition of phase information improves the image quality by reducing
localization error by up to 59% and effective resolution by up to 21% as compared to using the intensity attenu-
ation measurements alone. Furthermore, we demonstrate that the phase data enable images to be resolved at
deeper brain regions where intensity data fail, which is further supported by utilizing experimental data from a
single subject measurement during a retinotopic experiment. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.NPh.6.3.035007]
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1 Introduction
Functional neuroimaging is a valuable medical tool that is
employed in a wide area of medical applications, with several
noninvasive or minimally invasive neuromonitoring techniques
for examining functional brain activity available for clinical use.
Functional near-infrared spectroscopy (fNIRS)-based optical
imaging is a noninvasive, relatively inexpensive technology
applied in numerous applications where neuroimaging is cru-
cial, such as functional brain mapping,1 psychology studies,2,3

intensive care unit patient monitoring,4 mental disease monitor-
ing,5 and early dementia diagnosis.6 Recent advances in system
design have also paved the way to promise wireless wearable
systems, allowing neuroimaging to be performed in real-life
contexts where it is otherwise not possible.7

fNIRS techniques rely on injecting light into the tissue, then
measuring the emerging light at nearby locations. Light propa-
gation in biological tissue is dominated by scattering events in
the near-infrared (NIR) window, where low absorption allows
measurements on the surface of the head to sample the brain
cortex.8 Differential measurements at two NIR wavelengths,
known as NIR spectroscopy (NIRS), can recover oxy (HbO2)
and deoxy (HbR) hemoglobin concentration changes that con-
vey information about functional brain vascular events. When
more wavelengths are used, it is possible to additionally recover
concentration levels of water, lipids, and even measures of
metabolism such as cytochrome c.9

Due to the strong scattering of NIR in tissue, utilizing sparse
optical measurements for neuroimaging leads to low spatial
specificity as compared to fMRI. Imaging quality and quantita-
tive accuracy can be significantly improved by arranging the
NIR optical source and detector elements in a dense grid to pro-
vide overlapping measurements that allow tomographic recon-
structions, a procedure known as diffuse optical tomography
(DOT). Using a high-density (HD) DOT configuration that pro-
vides access to overlapping measurements at multiple source–
detector (SD) separation distances has been shown to improve
image quality10 to a point comparable to fMRI.1,11 In addition,
instruments with a large dynamic range can utilize distant meas-
urement neighborhoods of the HD array, which improves recon-
struction quality and depth sensitivity,12 as sampling depth
increases with SD distance.13

When continuous wave (CW) NIR light is used, measure-
ments provide access to only light intensity attenuation from the
tissue. By contrast, amplitude-modulated NIR light, typically in
the range of 100 to 200 MHz and known as frequency-domain
(FD) NIRS, enables additional measurements of a phase shift of
the NIR light.14 Measurements of the phase shift are related to
the average photon path length and can be used to directly esti-
mate rather than assume scattering parameters within the tissue,
which enables more accurate optical parameter recovery.15 FD-
NIRS has been used in breast optical tomography for characteri-
zation and monitoring of lesions,16 joint imaging for arthritis
detection and treatment monitoring,17 infant brain development
monitoring,18 and brain trauma assessment.19 In previous studies
utilizing FD NIRS, the phase measurements have typically been
disregarded when recovering hemoglobin concentrations.20–22
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This is largely due to the fact that the accurate absolute meas-
urement of the phase is not trivial and requires complicated and
often time-consuming instrument calibration procedures, as the
phase can be affected by a number of factors such as fiber
length, fiber bending, and attachment angle, each of which can
present long-term drifts and requires recalibration. The fre-
quency-domain multidistance approach has been shown to pro-
vide increased sensitivity to cerebral oxygenation using
intensity and phase data;23,24 however, the multidistance
approach has been extremely challenging to adopt with an
HD-DOT tomographic setup due to the strong demands on the
dynamic range of the high bandwidth detector instrumentation.

Alternatively, measurements of picosecond modulated light
(time-resolved or TR) provide a direct measure of the temporal
point spread function (PSF) of the detected photons to account
for both tissue absorption and scattering. However, systems
with enough channels to provide overlapping measurements,
thus achieving DOT, have a low temporal resolution (75 s for
a full imaging cycle14), though various mathematical models
have been proposed to increase the temporal resolution.25,26

Although TR systems are considered the golden standard within
fNIRS, typically only spectroscopic measures are used to pro-
vide bulk tissue optical measurements, and these systems have
not been widely adopted for HD-DOT.

The CW, FD, and TR measurements are all sensitive to
hemodynamics and are therefore indirect measures of variations
in brain function. An alternative method, known as the event-
related optical signal or fast optical signal, uses just the phase
measurements of FD systems and has been reported to be sen-
sitive to neuronal activity.27 It has been suggested that this tech-
nique does not suffer from the hemodynamic delay effect and
may be sensitive to scatter-related changes within firing neu-
rons. However, in practice, this technique requires extensive
stimulus repetitions to allow adequate signal averaging to obtain
required signal-to-noise, thus canceling the real-time monitoring
potential and resulting in experimental sessions of extremely
long duration (∼60 min for one stimulus28) that are impractical
for many applications.

