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Abstract. A novel approach to cancer detection in biomarkers spectral subspace (BSS) is proposed. The basis spec-
tra of the subspace spanned by fluorescence spectra of biomarkers are obtained by the Gram-Schmidt method. A
support vector machine classifier (SVM) is trained in the subspace. The spectrum of a sample tissue is projected onto
and is classified in the subspace. In addition to sensitivity and specificity, the metrics of positive predictivity, Score1,
maximum Score1, and accuracy (AC) are employed for performance evaluation. The proposed BSS using SVM is
applied to breast cancer detection using four biomarkers: collagen, NADH, flavin, and elastin, with 340-nm excita-
tion. It is found that the BSS SVM outperforms the approach based on multivariate curve resolution (MCR) using
SVM and achieves the best performance of principal component analysis (PCA) using SVM among all combinations
of PCs. The descent order of efficacy of the four biomarkers in the breast cancer detection of this experiment is
collagen, NADH, elastin, and flavin. The advantage of BSS is twofold. First, all diagnostically useful information of
biomarkers for cancer detection is retained while dimensionality of data is significantly reduced to obviate the curse
of dimensionality. Second, the efficacy of biomarkers in cancer detection can be determined. © 2012 Society of Photo-
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1 Introduction
Since the first report on the laser-induced fluorescence spectro-
scopy from biological tissues for cancer detection in the late
1980s,1,2 fluorescence spectroscopy has been widely used for
noninvasive diagnoses of cancer, developed into a field called
optical biopsy. Fluorescence spectra of biochemicals play an
important role in discrimination of cancerous tissue from normal
tissue.3,4 It is observed that a cancerous tissue contains more key
molecules tryptophan and nicotinamide adenine dinucleotide
(NADH), and less collagen than a normal tissue.3,5,6 Quantifica-
tion of the key biochemical components or biomarkers in a tis-
sue provides a means of cancer detection. Multivariate curve
resolution (MCR),7–9 widely applied in chemometrics, can be
employed to quantify the biochemical components by analyzing
fluorescence spectrum. The fluorescence spectrum of a tissue is
a superposition of spectra of various salient biochemicals and
molecules. Thus component quantification is essentially an
ill-posed problem. MCR, which is a model-free data fitting
method, might result in invalid solutions; moreover,
component quantification cannot guarantee to obtain sufficient
statistics of the biomarkers, and the diagnostically useful infor-
mation for cancer detection is inevitably reduced in terms of
information theory. Spectral unmixing method (SUM),10 similar
to MCR, is employed in remote sensing to determine the
endmembers and quantify their fractions in a hyperspectral
imaginary. Compared with MCR, SUM further requires the
full additivity of component fractions that might further reduce
the useful information for cancer detection. On the other hand,
in the cancer detection point of view, without knowing

biomarker components, a classifier can be trained directly
using training samples of normal and cancerous fluorescence
spectra. A fluorescence spectrum is sampled to become a
high-dimensional vector. To obviate the effect of curse of
dimensionality, principal component analysis (PCA)11 can be
applied to reduce the dimensionality by projecting fluorescence
spectra of tissue samples onto a few of selected principal com-
ponents and then a tissue is classified in the spectral subspace
spanned by the selected principal components.12 PCA can effec-
tively employ most power of sample spectra with dimensionality
reduction. The contribution of important biomarkers to the prin-
cipal components is usually unknown, while many unknown
biochemicals may contribute to the principal components. It
is of interest to employ spectra of biomarkers in cancer detection
and know the efficacy of each biomarker.

In detection of a signal coming from a set of known signals
with observed data corrupted by noise and inference, a sufficient
statistic can be obtained by projection of the data onto the
subspace spanned by the set of signals. The sufficient statistic
contains all information about the signal to be detected and
removes the redundant dimension and reduces the power
brought by the noise and inference. The sufficient statistic
can be used in detection of the signal without loss of informa-
tion. This principle is extensively applied in signal detection and
telecommunications.13 Similar to but slightly different from the
signal detection problem, cancer detection needs to determine
whether an observed spectrum, corrupted by noise and the
spectra of unknown biochemicals, comes from a cancerous or
normal tissue based on a set of known spectra of biomarkers.
Given a set of observed fluorescence spectra of tissues, a set
of sufficient statistics can be obtained by projection of the
observed spectra onto the subspace spanned by the spectra ofAddress all correspondence to: R. Alfano, Electrical Engineering Department, The
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biomarkers. The sufficient statistics contain all diagnostically
useful information provided by the biomarkers. Hence cancer
can be detected in this subspace without loss of diagnostically
useful information while significantly reducing dimensionality.

