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Abstract

Significance: By incorporating multiple overlapping functional near-infrared spectroscopy
(fNIRS) measurements, high-density diffuse optical tomography (HD-DOT) images human
brain function with fidelity comparable to functional magnetic resonance imaging (fMRI).
Previous work has shown that frequency domain high-density diffuse optical tomography
(FD-HD-DOT) may further improve image quality over more traditional continuous wave
(CW) HD-DOT.

Aim: The effects of modulation frequency on image quality as obtainable with FD-HD-DOT is
investigated through simulations with a realistic noise model of functional activations in human
head models, arising from 11 source modulation frequencies between CW and 1000 MHz.

Approach: Simulations were performed using five representative head models with an HD regu-
lar grid of 158 light sources and 166 detectors and an empirically derived noise model.
Functional reconstructions were quantitatively assessed with multiple image quality metrics
including the localization error (LE), success rate, full width at half maximum, and full volume
at half maximum (FVHM). All metrics were evaluated against CW-based models.

Results: Compared to CW, localization accuracy is improved by >40% throughout brain depths
of 13 to 25 mm below the surface with 300 to 500 MHz modulation frequencies. Additionally,
the reliable field of view in brain tissue is enlarged by 35% to 48% within an optimal frequency
of 300 MHz after considering realistic noise, depending on the dynamic range of the system.

Conclusions: These results point to the tremendous opportunities in further development of high
bandwidth FD-HD-DOT system hardware for applications in human brain mapping.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is widely used in functional brain mapping1 and
neuro-monitoring at the bedside2,3 due to its portability, low expense, and noninvasiveness com-
pared to traditional neuroimaging modalities such as functional magnetic resonance imaging
(fMRI). The fNIRS technique is based on the differential absorption and scattering of NIR light
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associated with local changes in hemoglobin concentration.4 These two processes can be
described by the absorption coefficient μa and the reduced scattering coefficient μs 0. By acquir-
ing multiple spatially overlapping fNIRS source—detector pairs, one can obtain image recon-
structions of three-dimensional (3D) spatial brain activation maps, a technique known as diffuse
optical tomography (DOT).5–7 Although early studies using sparse fNIRS systems demonstrated
recovery of brain function with lower resolution and localization accuracy as compared to
fMRI,8–10 recent advancements with high-density diffuse optical tomography (HD-DOT), which
uses overlapping multi-distance source-detector pairs, have demonstrated significant improve-
ments in the resolution and localization error (LE) of image reconstructions.11 More recent stud-
ies have shown potential further improvements in HD-DOT image quality and brain sensitivity
when using high-bandwidth sinusoidal source modulation,12,13 a technique often referred to as
frequency domain. However, the effects of modulation frequency on image quality with HD-
DOT have yet to be elucidated.

Three dominant techniques of fNIRS are continuous wave (CW), frequency domain (FD),
and time domain (TD) systems. The TD measurements use picosecond pulsed light sources and
expensive high bandwidth single photon detectors. Arrival times of photons are converted into a
distribution of time of flight (DTOF), which can then be used to derive both absorption and
reduced scattering coefficients.14–17 With CW measurements, only the attenuation of NIR light
from a continuous light source is used and therefore only differential changes in absorption can
be recovered assuming a known and constant reduced scattering coefficient. In contrast, FD
techniques use sinusoidally amplitude modulated light to measure changes in both intensity
attenuation and phase delay relative to the source and therefore recover multiple differential
contrasts (and, potentially, absolute measurements) of tissue optical properties including both
the absorption coefficient μa and reduced scattering coefficient μs 0. Due to the attenuation and
phase measurements inherent to FD, these methods can provide superior image quality as com-
pared to CW systems with an equivalent arrangement of sources and detectors.

A growing literature points to opportunities in leveraging the phase component of the FD
measurements for improving image quality and brain sensitivity. Previous work investigating FD
fNIRS has shown temporal phase measurements can recover concentration changes of hemo-
globin by neglecting small scattering variations.18,19 Additionally, it has been shown that FD
measurements can improve image quality and spatial resolution over CW measurements due
to deeper sensitivity of measurements of phase delay in comparison to intensity attenuation
alone.12 Moreover, this phase signal of FD measurements has been shown to be sensitive to
brain signals at short source-detector separations that show no brain sensitivity in intensity
attenuation measurements as used in CW.13 Further, more recent dual-slope methods have been
shown to improve the phase sensitivity over single-slope methods in the case of localized inho-
mogeneous changes in optical properties.20,21 Additional techniques such as combining modu-
lation frequencies may lead to better performance over CW,22 though care must be taken when
removing superficial signals for FD measurements.23

Most extant studies on high density FD imaging performance have focused on one modu-
lation frequency, typically around 100 to 200 MHz.24 However, some previous theoretical and
experimental results point to tremendous opportunities to investigate high bandwidth
(>200 MHz) source modulation frequencies. For example, one study using Monte Carlo sim-
ulations suggested that FD requires over 1 GHz modulation frequency to achieve significantly
better spatial resolution than CW.25 However, in another study, it was shown in simulation and in
situ that the highest instrument phase signal to noise is obtained in the range of 400 to
600 MHz.26 Given this literature, we aimed herein to investigate the potential improvements
in FD-HD-DOT image quality over a wide range of modulation frequencies.