To investigate hemodynamic changes in a practical setting,
measurements of differential phase changes are much easier
to apply and have shown high correlation with the fMRI blood
oxygen level dependent signal, suggesting that phase
changes convey information about functional hemodynamic
phenomena.29 This is an expected result as changes in the
absorption of a medium will not only affect the total number
of detected photons (the measured intensity) but also the average
photon diffusion path-length (the measured phase). How a
change in absorption within the volume leads to differential
changes in both (logarithmic) intensity and (linear) phase can
be understood when considering the distribution of the time
of flight of the photons. Early arriving photons travel a shorter
distance and stochastically sample more superficial tissues while
the later arriving photons travel longer distances and therefore
tend to both stochastically sample deeper tissues and have a
higher probability of undergoing absorption events.30 Therefore,
the phase measurement-sensitivity profile to changes in absorp-
tion is deeper than the sensitivity of the intensity attenuation
measurement because early and late photons contribute equally
to the mean time of flight while the total intensity is dominated
by early arriving photons.31

To date, FD measurements have not been used in the context
of tomographic optical functional brain imaging and the effects

of incorporating phase information together with intensity in
HD-DOT has yet to be investigated. This work provides a com-
parison of imaging resolution and localization accuracy between
CW and FD HD-DOT by analysis of simulated PSF over 24
subject-specific models including an experimentally measured
noise model. The underlying theory is provided to demonstrate
the origins of FDmeasurements. The benefits of FD HD-DOTas
compared to CW HD-DOT are also demonstrated through an
example of a focal activation map from a retinotopic experiment
from a healthy subject.

2 Methods

2.1 Forward Problem

To model the light propagation in tissue, commonly known as
the forward model, a numerical model based on the finite
element method (FEM) has been employed to solve the diffu-
sion approximation through the NIRFAST32 modeling and
image reconstruction software package

EQ-TARGET;temp:intralink-;e001;326;540−∇κðrÞ∇Φðr;ωÞ þ
�
μaðrÞ þ

iω
cmðrÞ

�
Φðr;ωÞ ¼ qðr;ωÞ;

(1)

where r defines a spatial location, ω is the modulation fre-
quency, the diffusion coefficient κ ¼ 1∕3ðμa þ μ 0

sÞ with μ 0
s

being the reduced scattering coefficient,Φ is the photon fluence,
μa is the absorption coefficient, cm is the speed of light in the
medium, and q denotes a light source. High-resolution meshes
(mean mesh element volume <1 mm3) have been used through-
out this work, which improve the accuracy of the forward model
at a significant increase in the computational cost.25 To over-
come the computational cost, GPU parallelized linear solvers
have been deployed that facilitate the efficient calculation of the
forward problem in FD simulations; when using high-resolution
meshes with ∼45;000 nodes, with 158 sources and 160 detec-
tors, the forward model calculation time is less than 3 min.33

2.2 Inverse Problem

The sensitivity matrix, J, also known as the Jacobian or weight
matrix is calculated using the Adjoint method34 that relates
changes in boundary fluence measurements, ∂y, with respect
to small changes in underlying tissue optical parameters, ∂x:

EQ-TARGET;temp:intralink-;e002;326;265∂y ¼ J∂x: (2)

From Eq. (1), in the frequency domain, the measured data are
complex numbers and can be decomposed in two parts: ampli-
tude yI, and phase yΘ. Using the Rytov approximation, differ-
ential measurements with respect to a baseline y0 are described
as a logarithmic ratio for amplitude and a difference in phase:

EQ-TARGET;temp:intralink-;e003;326;179 ln

�
y
y0

�
¼ ln

�
yIeiyΘ

yI0eiyΘ0

�
¼ ln

�
yI
yI0

�
þ iðyΘ − yΘ0Þ: (3)

Therefore, the frequency-domain Jacobian describes changes
in logarithmic intensity, ∂ ln yI, and linear differences in phase
∂yθ, with respect to changes in the absorption, ∂μa, and the dif-
fusion, ∂κ coefficients:
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EQ-TARGET;temp:intralink-;e004;63;752

�
∂ ln yI
∂yΘ

�
¼

2
664
∂ ln yI
∂μa

∂ ln yI
∂κ

∂yΘ
∂μa

∂yΘ
∂κ

3
775
�
∂μa
∂κ

�
: (4)

Assuming that only changes in the absorption coefficient are
associated with vascular hemodynamic changes within the
brain, this work will focus on modeling and reconstructing
changes in absorption, ∂μa, alone, reducing Eq. (4) to

EQ-TARGET;temp:intralink-;e005;63;648

�
∂ ln yI
∂yΘ

�
¼

2
6664
∂ ln yI
∂μa
∂yΘ
∂μa

3
7775½∂μa�; (5)

and using measurements at two wavelengths of 690 and 830 nm,
the dynamic changes of oxy (HbO2) and deoxy (HbR) hemo-
globin concentration can be calculated using

EQ-TARGET;temp:intralink-;e006;63;540

�
∂HbO2

∂HbR

�
¼

�
εHbO2;690 εHbR;690
εHbO2;830 εHbR;830

��
∂μa;690
∂μa;830

�
; (6)

where εc;λ is the extinction coefficient for chromophore c
(HbO2∕HbR) at wavelength λ. Conversely, it is possible to map
the changes in oxy (HbO2) and deoxy (HbR) hemoglobin

concentration directly to the measured dynamic data, by consid-
ering a spectral Jacobian:

EQ-TARGET;temp:intralink-;e007;326;730

2
6664

∂ ln yI690
∂yΘ690
∂ ln yI830
∂yΘ830

3
7775 ¼

2
666666666666664

∂ ln yI690
∂μa;690

· εHbO2;690
∂ ln yI690
∂μa;690

· εHbR;690

∂yΘ690
∂μa;690

· εHbO2;690
∂yΘ690
∂μa;690

· εHbR;690

∂ ln yI830
∂μa;830

· εHbO2;830
∂ ln yI830
∂μa;830

· εHbR;830

∂yΘ830
∂μa;830

· εHbO2;830
∂yΘ830
∂μa;830

· εHbR;830

3
777777777777775

×
� ∂HbO
∂HbR

�
: (7)

This equation is used in conjunction with a noise model to
produce realistic boundary data by perturbating hemoglobin
concentration values.

