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ABSTRACT
An automatic threshold selection method is proposed for biomedical image analysis based on a histogram
coding scheme. The threshold values can be determined based on the well-known Lloyd–Max scalar quanti-
zation rule, which is optimal in the sense of achieving minimum mean-square-error distortion. An iterative
self-organizing learning rule is derived to determine the threshold levels. The rule does not require any prior
information about the histogram, hence is fully automatic. Experimental results show that this new approach
is easy to implement yet is highly efficient, robust with respect to noise, and yields reliable estimates of the
threshold levels. © 1997 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(97)00302-X]
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1 INTRODUCTION
Thresholding is quite popular among a variety of
image analysis techniques. This is primarily be-
cause it is easy yet efficient to implement and pro-
vides satisfactory results in many cases. In various
applications, it can be also used as the initial step in
more sophisticated image analysis tasks.1,2 Ex-
amples of such applications include segmentation
of brain tissue and/or tumors in magnetic reso-
nance (MR) images and quantification of nuclei of
cells and chromosomes in microscope images.3,4

However, poor contrast or strong noise in the gray-
level space of such images makes thresholding a
challenging task.
Thresholding assumes that the images present a

number of relatively homogeneous regions, and
that one can separate these regions by properly se-
lecting the intensity thresholds.5 Multilevel thresh-
olding hence transforms the original image into a
coarsely quantized one. Several threshold selection
methods are described in the literature. They can be
grouped into two main classes: (1) histogram mod-
eling and separation according to some specified
criteria6,7 and (2) direct location of valleys and
peaks in the histogram.2,5,8 Histogram modeling of-
ten requires more sophisticated learning algorithms
to obtain an unbiased estimate for the distribution
model parameters.3 On the other hand, in peak and
valley detection, the sensitivity of the method to the
noise level and the user-defined control parameter
becomes the main issue.4,5 Current approaches are
all based on the noisy image histogram, which is a
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sampled version of the true distribution, and em-
ploy a user-defined control parameter that allows a
series of trials to be tuned to achieve the desired
accuracy.
In this short report, we present an automatic

threshold selection method based on a histogram
coding scheme. We show that the threshold values
can be determined based on the well-known Lloyd–
Max scalar quantization rule, which is optimal in
the sense of achieving minimum mean-square-error
(MSE) distortion. We derive an iterative self-
organizing learning rule for determining the thresh-
old levels that does not require any prior informa-
tion about the histogram and hence is fully
automatic. Experimental results show that this new
approach is very simple and efficient; i.e., it has low
computational complexity (lower computational
time and memory requirement) compared with
similar approaches, such as those in Refs. 7 through
9, yields reliable estimates of the threshold levels;
and is robust with respect to noise. Our recent
study also shows the effectiveness of the proposed
method in initializing a stochastic model-based im-
age analysis algorithm in terms of leading to faster
rate of convergence and lower floor of local opti-
mum likelihood in the final quantification
scheme.4,10

2 SELF-ORGANIZING LLOYD–MAX
HISTOGRAM QUANTIZATION

2.1 PROBLEM FORMULATION

Suppose that an image is known to contain K re-
gions and its pixels assume discrete gray-level val-
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ues u in the interval @uMIN ,uMAX# . The distribution
of the gray levels in the image can be approximated
by a histogram f(u) that gives the normalized fre-
quency of occurrence of each gray level in the im-
age. We formulate threshold selection as a histo-
gram quantization problem that addresses the
problem of determining the optimal coding scheme
with log2 K bits.
In rate distortion theory, Lloyd–Max scalar quan-

tization has been proven to be optimal in the sense
that it results in minimum distortion of representa-
tion for a given distribution.4 Following Max,11 we
consider the histogram as a probability measure
and define the global distortion measure D as the
mean squared value of the quantization error. For a
given number of regions, the coding scheme is de-
scribed by specifying the thresholds tk and the as-
sociated region means mk (k51,.. . ,K) so that the
global distortion D defined as

D5 (
k51

K E
tk

tk11
~u2mk!

2f~u !du (1)

is minimized. If we differentiate D with respect to
tk and mk and set the derivatives to 0, we get:

]D
]tk

5~tk2mk21!
2f~tk!2~tk2mk!