In this paper, for the first time to our knowledge, a new the-
oretical approach of spectral analysis to cancer detection in the
biomarkers spectral subspace (BSS) is proposed. Specifically,
the bases of BSS are obtained by the Gram-Schmidt method
using the spectra of biomarkers. The spectra of human cancer-
ous and normal tissue samples are projected onto the BSS. The
support vector machine (SVM)14,15 in the BSS is trained by
using training samples. To evaluate the efficacy of a classifier
for cancer detection, the metrics of positive predictivity,
Score1, maximum Score1, and accuracy (AC) are employed
in addition to the commonly used sensitivity, specificity, and
receiver operating characteristic (ROC). The BSS approach is
applied in this paper to analyze fluorescence spectra for breast
cancer detection with 340-nm excitation and using four biomar-
kers, collagen, NADH, flavin, and elastin.

2 Methods and Materials

2.1 Spectral Mixture Model

Consider that a tissue consists of a number of components
including the biomarkers of interest. After excitation, each com-
ponent emits a particular fluorescence spectrum. Since a tissue is
usually not particulate, the fluorescence light mostly comes
from the surface of the tissue. The mixed spectrum is a linear
combination of the spectra of all components. Given K biomar-
kers each having a fluorescence spectrum represented by an
N-dimensional vector ck, k ¼ 1; : : : ; K where the dimension
is indexed by wavelength. Without loss of generality, assume
that ck’s are linearly independent, which is usually true in
practice due to the fact of K ≪ N. The fluorescence spectrum
of the tissue can be written as

y ¼
XK

k¼1

akck þ z ¼ Caþ z ; (1)

where C ¼ ðc1; c2; : : : ; cKÞ is the matrix of spectra of
biomarkers and a ¼ ða1; a2; : : : ; aKÞT . Here, ak is a constant
proportional to the quantity of the k’th biomarker in the tissue.
z is the spectrum due to other biochemicals and noise.

In chemometrics, MCR7–9 is applied to quantify chemical
components of a substance by analyzing its spectrum. In remote
sensing, SUM10 is applied to determine the endmembers and
quantify their fractions through the hyperspectral imaginary
in an area. In both cases, the linear mixing model Eq. (1)
can be employed.7–10 Since ak represents the fraction of the
k’th component, ak is nonnegative, and this condition is
imposed in both MCR and SUM. Moreover, in remote sensing,
if the entire composition is considered in a mixed pixel, the full
additivity of

P
K
k¼1 ak ¼ 1 is further constrained in SUM.10

Hence, in the framework of the linear mixing model Eq. (1),
MCR and SUM solve the similar problem but the full additivity
is further imposed in SUM. Clearly, quantification of compo-
nent fractions ak’s that MCR and SUM solve is an ill-posed
problem.

Unlike the chemometrics and remote sensing that aim at
quantifying component fractions, cancer detection via analyzing
fluorescence spectrum of a tissue aims at classification of the
tissue by exploiting the information provided by the spectra

of biomarkers. Hence cancer detection does not need to quantify
the fractions ak’s of biomarkers in the tissue, and the condition
of nonnegative ak’s is useless. In fact, all diagnostically useful
information for cancer detection provided by the biomarkers
spectra is retained in the well-defined spectral subspace of bio-
markers.