To demonstrate the difference in the sensitivity distribution
and magnitude of both log-amplitude and phase, as a function of
source and detector distance, the Jacobian for a three-layered
model, at a single wavelength of 830 nm, at a modulation fre-
quency of 140 MHz is shown in Fig. 1. Here, the FD Jacobian
has been calculated for four source and detector separations of

Fig. 1 Frequency-domain Jacobian for Log intensity (Joules∕mm2∕mM) and phase (radians/mM) for
HbO2. Each row corresponds to a different source and detector distances of 10 to 40 mm. The dashed
line represents the boundary of each layer, skin/scalp (top), bone (middle), and brain (bottom) tissue,
each having different optical properties, as depicted in Table 1.
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10, 20, 30, and 40 mm, for a three-layered two-dimensional
model, with a skin/scalp layer of 5 mm, skull layer of 8 mm,
and brain layer (combining gray and white matter) with optical
properties shown in Table 1.

Several features are evident from Fig. 1: (1) the Jacobian for
the phase is showing sensitivity weighting at deeper regions as
compared to log intensity, highlighting the potential of deeper
tissue sampling, (2) the magnitude of change for log intensity
measurements is larger than that compared to the phase but,
(3) the distribution of the sensitivity for the phase appears more
homogeneous across all tissues as compared to log intensity
reducing the “hypersensitivity” to superficial signal contamina-
tion. These same features can also be demonstrated for HbR and
is also true for a wavelength of 690 nm.

Functional DOT (fDOT) is concerned with three-dimen-
sional spatial mapping of dynamic hemodynamic changes that
occur during brain activations, using temporal data as measured
from the scalp. Assuming that these vascular dynamic changes
are small, the inverse model as used for parameter recovery can
be considered as a linear problem. A Moore–Penrose pseudoin-
verse with Tikhonov regularization can be used to find an
approximation of the inverse of the Jacobian in Eq. (2), J#,
to perform a single step linear recovery of absorption:

EQ-TARGET;temp:intralink-;e008;63;344J−1 ≈ J# ¼ JTðJJT þ αIÞ−1; (8)

EQ-TARGET;temp:intralink-;e009;63;302∂x ¼ J#∂y; (9)

where the regularization term is defined as α ¼
a �max½diagðJJTÞ�. The weight of this regularization parameter,
a, provides a tuning between high spatial frequency noise and
smoothness in the image. Due to this association with image
resolution,36 when running simulations without noise, fine-tun-
ing of this parameter can improve image resolution beyond an
experimentally and physiologically meaningful range. In prac-
tice, this parameter should be defined with respect to the noise of
the measurements,10 therefore all simulations in this work use
the same regularization weight of a ¼ 0.01, following previ-
ously reported methods.1

For the FD Jacobian, Eq. (5), the regularization is typically
applied separately for each of the kernels of log intensity and
phase measurements.32 In this work, the absorption coefficient
is recovered for each wavelength then spectrally unmixed to re-
cover HbO2 and HbR as described in Eq. (6). In previous work,
spatially constrained reconstructions37 or spatially variant regu-
larization schemes20,38 have been proposed that facilitate recon-
structions of perturbations at deeper locations. To allow a direct
evaluation of the potential increase in imaging performance
afforded by the additional phase-based measurements, no

spatially variant regularization methods have been considered
in this work.

2.3 Subject-Specific Models

The subject-specific models are based on 14 female and 10 male
individual subjects with a mean age of 26 (�4), with T1-
weighted MPRAGE [echo time = 3.13 ms, repetition time
(TR) = 2400 ms, flip angle ¼ 8 deg, 1 × 1 × 1 mm3 isotropic
voxels] scans acquired for each subject. All subjects passed
MR screening to ensure their safe participation. Informed con-
sent was obtained and the research was approved by the Human
Research Protection Office at Washington University School of
Medicine.

High-resolution subject-specific FEM, consisting of five tis-
sue layers were created, with mean element volume of ∼1 mm3,
resulting in ∼450;000 nodes for each mesh using NIRFAST.39 A
sparse-sensitivity matrix, J, (sensitivity threshold set to 0.1%40),
was then created for each of the 24 subject-specific models with
realistic optical properties for a 690- and 830-nm wavelengths,
shown in Table 1. The reduced scattering coefficient was derived
from the scatter amplitude and power, using μ 0

s ¼ saλ−sp , where
sa is the scatter amplitude, sp is the scatter power, and λ is the
wavelength in micrometers.

In order to generate the boundary data, the nodes on the sur-
face of the brain for each subject laying directly under the im-
aging array were selected to simulate point perturbations for
HbO2 and HbR, Fig. 2(a). The data were then used for the cal-
culation of a PSF to allow an analysis of the quality of the image
reconstruction within a reasonable field of view. For each sub-
ject, the selected region depth from the surface of the brain
varies, as the brain surface changes along the sulci and gyri mor-
phology. To better demonstrate the depth variation of the surface
of the brain, the histograms of brain surface depth across all 24
subjects are shown in Fig. 2(b) whereas Fig. 2(c) shows the brain
surface depth probability distribution for each subject-specific
model. This further highlights the importance and the need for
improving the depth resolution of HD-DOT and demonstrates
the need for modeling individual surface activation points for
the presented analysis. The brain surface depth varies across the
subjects, Fig. 2(c), ranging from 5 to 30 mm and brain surface
points presented in this study lie on the cortical surface with a
median depth of 12.5 mm, Figs. 2(b) and 2(c).