2f~tk!50,

k52,.. . ,K (2)

and

]D
]mk

52E
tk

tk11
~u2mk!f~u !du50, k51,.. . ,K , (3)

which yields

mk52tk2mk21 , k52,.. . ,K , (4)

and

E
tk

tk11
~u2mk!f~u !du50, k51,.. . ,K , (5)

where mk is the centroid of the area of f(u) between
tk and tk11 . This method provides a nice compro-
mise between the profile and the details of the his-
togram, hence in general is not sensitive to noise
effect. Note that since the method is applied to the
original histogram, which is actually a sampled ver-
sion of a smooth probability density function, the
thresholds and means do not necessarily corre-
spond to the small valleys and peaks in the original
histogram, and the goal is to find a noise-insensitive
information representation so that a global distor-
tion measure is minimized. Also, it is important to
emphasize that it operates directly on the original
histogram; i.e., no smoothing operation is involved,
since the smoothing might lead to some loss of use-
ful information.
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2.2 COMPUTATION ALGORITHM

Because of the difficulty of obtaining an analytical
closed-form solution for Eqs. (4) and (5), the prob-
lem can be attacked numerically. We propose the
following procedure to calculate the mean and
threshold levels in a complete unsupervised fash-
ion: select an initial m1, calculate the corresponding
tks and mks for the K regions, and if mK is (or is
close enough to) the true centroid of the last com-
ponent mK

0 , then m1 is chosen correctly; otherwise,
update m1 as a function of the distance between
mK and mK

0 . For this update, we introduce a new
parameter a to control the learning rate. The algo-
rithm can be summarized as follows:

Self-Organizing Lloyd–Max Histogram Quantization
(SLMHQ):
1. Initialization: Given K , set a, e, and m 5 0. Pick

m1
(0) .
2. For k51,.. . ,K 2 1
• Set t1

(m) 5 uMIN .
• Compute tk11

(m) by

(
u5tk

~m !

tk11
~m !

uf~u !5mk
~m ! (

u5tk
~m !

tk11
~m !

f~u !. (6)

• Compute mk11
(m) by

mk11
~m ! 52tk11

~m ! 2mk
~m ! . (7)

• Set tK11
(m) 5uMAX and compute mK

0(m) by
Eq. (6).
3. If umK

(m)2mK
0(m)u,e then go to step 4. Other-

wise

m1
~m11 !5m1

~m !1a@mK
0~m !2mK

~m !#

m5m11.

Go to step 2.
4. Save the result and stop.

Note that after the initial guess, we compute the
updates for m1 as a function of the distance be-
tween mK and mK

0 computed in that iteration which
results in a self-organizing learning mechanism.
The motivation leading to the update rule in step 3
can briefly be explained as follows: As a self-
organizing approach, the correct selection of m1 de-
pends on how close mK is to the true centroid mK

0 .
Thus, we can define umK2mK

0u as the error measure
that is used as both the feedback signal and the
stopping criterion in the learning rule. Specifically,
when mK

0.mK , the value of m1 should be increased;
otherwise (i.e., when mK

0,mK) the value of m1
should be decreased. In the update, the positive
constant a controls the amount of feedback; i.e., it
determines the learning rate. The resulting algo-
rithm thus provides an efficient and totally unsu-
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Fig. 1 Digitally imaged internal cell structures acquired by a CCD
microscopic system.
pervised threshold selection method and since it
minimizes a global distortion measure, it is also ob-
served to be the most noise robust of the algorithms
that we have studied. However, theoretical study of
the convergence of the proposed algorithm has not
been done; i.e., it has not been shown that the con-
vergence of the learning rule is guaranteed. Instead,
we have implemented a program that incorporates
an empirically optimized learning rate and a tree-
structured error protection mechanism.10 Intensive
numerical experiments with various image charac-
teristics have shown the effectiveness of the algo-
rithm in practical applications that we explain fur-
ther in the following sections.

3 EXPERIMENTAL RESULTS
In this section we present an application of the new
thresholding selection method to two real biomedi-
cal images from two different imaging modalities:
the digital microscope image of a cell (Figure 1) and
the magnetic resonance image of human brain tis-
sue (Figure 2). The dynamic range of these images
is 12 bits and their histograms are shown in Figures
3 and 4.
The choice of the learning rate indicates a tradeoff

between the convergence rate of the algorithm and
the residual error in the final parameter values.
Also, it has to be chosen small enough to ensure
stability. In our studies with 12-bit images, the ex-
perimental results show that a51/K3 is a good
value to achieve a suitable balance among these re-
quirements.
To illustrate the general quantification scheme,

we first consider the cell image and its finite bit-
coded representation for K53, 4, and 5. The
SLMHQ algorithm presented in Sec. 2.2 is imple-
mented with a51/K3 and the stopping threshold is
chosen as e50.5. The corresponding results are
plotted in Figures 5(a) through 5(c), which show the
J