Here, we extend beyond previous studies to investigate the effects of modulation frequency
on image quality over a range of modulation frequencies between CW (0 Hz) and 1 GHz. We
simulated functional point activations at each voxel within the optically accessible tissue of five
representative subject-specific head models with an HD grid of 158 sources and 166 detectors.
To evaluate image quality within the context of current hardware specifications as well as poten-
tial future improvements, we simulated both systems with a moderate and strong dynamic range.
Additionally, we simulated both noise-free cases and cases with an empirically derived noise
model with respect to both source-detector distance and modulation frequency. We evaluated
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reconstructions with multiple quantitative metrics of resolution and localization accuracy through-
out the 3D imaging domain. Additionally, we evaluated improvements in image quality between
FD and CWas a function of depth and as a function of the volume of accessible brain tissue with
successful image reconstructions. We hypothesized that image quality would improve with modu-
lation frequency, that FD models would be more resilient to noise contamination than CWmodels,
and that the amount of brain volume accessible would increase with modulation frequency.

2 Methods

2.1 HD-DOT Head Model

Informed consent was obtained and the research was approved by the Human Research
Protection Office at Washington University School of Medicine. The head models were created
as previously described.1 Briefly, the subject-specific models were based on five healthy young
adult female participants with a mean age of 24 years (range 22–26 years). All participants
passed MRI safety screening to ensure their safe participation. For each participant, we collected
a T1- weighted MPRAGE (echo time = 3.13 ms, repetition time (TR) = 2400 ms, flip angle =
8 deg, 1 × 1 × 1 mm3 isotropic voxels) and a T2-weighted volume (TE = 84 ms, flip angle =
120 deg, 1 × 1 × 1 mm voxels). The T1-weighted MRI were segmented using FreeSurfer27–29

and combined with the T2-weighted volume for image segmentation in the NeuroDOT (https://
github.com/WUSTL-ORL/NeuroDOT_Beta) software package into five tissue types: scalp (fat),
skull (bone), cerebral spinal fluid (CSF), gray matter, and white matter, each with designated
baseline optical properties (Table 1).30–32

High-resolution subject-specific finite element meshes, each consisting of five tissue layers
were created, with mean element volume of <1 mm3, resulting in ∼900;000 nodes and
∼5000;000 linear tetrahedral elements for each mesh using NIRFAST.33 The modeled HD-
DOT pad consisted of 166 sources (red) and 158 detectors (blue) oriented on a representative
head model as Figs. 1(a) and 1(b). The black dash line in Fig. 1(b) delineates the region of
interest (ROI) to avoid edge effects of the grid array (1 cm inside the outer edge of optodes),
beyond which the tomography is not well behaved.34 The green box illustrates the topography of
the regular grid array of sources and detectors; measurements are labelled as NN1, NN2, NN3,
and NN4, which respectively represent the first, second, third, and fourth nearest neighbors (NN)
with average source-detector separation of 13, 29, 39, and 47 mm. For convenience, herein the
labels of measurements involved in the simulations represent all the source-detector separations
no larger than the labeling measurement. In other words, NN3 includes measurements of NN1,
NN2, and NN3, whereas NN4 includes measurements of NN1, NN2, NN3, and NN4. The NN3
simulated system represents an HD-DOT system with moderate dynamic range and the NN4

Table 1 Optical properties used in 690- and 850-nm light modeling.

Tissues

μa (mm−1) μ 0
s (mm−1)

690 nm 850 nm 690 nm 850 nm

Scalpa 0.0159 0.0190 0.8000 0.6400

Skulla 0.0101 0.0139 1.0000 0.8400

CSFb 0.0040 0.0040 0.3000 0.3000

Gray matterc 0.0201 0.0192 0.9727 0.6726

White matterc 0.0171 0.0208 1.3333 1.0107

aStrangman et al..
bCusto et al..
cBevilacqua et al..
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represents one with strong dynamic range given the requirement of approximately an order of
magnitude more dynamic range in light level detection required than the NN3 system.1,7

2.2 Forward Problem

In functional neuroimaging, our main goal is to find the relationship between the change in light
measurements on the surface due to changes in tissue optical properties throughout the volume,
which can be described as

EQ-TARGET;temp:intralink-;e001;116;443y ¼ A � x: (1)

Here, y represents differential measured data from source detector pairs, x refers to the differ-
ential changes of absorption coefficients and (possibly) reduced scattering coefficients of head
tissues, and A is the sensitivity matrix or Jacobian that relates differential changes in optical
properties within the volume to differential changes in the measurements on the surface. In the
CW case, only intensity attenuation is considered in y, whereas for the FD case, y represents the
variations of both light intensity and phase shift for each measurement.