2.2 Biomarkers Spectral Subspace

Since cancerous and normal tissues shall be discriminated by
using the biomarkers, all information useful in cancer detection
is embedded in the subspace spanned by the fluorescence spec-
tra ck’s. The basis spectra of the subspace can be obtained by
singular value decomposition (SVD) for C. However, to clearly
see how each biomarker contributes to the subspace and affects
classification, the Gram-Schmidt method is employed to obtain
the basis spectra as

b1 ¼ c1∕kc1k (2)

bk ¼
ck −

P
k−1
i¼1 ðcTkbiÞbi

kck −
P

k−1
i¼1 ðcTkbiÞbik

; k ¼ 2; : : : ; K: (3)

The spectrum y of a tissue sample is projected onto the
subspace and forms a K-dimensional vector

s ¼ BTy; (4)

where B ¼ ðb1; b2; : : : ; bKÞ is the matrix of basis spectra. By
the projection, s retains the component in the spectral subspace
of biomarkers but gets rid of all other components orthogonal to
the subspace. Statistically speaking, s is a sufficient statistic and
contains all information useful in cancer detection when the bio-
markers are used. Meanwhile, since K is usually much smaller
than N, the projection of y onto the subspace also significantly
reduces the dimensionality and effectively obviates the curse of
dimensionality when training a classifier. A tissue shall be clas-
sified in the spectral subspace of biomarkers using s. The order
of biomarker spectra presented in the Gram-Schmidt method
affects B only by a unitary transform and therefore does not
affect the topological relations of a set of tissue spectra in
the subspace; therefore, the order does not affect classification
of tissues for a given classifier.

The power of a sample spectrum y is defined as kyk2 and the
total power of a set of spectra yi for i ¼ 1; 2; : : : ;M is equal toP

M
i¼1 kyikT . By BSS, the spectral dimensionality is significantly

reduced. Consequently, the spectral power of sample tissues in
the subspace is usually less than the total spectral power of the
original samples. The ratio of spectral power in the spectral sub-
space of biomarkers to the total spectral power measures the
power usage of the biomarkers in the BSS. Denote by
Y ¼ ðy1; y2; : : : ; yMÞ the matrix of M sample tissue spectra,
the power usage of the biomarkers in the BSS is equal to

R ¼ tr½ðBTYÞTðBTYÞ�
trðYTYÞ ; (5)

where tr means the trace of matrix. It is expected that a set of
proper biomarkers can attain a high power usage while signifi-
cantly reducing the dimensionality of spectral space.
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SVM is well-known one of the most powerful classifiers.14,15

By using training samples of cancerous and normal tissues, a
classifier that is defined by a hyperplane wTs ¼ b in the sub-
space is obtained by SVM with a linear kernel. In general,
the SVM classifier is determined by and most effectively discri-
minates a number of samples, so called the support vectors,
located at the boundary between cancerous and normal tissues
in the spectral space. A schematic diagram of the proposed BSS
approach to cancer detection in the spectral subspace of biomar-
kers is shown in Fig. 1.

MCR and PCA are popularly used in tissue classification.
The approach and performance of BSS will be compared
with those of the MCR and PCA based classifiers using
SVM, which for completeness are presented in the following
subsections.

2.3 Multivariate Curve Resolution

In the approach of MCR, the fractions ak’s of biomarkers in a
tissue are estimated from the tissue spectrum by7,8

a� ¼ argmin
ak≥0

kCa − yk: (6)

Then the tissue is classified according to a�. Specifically, an
SVM classifier is trained using the estimated fractions of tissue
samples.

Although the vector a� also has K dimensions, it is usually
not located in the spectral subspace where s in Eq. (4) is located.
If there was no constraint of ak ≥ 0, a solution to Eq. (6) would
be a� ¼ Cþy where Cþ is the pseudoinverse of C. By SVD,
C ¼ UΛVT where U and V are the matrices of column and
row singular vectors of C, respectively, and Λ is the diagonal
matrix of nonzero singular values of C; and then
Cþ ¼ VΛ−1UT . Note that the columns of U are also a set of
bases of the spectral subspace of biomarkers (but usually differ-
ent from the set of bases of B by a unitary transform). Hence,
replacing B by U in Eq. (4) produces the same topological rela-
tionship of samples in the spectral subspace and therefore does
not affect classification in the BSS approach. This demonstrates
that the MCR approach is different from the BSS approach in
two ways: 1. the constraint of ak ≥ 0 is imposed and 2. in the
case that a� ¼ Cþy can satisfy the constraint of ak ≥ 0, Cþ
further performs the transform of VΛ−1 after projecting y
onto the spectral subspace by UT. Since all useful information
for cancer detection is in the spectral subspace of biomarkers,
the MCR process of Eq. (6) usually reduces the useful informa-
tion and makes the classification less reliable in the case when
biomarkers, which can provide sufficient discriminability, are

used in cancer detection. SUM is similar to MCR but further
requires the full additivity, which might further reduce the diag-
nostically useful information in cancer detection. In fact, though
the full additivity can be realistic in remote sensing, it is usually
unrealistic in cancer detection as a tissue may contain many
other biochemicals in addition to the biomarkers.