2.4 Realistic System Noise Model

The modeled system array adopted in this work is an HD-DOT
system, with SD separation distances ranging from 13 to 47 mm
as described previously.5 The SD pairs are extended over the

Table 1 Baseline optical properties in the head model.35

Region Oxyhemoglobin (mM) Deoxyhemoglobin (mM) Scatter power Scatter amplitude

Skin 0.057 0.031 1.16 0.53

Skull 0.044 0.019 0.89 0.73

CSF 0.011 0.008 0 0.3

Gray matter 0.056 0.035 1.74 0.51

White matter 0.068 0.027 1.31 0.82
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whole of the head, in order to allow coverage of a large area of
the optically accessible cortical surface of the brain that has pre-
viously been used as a benchmark for fDOT simulation
studies.41 The modeled HD-DOT array contains a total of
158 light source at two wavelengths of 690 and 830 nm, and
166 detectors, resulting in 3,500 associated SD pairs within
50 mm separation at each wavelength, Fig. 2(a). The SD pairs
are grouped into sets of nearest neighbor (NN) measurements
(i.e., NN1, NN2, NN3, NN4, for first through fourth NN,
respectively) with mean distances of 13, 29, 39, and 47 mm.
In this work, the labeling for reconstruction with respect to a
set of NN measurements used is the maximum NN; for example,
for NN4 includes NN1, NN2, NN3, and NN4 measurements.

To generate a realistic noise model to be used with simula-
tions, data were recorded using a frequency-domain system con-
sole (ISS Imagent™, Champaign, Illinois) employing six
detectors at distances of 18 to 58 mm from the source, placed
over the optical cortex. The source was modulated at 140 MHz
and data were sampled at 39.74 Hz. Data were recorded for
120 s while the subject sat still and quietly fixated on a blank
screen. Data were then processed following methods that have
been previously described.1 Briefly, the data were band-pass fil-
tered to 0.01 to 0.1 Hz to remove slow drifts, systemic

physiology (heartbeat and respiration), downsampled to 1 Hz,
and block averaged in 10 blocks of 12 s each. The same process-
ing was applied to the measured amplitude and phase signals.
The noise was then estimated as the standard deviation of the log
mean intensity signals; therefore, it is a ratio-metric difference
for the intensity and a linear phase difference (in degrees) for the
phase and is shown in Fig. 3. As the system utilized photomul-
tiplier tubes for signal detection, each detector was at a different
voltage bias to increase signal gain and throughout the experi-
ment, all data were ensured to be above the expected noise floor.

The noise model n was calculated as a function of SD dis-
tance, r, via a two-term exponential of the form nðrÞ ¼ aebr þ
cedr and was found to provide the best fit with coefficients
shown in Table 2. In a previous work, using the same HD array
configuration and similar signal processing but acquiring mea-
surements with a CW system with LEDs at 830 nm, the ampli-
tude noise was reported to be 0.12% for NN1, 0.15% for NN2,
0.41% for NN3, and 1.42% for NN4.12 The empirically derived
noise model generated in this work corresponds to a noise level
estimate for each neighborhood as shown in Table 3.

To simulate realistic measured data, perturbations of HbO2

and HbR values were induced using Eq. (7), using perturbation
values scaled to minimize the difference between simulated and

Fig. 3 In-vivomeasured noise and a two-term exponential fit of noise versus distance from the source for
intensity (left) and phase (right) measurements, on 690 nm (red diamonds) and 830 nm (pink squares)
wavelengths.

Fig. 2 (a) The modeled HD-DOT system with 158 sources (red) and 166 detectors (cyan), the surface of
the brain surface is shown in pink and blue. The pink region denotes cortex locations of point perturba-
tions in the simulations. (b) Histogram of brain surface depth across 24 subjects. (c) Brain surface depth
probability distribution for each subject-specific model. The red stars mark the maximum probability for
each subject while the red line is the most probable depth across all subjects (12.5 mm).
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measured data. The perturbation for HbO2 was scaled to be
3.8 μM while for HbR was −1.8 μM. Evaluations were carried
out using noise-free simulations and simulations that included
the empirically derived noise model. Stochastic realistic noise
was linearly added to each measurement based on sampling
from a Gaussian distribution with zero mean and a standard
deviation that was a function of SD distance with parameters
given in Table 3.

2.5 Evaluation Metrics

To evaluate the image quality of each PSF, for each modeled
focal activation, metrics as previously described in similar work
have been utilized:10 (1) full width at half maximum (FWHM)
defined as the maximum separation between all pairs of points
in the activation above half of the maximum recovery; (2) locali-
zation error defined as the distance between the centroid of the
recovery and the known location of the perturbed node; and
(3) the effective resolution defined as the diameter of a sphere
centered at the known perturbed node that can enclose all recov-
ered nodes.

It is likely that the recovered volume above half of the maxi-
mum will not create a single focal recovery, resulting in multiple
scattered activations.42 This is more evident in the cases with
added noise, as the reconstruction often has multiple recovered
activations. Therefore, to automate the quantification process,
such activations are isolated by a connected component algo-
rithm, using the FEM elements as the connectivity index and
considering only the nodes that are associated with each other
through at least one connected element. The recovered activa-
tions are then selected based on the maximum accumulated
recovery value for evaluation without the use of any prior
regional or locational knowledge. Therefore, a recovery near the

perturbation will not necessarily be selected for evaluation,
unless it is the strongest integrated recovery in the volume.
Any recovery with localization error greater than 8 mm is con-
sidered a product of noise and therefore not included in the stat-
istical analysis. The Wilcoxon signed rank test was used to
assess the statistical difference between metrics of CW and
FD reconstructions.