To obtain the relationship of Eq. (1) for this system, here we start with the diffusion equation
(DE), a model based on the diffusive process of light propagation in tissue due to the high photon
scattering in biological tissue,

EQ-TARGET;temp:intralink-;e002;116;307ðDð~rÞ∇2 − vμað~rÞ þ iωÞΦð~r;ωÞ ¼ −vQð~r;ωÞ; (2)

where Φð~r;ωÞ is photon fluence rate; ω ¼ 2πf is the angular frequency of the modulation; v is
the speed of light in tissue; D represents the diffusion coefficient defined as D ¼ v∕3ðμa þ μ 0

sÞ,
where μa and μs

0 are respectively the absorption and the reduced scattering coefficient where
μ 0
s ¼ ð1 − gÞμs with μs being the scattering coefficient. Here g ¼ hcos θi is the anisotropic value,

which is typically assumed as forward scattering having a value of 0.9 in biological tissue.30,35,36

The μa and μs 0 coefficients represent the reciprocal of the mean distance traveled before a photon
is absorbed/scattered in the absence of scattering/absorption. The source term,

EQ-TARGET;temp:intralink-;e003;116;191Qðr; tÞ ¼ QDCðrÞ þQACðrÞe−iωt; (3)

describes the power per unit volume entering the system and includes components of direct
current and altering current. We then transform the DE to a common form of the inhomogeneous
Helmholtz equation as

EQ-TARGET;temp:intralink-;e004;116;124ð∇2 þ κ2ÞΦð~r;ωÞ ¼ v
D
Qð~r;ωÞ; (4)

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−vμa þ iωÞ∕Dp
. We used NIRFASTer37 (https://github.com/nirfaster/NIRFASTer)

to calculate Green’s function solutions to this equation given the morphology of the simulated

Fig. 1 fNIRS measurements and example head model. (a) The distance between a light source
and a detector effects the depth of sensitivity of the fNIRSmeasurement. (b) A representative head
mesh based on an anatomical MRI with 158 sources (red) and 166 detectors (blue). The black
dash line defines the ROI for PSF evaluation. The green box shows the first to fourth NN meas-
urement topology with source-detector separations of approximately 13, 29, 39, and 47 mm,
respectively.
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human heads. Cross-sectional views of representative Green’s functions of a modulated point
source on the back of a model of the human head [Fig. 2(a)] highlight that while modulation
frequency moderately influences the light attenuation rate with distance from the source, the
modulation frequency strongly influences the spatial pattern of the phase shift relative to the
source position. In practice, a low modulation frequency ðf < 100 MHzÞ will cause nearly
unmeasurably small phase shift measurements for source-detector separations <4 cm while a
high modulation frequency ðf > 1 GHzÞ will induce a phase shift insensitive to optical
properties.

Using the Rytov approximation, we can separate FD measurements into two parts with the
complex logarithm where the real component represents the intensity attenuation and the imagi-
nary component represents the phase shift at the detector,38

EQ-TARGET;temp:intralink-;e005;116;230δΦ ¼ ln

�
Φ
Φ0

�
¼ ln

�
yIeiθ

yI0eiθ0

�
¼ ln

�
yI
yI0

�
þ iðθ − θ0Þ; (5)

where Φ0 is the baseline of modulated light, typically calculated as the temporal mean of the
measurement. Combining this equation with Eq. (1), we can write the relationship between FD
measurements with respect to changes of the absorption coefficient and the reduced scattering
coefficient (or more colloquially, the diffusion coefficient) in matrix form as

EQ-TARGET;temp:intralink-;e006;116;137

�
∂ ln yI
∂yθ

�
¼

�
ReðAΔμaÞ ReðAΔDÞ
ImðAΔμaÞ ImðAΔDÞ

��
∂μa
∂D

�
: (6)

Equation (6) indicates that the FD sensitivity matrix consists of real and imaginary compo-
nents that convert optical property changes within the volume to intensity and phase

Fig. 2 Effects of modulation frequency on FD measurement sensitivity in the five-layer model of
the human head. (a) Normalized base-10 logarithm of the intensity attenuation (dimensionless)
and phase (radians) distributions derived via Green’s functions from modeled 200, 400, 600,
800 MHz modulated light sources using baseline properties in Table 1. (b) Intensity sensitivity
½J∕ðmm2 · mMÞ] and phase sensitivity (radians/mM) of a given source-detector measurement pair
(39 mm separation) from a modeled 200, 400, 600, and 800 MHz modulated 850-nm light source.
(c) The intensity (top) and phase (bottom) sensitivity changes as a function of depth as evaluated
along the white arrow located at the midpoint of the source and detector in (b).
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measurements at surface respectively. The sensitivity matrix A depends on: (1) the geometry of
head model; (2) the spatial distribution of optical properties of the head tissue; (3) and the dis-
tribution of sources and detectors along with their wavelength and modulation frequency. To
calculate A, we used the NIRFASTer modeling software package to model Green’s functions
of each source-detector measurement pair. Given that differential changes in scattering have yet
to be well characterized in fNIRS or HD-DOT measurements of brain function, we will assume
no scattering changes and thus we can further simplify Eq. (6) as

EQ-TARGET;temp:intralink-;e007;116;651

�
∂ ln yI
∂yθ

�
¼

�
ReðAΔμaÞ
ImðAΔμaÞ

�
½ ∂μa �: (7)

Example sensitivity profiles for a modelled source-detector pair with 39 mm separation
[Fig. 2(b)] further highlight that while the intensity profiles for different modulation frequencies
are similar, the phase profiles highlight remarkably distinct and consistent patterns as the modu-
lation frequency increases. Further examination along a depth profile perpendicular to the sur-
face of the head at the midpoint of the measurement [along the white arrow in Fig 2(b), with
values plotted in Fig 2(c)] reveals that the change in phase sensitivity with depth increases sig-
nificantly as the modulation frequency increases, whereas the effect on the intensity profiles in
depth are modest.