2.4 Principal Component Analysis

In the approach of PCA, the spectra of biomarkers are not
employed. Instead, the principal components (PCs), along
which the most power of sample spectra is located, are obtained
by SVD of sample spectra. Let xi ¼ yi − ȳ be the spectrum of
the i’th sample tissue with subtraction of the average spectrum ȳ
of yi ’s and let X ¼ ðx1; x2; : : : ; xMÞ. By SVD, X ¼ PTQT

where P and Q are the matrices of column and row singular
vectors of X, respectively, and T ¼ diagðt1; : : : ; tMÞ for
M < N is the diagonal matrix of singular values in the descent
order. Let PL ¼ ðp1; p2; : : : ; pLÞ be the matrix of the first L PCs
of P. Then vi ¼ PT

Lxi is the component of xi in the subspace
spanned by the first L PCs. An SVM classifier in the subspace
is trained by vi’s.

By PCA, the spectral dimensionality can be significantly
reduced as L can be chosen to be much smaller than N. Con-
sequently, the spectral power of tissue samples in the PC’s sub-
space is usually less than the total spectral power. The power
usage of PCA, defined as the ratio of spectral power of tissue
samples in the subspace to the total spectral power, is equal to

R ¼ tr½ðPT
LXÞTðPT

LXÞ�
trðXTXÞ ¼

P
L
i¼1 t

2
iP

M
i¼1 t

2
i
: (7)

Therefore, PCA selects a subspace, spanned by the first L PCs,
such that the power usage attains the maximum among all
L-dimensional subspaces. Like BSS, PCA can significantly
reduce the spectral dimensionality, while retaining the most
power of samples. However, the contribution of biomarkers
to the PCs is unknown and many unknown biochemicals can
contribute to the PCs.

2.5 Performance Metrics

To evaluate performance of a classifier in cancer detection,
sensitivity and specificity are commonly used metrics

Sensitivity ¼ TP

TPþ FN
; (8)

Specificity ¼ TN

FPþ TN
; (9)

where TP, FP, FN, TN are the numbers of true positive, false
positive, false negative, and true negative samples, respectively.
In cancer detection, sensitivity is much more important than spe-
cificity. Moreover, the portion of cancerous samples in all sam-
ples in a clinical practice might be small. In this case, increase of
the number of samples that are classified as cancer, i.e.,
TPþ FP, can increase the sensitivity, but this does not mean
the classifier is more sensitive to the true positive samples,
i.e. the cancerous samples. Hence it is worthy to employ the
metrics of positive predictivity þP and Score116

y 

bk 

ck 

s 

Gram-Schmidt 

BTy SVM 
Cancerous 
or normal 

Fig. 1 The BSS approach. Biomarkers spectra ck’s yield the basis spectra
bk’s of the subspace by the Gram-Schmidt method. The spectrum of a
sample tissue y is projected onto the subspace and yields s, based on
which the sample is determined as cancerous or normal tissue by the
SVM classifier.
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þP ¼ TP

TPþ FP
; (10)

Score1 ¼ minðSensitivity; þPÞ: (11)

Positive predictivity (þP) is the portion of true positive samples
among all the samples classified as positive. As TPþ FP
increases, positive predictivity (þP) usually decreases, opposite
to sensitivity. In order to fairly evaluate the performance of a
classifier in sensitivity to true positive samples, both sensitivity
and positive predictivity must be considered and therefore their
minimum, Score1, fairly evaluates the performance of a classi-
fier16 in detection of true positive samples. Positive predictivity
is also called positive predictive value (PPV) that depends on
prevalence, a health-related state of population that is used in
epidemiology. To fairly evaluate performance of a classifier,
accuracy (AC) can also be employed

AC ¼ TPþ TN

TPþ TNþ FPþ FN
; (12)

which is the ratio of the number of all correctly classified sam-
ples to the total number of samples.