original histogram together with the positions of
the thresholds (short bins) and the corresponding
means (high bins). It can be seen that with a fixed
number of quantization levels, the locations of the
thresholds are fairly accurate. The selectivity is in-
creased as the number of levels (number of regions
K) is increased. As specified by the underlying cell
biology, for the cell image, the major components
are nucleus, rough endoplasmic reticulum, smooth
endoplasmic reticulum, and cell liquid, resulting in
four final quantization levels. The segmented result
that directly uses the threshold values for K 5 4 is
shown in Figure 6. When compared with the origi-
nal image, it can be observed that this achieves a
quite plausible segmentation result. Also important
to note is the point that when the original histo-
gram is noisy and the ‘‘peaks’’ of the histogram are
difficult to identify, the proposed technique still

Fig. 2 A typical slice view of magnetic resonance brain tissue
images.

Fig. 3 Histogram of the cell image in Figure 1.
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Fig. 4 Histogram of the MR brain image in Figure 2.
yields quite satisfactory threshold determination re-
sults. For this example, the second and third com-
ponents are not observed as two distinguishable
peaks in the histogram, but they can be identified
effectively (as shown in Figure 6) by the proposed
SLMHQ scheme.
Table 1 provides a summary of the quantitative

results of the microscope cell image quantification.
For the image thresholded with four components,
the threshold values, the component mean, and
variances are listed with the associated mean-
square-error distortion D and compression ratio
(CR) values. The compression ratio is defined as

CR~ f !5
H~ fd!
H~ f !

, (8)

where H denotes the entropy, f is the original his-
togram, and fd is the quantized multinomial prob-
ability mass function.
We then apply SLMHQ to the MR brain image

shown in Figure 2. Notice that the corresponding
histogram for this image is very noisy and has a
unimodal profile. The results given in Figures 7(a)
through 7(c) again show that the histogram quanti-
zation method is reliable and capable of separating
major regions without being influenced by noise.
To establish clinical targeted analyses for the major
brain tissue types, we used a brain tissue model,
discussed in Ref. 4, to determine the number of ma-
jor regions of interest in the image. In our case, we
considered gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF), and their pairwise partial
volume mixtures. Since partial volume pixels cre-
ated by limited resolution are assumed to be not
significant, we are only interested in the functional
region partial volume mixtures that are essentially
an anatomical feature of the brain tissues. It is evi-
dent from Figure 8 that the thresholded image, with
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Fig. 5 Results of the optimal quantization of a given histogram
(cell), where (a), (b), and (c) correspond to the three-, four-, and
five-level quantization, respectively. Note that the higher bins in the
figures represent the centroids and the lower bins represent the
thresholds.
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Fig. 6 Result of a simple thresholding process on the cell image
where four-level quantization is performed.
K55, provides a quite satisfactory result in which
major tissue types are well separated. Specifically,
from dark to bright, they correspond to CSF, CSF/
GM, GM, GM/WM, and WM.
It should be noted that in both examples biases

and classification errors occur because of possible
heavy overlaps among closer components. This
means that a shift of mean values and a shrink of
variance values, or a noisy segmentation of images
will be shown in the final result of thresholding.
This problem is an intrinsic defect of all threshold-
ing methods when they are used for image quanti-
fication and segmentation. In our recent work,4 we
developed a framework by combining the SLMHQ
step with a stochastic model-based technique for
image quantification and segmentation. Our experi-
mental results show that the new threshold selec-
tion method can provide a good initialization for
the follow-up stages, including the expectation-
maximization (EM) algorithm for image quantifica-
tion and the contextual Bayesian relaxation labeling
(CBRL) algorithm for image segmentation, so that
the convergence rate is increased and the likelihood
of being trapped in local optima is reduced.

Table 1 Summary of histogram quantization results (cell image).