2.3 Inverse Problem

The process to reconstruct images is called the inverse problem because it converts relative
changes in light intensity and phase into relative changes of absorption and diffusion at each
wavelength. This step involves calculating the inverse of the Jacobian A in Eq. (6), which can be
found approximately using a Moore–Penrose pseudoinverse with Tikhonov regularization:

EQ-TARGET;temp:intralink-;e008;116;425A−1 ≈ A# ¼ L−1ðÂTÂþ λ1IÞ−1ÂT ; (8)

where A# is Moore Penrose inverse of A; ÂT denotes the transpose matrix of Â, and Â is A
spatially regularized by term L, which are defined as

EQ-TARGET;temp:intralink-;e009;116;365Â ¼ AL−1; (9)

EQ-TARGET;temp:intralink-;e010;116;320diagðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðATAÞ þ λ2

2

q
: (10)

The parameters λ1 and λ2 are the Tikhonov regularization parameter and the spatially variant
regularization parameter.5 The Tikhonov parameter λ1 adjusts the balance between high spatial
frequency noise and image smoothness and is set to 0.01 times the maximum singular value of

ÂTÂ. The spatially variant regularization parameter λ2 helps improve LE and is set to 0.1 times
the maximum singular value of ATA.39,40 To simplify, in this study, we are using these optimized
regularization parameters of λ1 and λ2 as 0.01 and 0.1, respectively, based on previous studies,
and invert the Jacobian separately for each wavelength.39,41

2.4 Realistic Noise Model

For general and broad interpretation of simulation studies, it is imperative to include a noise
model in the simulations to evaluate if different modulation frequencies are robust to noise con-
tamination in the measurements. It has been shown that noise in HD-DOT measurements are
mainly due to (in decreasing order of magnitude) physiological variance and shot noise at high
light level, and thermal detector noise at low light level.26 Previous work has shown that physio-
logical variance in DOT data are caused by cardiac pulsation;42 respiration;43 low frequency
oscillation of blood in vascular compartments of the brain and superficial tissues,44 each of which
have characteristic frequency content; and motion induced noise signals that are generally broad-
band in nature.45–47 For experimental studies, it is common to use signal regression to remove
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nuisance signals due to systemic hemodynamic variance.23,48,49 Additionally, it is known that the
noise level of FD measurements varies with the source-detector separation distance and is also
affected by modulation frequency.50,51 Given that we are modeling source-detector measure-
ments separated by up to 47 mm, the data are in the high light level regime and so we considered
the physiological and shot noise based variance as dominating the thermal noise. Thus, we gen-
erated herein a noise model that combines separate empirical noise models as functions of
source-detector separation and modulation frequency. First, a noise model as a function of
source-detector distance was derived from data collected on the scalp during quiet rest.12

Second, we incorporated a recent noise model with respect to modulation frequency derived
from phantom data.51 The full empirical realistic noise model Nðr; fÞ is given by a two-term
exponential function of source–detector distance r that is multiplied by the frequency-dependent
noise model that is valid at an arbitrary modulation frequency f and normalized to a 140 MHz
modulation frequency,

EQ-TARGET;temp:intralink-;e011;116;381Nðr; fÞ ¼ ðaebr þ cedrÞ · 10ðgðf−140ÞÞ; (11)

where the coefficients a, b, c, d, and g are derived from realistic data (Table 2; Fig. 3). The
normalization is because the source-detector distance noise model was derived from data

Table 2 Values of coefficients in realistic noise model.

Coefficients

Intensity noise model Phase noise model

690 nm 850 nm 690 nm 850 nm

aa (% or deg) 0.2502 0.6019 3.933e−11 1.917e-10

ba (mm−1) 0.02913 0.01052 0.4161 0.3708

ca (% or deg) 4.625e−06 9.685e-05 0.0105 0.03573

da (mm−1) 0.2128 0.1382 0.05585 0.02002

gb (MHz−1) 6.769e−04 6.785e−04 0.0013 0.0013

aDoulgerakis et al.
bApplegate et al.

Fig. 3 Noise model distributions. (a) Noise for each modulation frequency increases with increas-
ing source-detector separation. (b) Noise for each source-detector separation (fits for 13, 29, 39,
and 47 mm are shown) increases with increasing source modulation.
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collected at 140 MHz.12 This combined noise model was added directly to the simulated mea-
surements as

EQ-TARGET;temp:intralink-;e012;116;711y ¼ A � xþ N: (12)

The full noise model thus obeys a Gaussian distribution with zero mean and standard
deviation sampled from Nðr; fÞ (Fig. 3). The noise sources for intensity and phase for a given
source-detector pair are coupled via matched random numbers for a given simulation.