2.6 In-Vivo Experiment

An FD NIRS device (IMAGENT™, ISS Inc., Illinois) was used
to obtain the NIRS-based data on a healthy subject. The system
consists of 32 sources, modulated at 140 MHz, and 30 detector
fibers with each source coupled to laser diodes emitting at
690 nm and 830 nm with the detectors being compact and fast
photomultiplier tubes (PMT). Subjects were recruited from the
University of Birmingham community, and written informed
consent was obtained. Subjects were seated facing an adjustable
screen while the imaging pad was attached over the occipital
cortex with hook and loop strapping. Visual stimuli consisted
of rotating logarithmic checkerboards, reversing intensity at
10 Hz, on a 50% intensity gray background. Each rotation com-
pleted in 36 seconds and 10 rotations occurred in the run, result-
ing in 7 minutes total scanning session time, including 30
second baseline periods at the beginning and the end. The raw
signals were processed according to previously proposed pipe-
line,1 with all of the analysis being performed using NeuroDot,
an extendable and user-friendly environment for analysis of
optical data from raw light measurements (https://github.com/
WUSTL-ORL/NeuroDOT_Beta).

Scans were in line with a previously reported CW high-den-
sity DOT imaging system setup.43 Briefly, the imaging cap con-
sisted of 24 source positions (with two NIR wavelengths—
690 nm and 830 nm—at each position) and 28 detectors inter-
leaved in a high-density array. First- (13 mm, 1NN), through
fourth NN (48 mm, 4NN) optode pairs were utilized, giving
a total of 348 total possible measurements, at a frame rate of
∼40 Hz. Prior to data analysis, measurements with high noise
(standard deviation of the logmean of the data larger than 7.5%1)
were disregarded, resulting in 300 measurements passing the
quality control for the scan. For the CW data, this was based
on FD amplitude measurements only, whereas FD data con-
tained both amplitude and phase. Image recovery of HbO2 and
HbR were performed as defined above, using NIRFAST for the
calculation of the Jacobian matrix for both CW and FD data.

3 Results

3.1 Simulations Results

In this work, the brain surface under the imaging array was
selected in 24 subject specific models and point activations
modeled as perturbations were induced for each node in the
selected area, allowing the recovery of PSFs both with and with-
out noise. To provide an overview of the spatial distribution
characteristics of the recovered PSFs, consider three points
on the primary motor cortex within Brodmann Area 4, along
the precentral gyrus, as shown in Fig. 4(a). These three focal
activations are modeled at depths of 13.3 mm, 17.2 mm, and
20.5 mm, Fig. 4(b). PSF of each individual modeled focal acti-
vations for both HbO2 and HbR have been reconstructed and as
both demonstrated similar results, for conciseness, only those of
HbO2 are shown as in Fig. 5.

Table 2 The estimated coefficients for the two-term exponential fit of
the noise model.

Amplitude noise model Phase noise model

Coefficients 830 nm 690 nm 830 nm 690 nm

a 0.6019 0.2502 1.917e-10 3.933e-11

b 0.01052 0.02913 0.3708 0.4161

c 9.685e-05 4.625e-06 0.03573 0.0105

d 0.1382 0.2128 0.02002 0.05585

Table 3 The estimated noise levels for each measurement
neighborhood.

Amplitude noise (%) Phase noise (deg)

NN 830 nm 690 nm 830 nm 690 nm

NN1 0.69 0.36 0.044 0.021

NN2 0.81 0.56 0.062 0.05

NN3 0.91 0.77 0.076 0.088

NN4 1 0.95 0.088 0.126
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For the focal point at 13.3 mm depth, Fig. 5, top row, both
CW and FD provide qualitatively similar reconstructions for all
SD pairs, but the FD demonstrated a visually better reconstruc-
tion in each case particularly for shorter NN pairs (NN1 and
NN2) measurements. Specifically, for the noise-added CW
recoveries, the localization error is 6.5 mm for NN2, 2.3 mm
for NN3, and 1 mm for NN4, whereas for the FD recoveries
are 2.2 mm, 1.6 mm, and 0.85 mm respectively. Similarly, the
effective resolution for CW is 22.9 mm for NN2, 21.4 mm for
NN3, and 11 mm for NN4, whereas for the FD recoveries is
17.7 mm, 16.2 mm and 9.8 mm respectively, demonstrating that
for larger NN, the image recovery of the focal activation is
improving for both CW and FD, and FD is consistently outper-
forming CW.

For a perturbation at 17.2 mm depth, Fig. 5, middle row, the
noise added CW data fails to reconstruct for NN2 and NN3,
whereas the NN4 has a 5.2 mm localization error and
17.9 mm effective resolution. The reconstructions based on
FD data are qualitatively more accurate and have a localization
error of 6.2 mm for NN2, 3.8 mm for NN3, and 2.2 mm for
NN4; and the effective resolution is 21.42 mm, 20.58 mm, and
17.9 mm respectively. This case demonstrates that for some
depth range the CW reconstructions may fail if the dynamic
range of the detectors cannot provide measurements with a good
signal to noise ratio (SNR), and the FD recoveries can perform
reasonably well even when using only NN2.