Thresholds Means Variances

20 80 9.5

119 158 15.9

174 190 17.1

202 214 32.7

256

MSE=75.18 CR54.5
J

Fig. 7 Results of the optimal quantization of a given histogram
(brain), where (a), (b), and (c) correspond to the three-, four-, and
five-level quantization, respectively. Similarly, the higher bins in the
figures represent the centroids and the lower bins represent thresh-
olds.
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Fig. 8 Result of a simple thresholding process on the MR brain
image where five-level (determined by the information theoretic cri-
teria) quantization is performed.
Table 2 summarizes the comparative effects of the
initializations by random selection and by SLMHQ
scheme on the final quantification and segmenta-
tion of an MR brain image. In the quantification
experiment, we used a standard finite normal mix-
ture (SFNM) to model the true pixel density distri-
bution and apply the EM algorithm to obtain the
maximum likelihood estimate.3,12 The quantifica-
tion error is measured by the global relative en-
tropy (GRE) between the image histogram and the
SFNM distribution. By setting a fixed lower bound
for the GRE value, we could run the EM algorithm
with different random initializations. The mean
value of the iterations required by EM to reach the
specified GRE in 20 independent runs was 67, while
when using SLMHQ initialization, only 35 itera-
tions were needed to achieve the same accuracy.
Furthermore, based on the initial thresholding re-
sult, we used the CBRL algorithm to obtain final
contextual segmentation.4

Our test shows that, at the stationary point (no
pixel relabeling is required for the whole image),
random initialization uses about 25 iterations of the
CBRL and SLMHQ initialization uses only 12 itera-

Table 2 Comparison of random and SLMHQ initializations (MR
image).

Items
Random

initialization
SLMHQ

initialization

Iterations of EM
(GRE50.087 bits)

67 35

Iterations of CBRL
(Stationary Point)

25 12

Absolute GRE Values
(1000 Iterations)

0.014 bits 0.008 bits
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tions of the CBRL. These results show that the
SLMHQ initialization can increase the rate of con-
vergence in both image quantification and segmen-
tation.
Second, we use the same set of random initializa-

tions and apply the EM algorithm with 1000 itera-
tions. The results show that in all cases the EM al-
gorithm reaches a stationary point with a GRE
value of around 0.014 bits. On the other hand, when
using SLMHQ initialization, the final GRE value is
down to about 0.008 bits. This clearly provides us
with evidence that SLMHQ initialization can re-
duce the likelihood of the solution being trapped in
local minima.
We also conducted a comparison study between

the SLMHQ selection and Kohonen’s self-
organizing map (SOM)9 and the classification-
maximization (CM)3 algorithm since these two
methods have also been used frequently to initial-
ize image analysis algorithms in many
applications.9 The evaluation criterion is a critical
issue in our comparison since there is no gold stan-
dard. In this work, we used both the quantization
error (MSE in the gray-level domain) and the quan-
tification error (GRE in the probability domain) as
the performance measure. The numerical results are
given in Table 3. It can be seen that, in general, the
SLMHQ outperforms both SOM and CM algo-
rithms (except for the GRE value of the CM result).
The inferior performances of the SOM and CM al-
gorithms may be explained as follows: In SOM,
since the Euclidean distance is used for competitive
learning, only the mean difference is taken into ac-
count so that the thresholds are the centroids of the
means. This may be suitable only when the vari-
ances of all components are identical. The CM algo-
rithm uses a modified Mahalanobis distance to
achieve a maximum likelihood classification, which
clearly improves the final results. However, since
the prior probability of each component (e.g., prior
in Bayesian classifier) is missing in the formulation,
the method cannot deal with the unbalanced mix-
ture cases. In contrast, the results of SLMHQ selec-
tion are closest to the Bayesian classification when
the image histogram can be modeled by an SFNM
distribution.4,7 In addition, note that neither SOM
nor CM is an automatic method since each one still
needs an initialization step, which is eliminated in
our SLMHQ approach.

Table 3 Comparison of SLMHQ/SOM/CM (cell image).

Items MSE GRE (bits)

SLMHQ 75.18 0.039

SOM 86.29 0.143

CM 77.22 0.031
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4 CONCLUSION AND EXTENDED WORK

In this paper, we present an automatic threshold
selection method for image analysis, and demon-
strate the efficient and reliable application of the
algorithm. The technique is unique in that it poses
the problem as an optimal scalar quantization prob-
lem of the image histogram, and seeks to minimize
a global distortion measure to determine the opti-
mum threshold levels. We have shown that the
coarse-to-fine quantization of the information con-
tent of the histogram allows automatic selection of
the number of threshold values needed to properly
describe the dominant structures of the image at a
given number of levels. The method has great
promise for application to real medical images since
(1) it is insensitive to the presence of noise in the
histogram; (2) it can achieve a fully automatic
search by using a self-organizing mechanism and
no trial-and-error stage is required; and (3) it is an
efficient computational procedure and hence can be
implemented in real time. We have extended our
method to the initialization of hierarchical mixtures
of expert neural networks in computer-aided
diagnosis10 where the feature space is two-
dimensional. The preliminary results are very
satisfactory.4,10
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