2.5 Simulations

To quantitatively evaluate image quality, we modeled point spread functions (PSFs) arising from
point perturbations within M ≈ 190;000 voxels (per head model) within all tissues contained
within optically accessible regions of the anatomical volume. The deep boundary of interrog-
ation within the head was set to 10−5 of the maximum of the Green’s function fall-off in intensity
for all sources and detectors to ensure a thorough sampling in the volume (corresponding to
approximately 35.3 mm below the surface). We also constrained our investigation to the
ROI contained within 1 cm or more from inside the edge of the HD-DOT array to avoid edge
effects [dotted black line in Fig. 1(b)]. Throughout this ROI, we simulated point perturbations
∂Hb of 3.8 μM for oxygenated hemoglobin (HbO2) and −1.8 μM for deoxygenated hemoglo-
bin (HbR), values that are consistent with previous simulations based on similar FD HD-DOT
designs.12 These perturbations in HbO2 and HbR were spectroscopically converted into pertur-
bations in absorption ∂μa at source illumination wavelengths of λ ¼ 690 nm and λ ¼ 850 nm

via,52,53

EQ-TARGET;temp:intralink-;e013;116;450

�
∂μa;690
∂μa;850

�
¼

�
εHbO2;690 εHbR;690

εHbO2;850 εHbR;850

��
∂HbO2

∂HbR

�
; (13)

using tabulated molar extinction coefficients,54 where, εc;λ represents extinction coefficient of c
(HbO2∕HbR) for wavelength λ. These wavelengths have been previously shown to be maximally
sensitive to activations in HbR and HbO2. These wavelength dependent changes in absorption
(∂μa ¼ xsim) thus provided our simulated measurements via Eq. (12), ysim ¼ Axsim þ N. The
reconstructed volumetric wavelength-dependent perturbation in absorption is thus given by
xrecon ¼ A#ysim ¼ A#ðAxsim þ NÞ, which is then propagated through the inverse of Eq. (13)
to arrive at the PSF for HbO2 and HbR. To simplify, we focus our analyses on PSFs for
HbO2, though results for HbR are qualitatively similar and are presented in Figs. S1–S6 in the
Supplementary Materials. These simulations were run in ∼190;000 voxels per head model, over
five head models, for frequencies including: 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, and
1000 MHz.

2.6 Analyses

To quantitatively evaluate the image quality of the simulated reconstructions, we threshold the
recovered PSF at half maximum and then calculated the full width at half maximum (FWHM),
the full volume at half maximum (FVHM), LE, and success rate (SR). The FWHM is the longest
distance between any two voxels included in PSF. The FVHM is the total volume of the PSF.
This is a complementary metric to the FWHM as the cube root of the FVHM can be somewhat
better behaved as a metric of the linear size of the PSF. The LE is calculated as the distance
between the perturbation point and centroid of the PSF (Tables S1 and S2 in the Supplementary
Materials). The SR is defined as the percentage of voxels at a given depth with LE less than the 8-
mm cutoff. We only consider FWHMs and FVHMs for voxels whose LEs are at most 8 mm. The
depth at which a 50% SR is observed is thus defined as the depth boundary for reliable
imaging.12,34 To study the improvement in spatial sensitivity to brain tissue using FD as com-
pared to CW, we defined a new metric called the full brain tissue volume (FBTV) given as the
total volume of brain tissue with a LE lower than 8 mm. Finally, we calculated the full brain
tissue ratio (FBT ratio), given by the ratio of brain volume successfully recovered by FD (i.e., the
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FBTV) to that recovered by CW. These metrics quantify the image quality in aspects of spatial
resolution, localization accuracy, and the extent of the reliable field of view both in absolute
terms and relative to performance by the simulated CW system. To evaluate these metrics sta-
tistically between each simulated FD case and CW, we used the Wilcoxon signed rank test
(Tables S3 and S4 in the Supplementary Materials). For example visualizations, we spatially
normalized the five head models using a 3D affine transformation and averaged the metrics for
a given voxel across the aligned head models.

3 Results

To provide an overview of the spatial distribution characteristics of the recovered PSFs, consider
three points in occipital cortex (Fig. 4). These focal simulated activations (blue dots) are modeled
at depths of about 11, 16, and 21 mm. The reconstructed PSFs are shown for the noise-free CW
case (0 MHz), 400 MHz and 800 MHz. The PSFs were filtered by half maximum value of the
recoveries and normalized to their maximum value. Volumetric views of PSFs reveal two pri-
mary characteristics: (1) while the LE of the PSF increases with depth, the LE decreases with
increasing modulation frequency (Table 3); (2) while the size of the PSF increases in depth, again
as expected, the size of the PSF is only modestly affected by the modulation frequency (Table 3).
For each modulation frequency, to quantitatively evaluate image quality throughout the optically
accessible tissue in five head models, we reconstructed PSFs induced at each voxel throughout
the ROI. We then calculated the LE at every voxel throughout the ROI. At each voxel with a LE
<8 mm, considered a successful recovery, we calculated the resolution through the FWHMs and
FVHMs. Representative slices through the volume show the spatial distributions of the mean LE

Fig. 4 Examples of noise-free reconstructed PSFs. The PSFs are induced by simulated point
activations at three depths, using NN3 measurements at 0, 400, and 800 MHz without noise.
PSFs are normalized and cut off at 50% maximum. The blue dots denote the locations of point
perturbations. Image metrics for these example PSFs are reported in Table 3.