When reconstructing for simulated data without noise, an
activation positioned 20.5 mm deep from the surface of the head
may be recovered reasonably well using any number of meas-
urement neighborhoods, using CW only or FD data (Fig. 5)
though the FD based data provide reconstructions with better
image quality for all NN cases. In the presence of noise, recov-
ery based on the NN2 and NN3 completely fail in both CW and
FD. The recovery for CWusing NN3 appears to provide a recov-
ery near the perturbated point; however, this is not the strongest
recovery in the volume, and therefore is considered as noise arti-
fact and as such is not selected for evaluation. However, when
using NN4, the FD data recovery demonstrates a better recovery,

achieving 6.1 mm localization error with 24.8 mm effective res-
olution. In the presence of noise, recoveries for such deep points
often fail, which leads to large increases in the localization and
resolution metrics.

To provide a comprehensive evaluation of the benefits of FD
data over CW, images were reconstructed for a set of NN1-NN4
SD pairs, using both noise-free and noise added data. In the
presence of noise, the recoveries for deep activation points fail,
which leads to significant increases in the calculated error met-
rics. The most obvious change is seen in the localization error, as
beyond certain depths the recovered focal activations are not
successful. In accordance to existing literature,42 any recovery
with localization error greater than 8 mm is considered a product
of noise. To identify the percentage of recoveries within the
imposed localization limit, a success rate metric is introduced
(Fig. 6), where a 50% success rate limit was set to examine the
depths at which different approaches perform adequately.
Recoveries exceeding this limit are not included in any further
results or statistical analysis.

Each recovered focal activation is assessed using metrics of
the FWHM (Fig. 7), localization error (Fig. 8), and effective res-
olution (Fig. 9). These results, quantized according to depth
from the surface of the head, are summarized in Tables 4 and
5 and compared in Table 6. The noise-free evaluation is also
presented to provide a benchmark of limitations imposed due
to the ill-posed inverse problem, the employed regularization,
and to provide a lower-bound on metric quality given further
advancements in instrumentation that will lead to hardware with
lower noise characteristics.

For the noise-free cases, the success rate maintains near
100% until it steadily declines at a characteristic distance
(Fig. 6). The FD approach consistently performs better than the
CW case in deeper regions. For CW recoveries, the 50% success
rate is crossed at 17.18 mm for NN2, 22.27 mm for NN3, and
24.97 mm for NN4; and the FD 50% success rate points are at
23.04, 27.53, and 29.38 mm, respectively. For the noise-added
cases, the success rate drops under 50% at shallower depths.
Specifically, for the CW case, the 50% success rate is crossed

Fig. 4 (a) Axial view of the brain, the red line denotes the coronal slice selected to view the primary motor
cortex, Brodmann Area 4, along the precentral gyrus. (b) The five layers of the model: skin, skull, cerebral
fluids, white matter, and gray matter. Selected cortex points in different depths: 13.3 mm (left/red),
17.2 mm (middle/green), and 20.5 mm (bottom/blue).
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at 14.87 mm for NN2, 16.59 mm for NN3, and 19.71 mm for
NN4, and the FD 50% success rate points are at 18.43, 19.75,
and 23.04 mm, respectively.

The FD data significantly improve the localization through-
out the imaging domain for noiseless simulations (Fig. 7). At
each depth, the use of FD data demonstrates a statistically sig-
nificant improvement (p < 0.01) in localization accuracy. For

the noise-added case, the localization error is larger for activa-
tions deep within the brain, and the improvement of the FD
reconstructions is again statistically significant (p < 0.01) at
each depth interval. Specifically, when comparing a depth range
of 10 to 15 mm, the localization error for FD presents a 58.9%
improvement for NN2 recoveries, 47.3% for NN3 recoveries,
and 21.1% for NN4 (Table 6). These improvements are

Fig. 5 Recovered PSFs with different NN measurements (NN2, NN3, NN4), for activations at different
depths. The perturbation location is denoted with the green dot. The FWHM contour (when present) is
noted in cyan. Recoveries with (a)–(c) CW without noise, (d)–(f) CW with noise, (g)–(i) FD without noise,
and (j)–(l) FD with noise).
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statistically significant for all modeled focal activations
(p < 0.01) using the Wilcoxon-signed rank test.

The FWHM for the noise-free cases increases with depth,
but the FD reconstructions do not always significantly improve
the FWHM (e.g., in the NN2 case); however, employing the
FD approach results in slightly improved performance and

smaller variations within each depth interval (Fig. 8). For the
noise-added case, the FWHM still presents slight improve-
ments when employing FD recoveries, however, the improve-
ment is not always statistically significant (Table 6),
particularly for NN2 at activation depths of greater than
15 mm.

Fig. 6 HbO2 success rate for 8 mm localization error limit. The dashed blue and red lines denote the
depth where the recoveries reach 50% success rate for CW and FD, respectively.

Fig. 7 HbO2 localization error median for CW (blue asterisk line) and FD (red cross line); the colored
bands represent the 25th to 75th percentile range. The percentile bands stop at the point where the 50%
success rate is reached, while the median line continues until the 10% success rate is reached.
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Finally, the effective resolution with respect to depth from the
head surface is shown in Fig. 9. As expected, in the noise-free
cases, the effective resolution increases with depth. As the effec-
tive resolution is a function of both FWHM and localization, in
the noise-added cases, the improvements observed are larger

than those of the FWHM but smaller than the localization
improvements. However, the observed improvement for FD data
is statistically significant for each depth interval. Specifically,
when comparing for a depth range of 10 to 15 mm, the effective
resolution for FD presents a 20.6% improvement for NN2

Fig. 8 HbO2 FWHM median for CW (blue asterisk line) and FD (red cross line); the colored bands re-
present the 25th to 75th percentile range. The percentile bands stop at the point where the 50% success
rate is reached, while the median line continues until the 10% success rate is reached.