Table 3 Image metrics of the example noise free PSFs in Fig. 4.

Depth (mm)

0 MHz 400 MHz 800 MHz

LE FWHM FVHM LE FWHM FVHM LE FWHM FVHM

11.3 0.35 13.27 10.72 0.31 12.81 10.00 0.30 12.00 9.22

16.2 3.11 18.22 13.39 1.30 19.08 14.37 0.87 17.20 13.24

21.2 7.67 20.49 14.08 2.94 23.58 16.03 2.08 21.26 14.70

All metrics are in units of mm. Localization error (LE). Full width at half maximum (FWHM), cube root of full
volume at half maximum (FVHM).
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(Fig. 5), FWHM (Fig. 6), and cube root of the FVHM (Fig. 7), with metrics averaged across the
five head models after spatial alignment.

The LE data in Fig. 5 highlight a number of characteristics of the results. First, as expected in
optical imaging, the LE increases with depth for all cases. Second, increasing the number of
available measurements in the reconstruction (i.e., using NN4 instead of NN3) improves the
LE. Third, the presence of noise adversely effects the LE. These first three observations are
consistent regardless of modulation frequency. Fourth, while increasing the modulation fre-
quency improves the LE for the noise free case, the effect of noise is stronger at the higher
modulation frequency and leads to worse performance in LE. Indeed, the LE for the moderate
FD case (400 MHz) appears to be less influenced by the presence of noise than for the CW case
or the high frequency case (800 MHz).

The transverse slices of FWHM (Fig. 6) and cube root of FVHM (Fig. 7) allow us to visualize
some of the effects of modulation frequency on spatial resolution. As with the LE in Fig. 5, we
observe some characteristics of these resolution measures that are consistent across modulation
frequency: resolution gets worse in depth, having more available channels improves resolution,
and noise negatively effects resolution. Additionally, while there is some general improvement in
resolution with frequency, the improvement is far more modest than that seen with LE.

To investigate the effect of tissue depth on the metrics, we present here results of LE, FWHM,
and cube root of FVHM as lowest curve medians from data integrated over the five head models
for the noise free case (Fig. 8) and the noise added case (Fig. 9). To define the boundary of the
reliable imaging volume, we calculated success rate as a function of depth (second from left
columns of Figs. 8 and 9) and extracted mean depth with 50% success rate over 5 subjects
(Fig. 10). For greater detail, the medians, along with 25% and 75% values, for each metric for
each frequency are presented binned by depth in S1-S4 in the Supplementary Materials.

The behaviors of LE, SR, FWHM, and cube root of FVHM as a function of depth in the 11
frequencies without noise are shown in Fig. 8. Generally, the FD modulation improves LE

Fig. 5 LE distribution in an example transverse slice. The color of each voxel reflects the LE in mm
averaged across five head models after spatial alignment. For brevity, three modulation frequen-
cies are shown: 0, 400, and 800 MHz.
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significantly, with improvement over CW increasing with modulation frequency. For example, at
13–18 mm depth, 400 and 800 MHz, respectively, provide improvements over CW mode by
55.45% and 56.98% in NN3 measurements, by 66.92% and 75.49% in NN4 measurements.
However, the improvement in resolution with higher modulation frequency is modest. For exam-
ple, 400 and 800 MHz respectively improve FWHM over CW mode by 2.57% and 7.02% in
NN3 measurements; by 0% and 4.84% in NN4 measurements. The results are summarized in
Tables S1 and S3 in the Supplementary Materials. The maximum improvement of LE is given by
800 MHz for NN3 and 1000 MHz for NN4, and maximum improvement of FWHM and FVHM
are both given by 1000 MHz for NN3 and NN4. The results are more nuanced when considering
the addition of the noise model in simulation (Fig. 9): We find the presence of noise causes the
LE to increase rapidly around 15 to 23 mm due to more noise, especially at high modulation
frequency above 500 MHz. As a result, optimum modulation frequencies for localization error
are 400 MHz for NN3 and 300 to 400 MHz for NN4. Additionally, the FWHM and FVHM with
noise are larger than counterparts without noise as expected, with the improvements at higher
modulation frequency strongly diminished. Additionally, the SR drops to more shallow depths in
all cases. The full results are summarized in Tables S2 and S4 in the Supplementary Materials.