Fig. 9 HbO2 effective resolution median for CW (blue asterisk line) and FD (red cross line); the colored
bands represent the 25th to 75th percentile range. The percentile bands stop at the point where the 50%
success rate is reached, while the median line continues until the 10% success rate is reached.
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recoveries, 13.7% for NN3 recoveries, and 10.5% for NN4
(Table 6). These improvements are all statistically significant for
all modeled focal activations (p < 0.01) using the Wilcoxon-
signed rank test.

The results are summarized in Tables 4 and 5 where the
reconstruction metrics for recoveries with noise-added data have
been binned and analyzed in 5-mm depth intervals and the
median, upper, and lower quartile for each interval is reported.
Finally, in Table 6, the percentage relative change for recon-
struction using FD data as compared to CW is shown.

3.2 In-Vivo Results

A single snapshot of a recovered focal activation for a single
subject is shown in Fig. 10. Here the cross-sectional sagittal and
transverse planes of a single focal activation within the left
visual cortex are shown as a change in recovered HbO2. The
CW reconstruction is shown to recover an activation at a much
more superficial depth, mainly appearing in the area of the
superficial tissue; whereas, the FD-based reconstruction is able

to recover the activation overlapping with the cortex of the brain.
It is important to highlight that the same regularization param-
eter for the inverse model has been used, namely ensuring that
the improvement in image recovery and accuracy is primarily
due to the inclusion of phase data within the FD-based
reconstruction.

4 Discussion
To date, most HD-DOT imaging studies have concentrated on
the utilization of CW data. Although some studies have reported
the use of FD NIR systems for spectroscopic mapping of brain
functions, these have been mainly limited to utilization of phase
and amplitude data for the separation of optical scattering
components from absorption. We have recently demonstrated
the information content of phase data from a retinotopic experi-
ment showing that the phase data do contain rich information,
potentially arriving from deeper regions within the brain and
therefore minimizing the superficial tissue contamination.44 In
this work, we have undertaken a detailed study of the potential
improvements to image quality gained through incorporating

Table 4 Image quality metrics medians and quartiles for recoveries with CW noise-added model.

Depth (mm)

FWHM (mm) Localization error (mm) Effective resolution (mm)

NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4

5 to 10 11.6þ13.7
−10.3 11þ12.4

−9.9 10.6þ12.1
−9.5 2.2þ2.9

−1.7 1.4þ1.8
−1 1.1þ1.5

−0.8 14.9þ17.7
−13.2 13.2þ15

−12 12.5þ14.2
−11.2

10 to 15 13.3þ15.7
−11.7 12.9þ14.5

−11.6 12.5þ14.1
−11.2 4.2þ5

−3.3 2.6þ3.2
−2 1.5þ2

−1 19.6þ22.5
−17.3 16.8þ19.1

−15 14.9þ17
−13.3

15 to 20 14.6þ17.2
−12.6 15.2þ17.5

−13.4 14.6þ16.8
−12.8 6.4þ7.2

−5.6 4.4þ5.4
−3.6 2.8þ3.6

−2.2 24.5þ27.1
−22.3 22þ25.3

−19.8 19þ22
−16.8

20 to 25 14.5þ17.1
−12.7 15.2þ17.8

−12.8 15.3þ17.8
−13 7.1þ7.6

−6.1 5.8þ6.7
−4.7 4.7þ5.8

−3.7 25.1þ28
−23.2 24þ27.2

−21.6 23þ26.1
−20.3

Table 5 Image quality metrics medians and quartiles for recoveries with FD noise-added model.

Depth (mm)

FWHM (mm) Localization error (mm) Effective resolution (mm)

NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4

5 to 10 10.8þ12.2
−9.8 10.2þ11.5

−9.3 9.8þ11.1
−8.9 1.1þ1.4

−0.78 0.94þ1.2
−0.68 0.87þ1.2

−0.62 12.5þ14.2
−11.3 11.7þ13.3

−10.6 11.3þ12.9
−10.2

10 to 15 13.1þ14.6
−11.8 12.3þ13.7

−11.1 11.3þ12.9
−10.1 1.7þ2.2

−1.2 1.4þ1.8
−1 1.2þ1.6

−0.83 15.6þ17.5
−14 14.5þ16.3

−13 13.3þ15.3
−11.9

15 to 20 15.1þ16.8
−13.7 14.9þ16.6

−13.4 13.2þ15.4
−11.5 3.4þ4.2

−2.6 2.4þ3.1
−1.8 1.7þ2.3

−1.3 20.1þ22.3
−18.2 18.7þ21

−16.9 16.3þ19.1
−14.3

20 to 25 15þ17
−12.9 15.3þ17.4

−13.4 14.8þ17.4
−12.7 5.4þ6.5

−4.3 4þ5
−3.1 2.7þ3.5

−2 23.1þ25.4
−21.2 21.9þ24.5

−19.6 20þ23.4
−17.1

Table 6 FD reconstruction relative difference. The bolded cells are not statistically significant (p > 0.01).