To evaluate SR for reconstructions across the modulation frequencies, the mean (with stan-
dard deviation) depth of the 50% success rate across the five head models is shown for noise free
and noise added cases (Fig. 10). As expected and observed above, the presence of noise lowers
the successful imaging depth in all cases. Interestingly, the optimized frequency differs between
noise free and noise added cases. In the noise free case, the deepest 50% SR boundary is 27.46�
0.98 mm for NN3 given by 900 MHz and 30.97� 0.75 mm for NN4 given by 1000 MHz. With
the realistic empirical noise model, the deepest 50% success rate boundary is 20.50� 0.76 mm

for NN3 and 22.59� 0.87 mm for NN4 both given by 300 MHz.
To quantify the improvement in image quality specifically within brain tissue of FD over CW,

we calculated the full FBTV with successful reconstructions and the ratio of FBTV recoverable

Fig. 6 FWHM distribution in an example transverse slice. The color of each voxel reflects the
FWHM in mm averaged across five head models after spatial alignment. For brevity, three modu-
lation frequencies are shown: 0, 400, and 800 MHz.

Fan, Dehghani, and Eggebrecht: Investigation of effect of modulation frequency on high-density diffuse. . .

Neurophotonics 045002-11 Oct–Dec 2021 • Vol. 8(4)

https://doi.org/10.1117/1.NPh.8.4.045002.s01
https://doi.org/10.1117/1.NPh.8.4.045002.s01


Fig. 7 Spatial distribution of the cube root of the FVHM in an example transverse slice. The
color of each voxel reflects the cube root of the FVHM in mm averaged across five head
models after spatial alignment. For brevity, three modulation frequencies are shown: 0, 400, and
800 MHz.

Fig. 8 Image quality metrics as a function of depth below the surface in noise free cases. The
median of the LE, success rate FWHM, cube root of FVHM across five head models’ simulated
measurements of 11 modulation frequencies without noise added for NN3 and NN4. Even
frequencies are solid lines and odd frequencies are dashed lines.
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Fig. 11 Improvement of reliable field of view in brain tissue by FD across LE thresholds. Brain
volume (top) and brain volume relative to CW (bottom) averaged across five subjects at 11 modu-
lation frequencies when LE limitation is set from 1 to 8 mm. Solid lines represent even frequencies
and dash lines represent odd frequencies.

Fig. 9 Image quality metrics as a function of depth below the surface in noise added cases. The
median of the LE, success rate FWHM, cube root of FVHM across five head models’ simulated
measurements of 11 modulation frequencies with noise added for NN3 and NN4. Even frequen-
cies are solid lines and odd frequencies are dashed lines.

Fig. 10 Depth of the reliable field of view across all modulation frequencies and noise models.
Averaged depths of the 50% success rate as a function of modulation frequency. Error bars re-
present standard deviations across five head models.
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with a given modulation frequency to that recoverable with CW (FBT ratio). In Fig. 11 we show
how the FBTV and FBT ratio behave with LEs ranging from 1 to 8 mm. From the figure, we
observe that FBTV increases approximately linearly in the noise free cases but increases more
slowly in the noise added cases. In the range of LE from 6 to 8 mm, we found that higher modu-
lation frequency provides larger FBTVand FBT ratios in noise free cases where 900-MHz mode
provides about 1.76 times and 1000MHz mode provides 1.55 times larger FBT volume than CW
mode respectively for NN3 and NN4. After adding noise, the optimum frequency mode is
300 MHz for both NN3 and NN4, which respectively provides about 1.35 times and 1.18 times
larger volumetric access to brain tissue than the CW mode.

4 Discussion

The availability of CW-HD-DOT systems is increasing rapidly for both adult and pediatric
studies owing to the demonstrated improvements in image quality obtained with HD
arrays.1,12,13,55–62 Most research groups still utilize CW systems for wide-field optical imaging
of human brain function as these systems are significantly less expensive than FD and TD sys-
tems. However, recent studies have highlighted a renewed focused on HD arrangements of
FD measurements due to the value in incorporating the additional phase measurements to realize
the potential for improved image quality and potential access to absolute oxygenation concen-
tration.12,13,20,22 In addition, some studies theoretically demonstrate that an FD system can pro-
vide enhanced depth sensitivity using phase information. Herein, we extended previous work
with simulations of HD-FD-DOT measurements with frequencies of 0, 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1000 MHz and quantitatively evaluated image quality for each modu-
lation frequency. The goal of our work was to investigate the potential of higher source modu-
lation frequency in an HD arrangement and to find the optimum frequency range to guide future
design of FD-HD-DOT instruments given the potential for improvements in image quality and
brain sensitivity and specificity.

We hypothesized that higher modulation frequencies would provide better spatial resolution
and LE as well as access to more brain volume than CW. The noise-free simulation results sup-
port our hypothesis on resolution and LE improvement, though resolution is improved only
modestly. We can understand the improvement in spatial specificity through the observation
that the spatial sensitivity profile in the phase measurement [Figs. 2(b) and 2(c)] exhibits a
steeper and stronger magnitude change with increasing modulation frequency. This leads to
greater spatial specificity (i.e., a lower LE) after tomographically combining the multi-distance
overlapping measurements. Thus, while the location of the centroid of the PSF is more accurate
with FD than CW, the width of the PSF (the resolution) is only modestly improved. To extend the
analyses to more real-world situations, we added an empirical noise model that reflected both
noise as a function of source-detector separation12 and as a function of modulation frequency51

(Fig. 3). The simulations incorporating this noise model clearly show the deleterious effects of
system noise at high modulation frequencies that swamp out the added benefits of the narrowing
and strengthening of the phase sensitivity. Nevertheless, these competing processes point to an
optimum range of modulation frequencies around 300 MHz for image quality and depth sensi-
tivity for an FD-HD-DOT system.

To highlight the spatial profile of image quality throughout the ROI, we showed transverse
distributions of the LE, FWHM, and cube root of FVHM for example frequencies of 0, 400, and
800 MHz (Figs. 5–7). We also set the successful LE limit to 8 mm to define a reliable imaging
region and provide a benchmark for meaningful statistics. In summary, the modulation frequency
contributes most to improvement in localization accuracy but has less of an effect on spatial
resolution, in agreement with the implications Fishkin and Gratton’s work.25 To highlight sig-
nificant advantages in system designs with a larger dynamic range, we simulated both NN3 and
NN4 measurement sets. In general, for all our simulations, the results are consistent with pre-
vious work about FD-HD-DOT system utilizing 140-MHz frequency in comparison to CW.12

The larger source-detector separations (especially >4 cm) provide access to deeper penetrating
photons that sample larger volumes of brain tissue. However, obtaining strong signal to noise at
these longer distances while simultaneously recording signals from shorter source separations
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places challenging demands on dynamic range that directly effects detector design, source
encoding strategies, and crosstalk specifications.

To estimate the resultant reliable imaging region, we calculated the mean depth of 50% suc-
cess rate over each head as well as the total brain volume with good image metrics. In the noise
free case, 700 MHz gives the best LE and 1000 MHz gives best FWHM and FVHM for NN3;
and 1000 MHz performs best for all metrics. In the noise added case, 300 MHz performs best for
NN3 and for NN4. In summary, with the consideration of localization accuracy, spatial reso-
lution, and reliable imaging volume, the optimum modulation frequency is in range of
300 MHz for an FD-HD-DOT system. Indeed, at higher modulation frequencies, the effects
of phase wrapping may be unavoidable and provide a maximal depth penetration for a given
FD frequency. In summary, a modulation frequency around 300 MHz may be an optimal target
for future hardware development.

There are some limitations to note in this study. First, due to the huge computational cost, our
study includes only five head models with eleven modulation frequencies. Future studies may
extend these methods to cases with different anatomical morphology in adults, such as increased
CSF due to cortical atrophy associated with aging or to younger children for whom deeper pen-
etration of sensitivity will lead to much improved access to brain volume. Additionally, in gen-
eral, the development of system design for FD systems is complex and ongoing with various
options that each lead to drastically different noise spectra across modulation frequencies.51,63

While a full discussion of the hardware challenges with possible solutions is beyond the scope of
the present work, we show herein the potential for FD imaging given further developments in FD
system design that can lower the noise in high bandwidth systems. In addition, more elaborate
models of the physiological noise component, as could be explained using the local covariance
of each source-detector pair measurement, may further improve management of noise and there-
fore improve image quality. The second limitation is that optimization for a given modulation
frequency may depend of different choices of regularization parameters64–66 or conditioning pro-
cedures for the Jacobian.55,67–71 A full exploration of these computational strategies and their
effects at different modulation frequencies is beyond the scope of this paper. Last, here we were
focused on optimizing for image quality of differential measurements of brain function. The
results presented may not necessarily generalize to recovery of estimation of baseline optical
properties.51 Future studies may explore high-bandwidth source modulation in high density
measurement arrangements for such purposes. In general, our work demonstrates the signifi-
cance of the potential for higher modulation frequency strategies than typically used in existing
FD systems for future design of FD-HD-DOT systems.

In summary, we set out to investigate potential improvements in image quality in HD-DOT
methods focusing on an optimal modulation frequency strategy. For simplicity, in this study, we
focused on a range of single modulation frequencies. However, previous studies point to com-
pelling opportunities afforded by combining multiple modulation frequencies in FD-HD-DOT
system to improve the image quality,22,71 including the many potential methods for pre-condi-
tioning the sensitivity matrix for multi-frequency DOT in addition to the careful selection of
frequency combinations.71 Indeed, the promise of these techniques has been realized in hardware
with a multi-frequency DOT instrument72 with applications in cancer detection.73 Potentially
such methods will also translate to superior image quality, improved depth sensitivity, and func-
tional specificity in brain imaging.

5 Conclusions

We report a systematic evaluation of image quality as a function of modulation frequency in FD-
HD-DOT systems. Volumetric views of LEs and resolution throughout the full head volume
provide a window into how source modulation frequency influences imaging fidelity and that
higher frequency provides better localization accuracy and access to deeper regions with reliable
imaging. In this quantitative study, we evaluated image quality of FD-HD-DOT in aspects of
localization accuracy, spatial resolution, and volume of reliable field of view. As a result, we
found that in noise-free models, image quality improves with increasing modulation frequency
up to 1 GHz, whereas in realistic noise-added models, 300 MHz provides a target modulation
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frequency to optimize image quality metrics. This work provides specific motivations and targets
for future development of FD hardware for HD-DOT systems for mapping human brain
function.
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