FWHM (%) Localization error (%) Effective resolution (%)

Depth (mm) NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4

5 to 10 7 7 7.5 51.5 32.2 20.7 16.1 11 9.5

10 to 15 1.9 4.8 9.3 58.9 47.3 21.1 20.6 13.7 10.5

15 to 20 −4 2.4 9.6 47.2 44.8 37.6 17.9 15.7 14

20 to 25 −4 −1.3 3.5 23.5 30.5 43.3 7.9 9.1 13
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measurements of the phase along with intensity in the recon-
struction process.

Utilizing a simple layered slab model, the Jacobean (i.e., the
sensitivity of both log amplitude and absolute phase to absorp-
tion changes) has been calculated and shown in Fig. 1. Several
features are evident: (1) both log-amplitude and phase data show
a decrease in signal due to a change to absorption; (2) while the
sensitivity for both log-amplitude and phase data increases in
depth of sampling with SD separation, the phase data demon-
strates deeper sensitivity for a given SD separation; and (3) the
hypersensitivity in superficial tissues observed with log ampli-
tude data is less pronounced for phase data. This supports our
earlier findings that phase data are able to detect changes deeper
within the brain and are less prone to be contaminated to
changes within the superficial tissue that may mainly be attrib-
uted to systemic cardiac and respiratory signal.

Utilizing a set of 24 subject specific models, Fig. 2 highlights
that the surface of the cortex can be from 5 to 30 mm deep with
respect to the surface of the head, further highlighting the need
for the utilization of data-types that will allow deeper sampling
of the brain tissue. Although this can, in theory, be achieved
through the use of larger SD separations, in reality, this is not
possible due to system design and low SNR at measurement
distances above 45 mm.1,43 To demonstrate that FD data-types
(log intensity and phase) can provide a better sampling of deeper
tissue, the subject-specific models have been utilized to simulate
a set of data corresponding to focal activations at all cortex sur-
face nodes lying underneath the imaging array, highlighted as
pink regions, Fig. 2(a). In order to ensure that these simulated
data are realistic, the noise characteristics of a commercially
available FD system, ISS Imagent have been measured, as a
function of SD-NN measurements (Fig. 3) and were added to
the simulated data (Table 2). To investigate the benefits of using
differing NN (NN2-NN4) measurements for activations at dif-
ferent depths, three sets of representative focal activation recov-
ery maps are shown in Fig. 5. In all cases as the number NN

measurements increases, the depth recovery improves. In each
case, the presence of noise is shown to introduce artifacts within
the recovered maps. Importantly, the utilization of FD data is
shown to improve all metrics of image quality relative to using
CW. In almost all cases, the localization accuracy of utilizing FD
data is shown to be much better than those of CW, even includ-
ing an activation at 20.5 mm where the CW data failed to re-
cover a meaningful map.

To provide an overview of these benefits, images of focal
activations for all noise-added simulated cortical activations
have been reconstructed and analyzed to provide group average
metrics of localization accuracy (Fig. 7) full-width-half-max
(Fig. 8) and effective resolution (Fig. 9) with data summarized
in Tables 4–6. For all metrics in the noise-free case, the accuracy
decreases as a function of activation depth, with FD data out-
performing CW in all cases. To achieve meaningful statistical
comparisons, a localization error limit of 8 mm has been
imposed as the upper-bound for statistical analysis, excluding
all recoveries that are solely products of noise. For all NN mea-
surements, the FD data provide a significant improvement in
almost all recovered activations for all reported metrics (sum-
mary in Table 6). For example, assuming a set of NN3 measure-
ments, it is shown that as compared to CW, the FD data show up
to 59% improvement in localizing accuracy and up to 21%
improvement in effective resolution. In addition, the FD data
using NN4 are observed to successfully recover activations as
deep as 20 to 25 mm, beyond the range accessible to CW.

Finally, to demonstrate the improvements using experimental
data, a single focal activation from a set of retinotopic data for a
single subject is shown in Fig. 10. Utilizing the same reconstruc-
tion algorithms, with the same regularization parameters, it is
demonstrated that the inclusion of phase data from an FD system
is capable of recovering the focal activation within the visual
cortex with much more realistic location accuracy.

It is important to highlight that utilizing a time-resolved sys-
tem for NIRS, utilization of mean-time of photon travel has been

Fig. 10 In-vivo visual cortex activation (50% threshold, ΔHbO2 [a.u.]) using (a, b) CW data and (c, d) FD
data.
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previously reported,45 which is analogous to the phase for an FD
system. However in this work, the utilization of both log inten-
sity and phase for tomographic reconstructions have been high-
lighted to demonstrate benefits. Although the sensitivity of the
log intensity is shown to be more weighted toward the super-
ficial tissues, it is this variation of sensitivity between log inten-
sity and phase data that is providing the additional accuracy as
demonstrated.

5 Conclusions
This work has examined the effect and potential benefits of
employing frequency-domain measurements for functional
DOT, using a high-density measurement array. Simulated data
using 24 subject-specific models utilizing experimentally mea-
sured noise have been employed to provide a set of metrics for
characterization of recovered image quality, as well as an in-vivo
retinotopy experiment from a single subject. The results reveal
that, as expected, resolution in the depth is related to the SD
distance and level of the noise present, which are in agreement
with previous studies.6 In addition, using the phase information
significantly improves image quality when employing the same
number of NN measurements with or without noise. While the
use of the phase significantly improves image quality through-
out the volume, the improvement is larger in the deeper regions,
as phase samples deeper than amplitude for the same measure-
ment. As such, the FD measurements can be used to resolve
activations in deeper regions, where the CW completely fails.
Overall, this study suggests that the use of FD measurements
in the context of HD-fDOT expands the potential for improve-
ments in image quality beyond the current state of the art.
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