Given an SVM classifier wTs ¼ b, the sensitivity, specificity,
positive predictivity, Score1, and AC can be calculated accord-
ingly. Changing the distance b of the hyperplane to the origin
but retaining the normal angle determined by w, different pairs
of sensitivity and specificity can be obtained and form ROC of
the classifier in terms of sensitivity versus 1−specificity. The
closer to one the area under curve (AUC) of ROC is, the better
the performance of a classifier is. Meanwhile, changing b with
fixed w also yields a curve of positive predictivity versus
1−specificity. In general, as the specificity decreases, sensitivity
increases but positive predictivity decreases, and therefore their
intersection is the maximum Score1 that all the classifiers,
wTs ¼ b with changing b, can attain.

2.6 Biomarkers and Samples

In the experiments, the proposed BSS approach is applied to
breast cancer detection via fluorescence spectral analysis and
is compared with the MCR and PCA approaches in perfor-
mance. Six main fluorophores—tryptophan, collagen, elastin,
NADH, flavin, and tyrosine—have been reported to exist in
breast cells and tissues.5,6 The primary fluorophore in the breast
tissue extracellular matrix is type I collagen.17 According to the
Scarff-Bloom-Richardson (SBR) system,18 breast cancerous
cells present the features of higher cell density, uncontrollable
cell division, and nonuniform larger cellular nuclei. Correspond-
ingly, increased fluorescence of the main fluorophores—trypto-
phan, NADH, and flavin—is expected inside the cells. It has
been observed that a cancerous tissue contains more key mole-
cules tryptophan and NADH and less collagen than a normal
tissue.3,5,6 The wavelengths of absorption and emission peaks
are (275, 303) for tyrosine, (287, 342) for tryptophan, (339,
380) for collagen, (351, 410) for elastin, (340, 460) for
NADH, and (375, 525) for flavin, respectively, in the order
of increasing wavelength in the unit of nm. In order for a set
of biomarkers to have their peak emission wavelength close
to the excitation wavelength, four biomarkers—collagen,
NADH, flavin, and elastin—with 340-nm wavelength excitation
were chosen for breast cancer detection in the experiments.

These biomarkers were obtained commercially from Mallinck-
rodt Baker, Inc. Their emission spectra with the same concen-
tration of about 0.75 mg∕cm3 were measured individually with
the excitation at 340 nm using the same experiment method as
that for breast tissues.

Cancerous and normal breast tissue samples were provided
by the Co-operation Human Tissue Network (CHTN) and
National Disease Research Interchange (NDRI) under IRB
approvals. The cancerous and normal breast tissue samples
were diagnosed by a pathology medical doctor. Samples
were neither chemically treated nor were frozen prior to the
experiments. The time elapsed between tissue resection and
measurement may vary for different sample sources. The
elapsed times are about 30 h. Fluorescence spectra of 37 normal
tissues and 37 breast cancerous tissues excited by 340-nm light
were measured using Perkin-Elmer LS-50 spectrometer. In the
spectrometer, an equipped Xenon lamp coupled to the
monochromator delivers light to the sample spot at a desired
wavelength, and the emission from the sample is
collected by emission monochromator connected to a photomul-
tiplier tube. The fluorescence was measured from the front-face
of tissue samples to reduce the distortion of absorption and scat-
tering, which is often done for turbid or opaque samples.19

3 Experimental Results
The objectives of experiments are to examine performance of
the proposed BSS approach, to investigate the efficacy of bio-
markers in cancer detection using the proposed BSS, and to
compare the performance with those of MCR and PCA using
SVM. BSS, MCR, and PCA are applied to breast cancer
detection with four biomarkers—collagen, NADH, flavin, and
elastin—with 340-nm wavelength excitation. Figure 2 shows
the average spectra of the 74 tissues with standard deviations,
which, for both cancerous and normal tissues, are large. The
fluorescence spectra of the four biomarkers are shown in
Fig. 3, and their crosscorrelations are given in Table 1. The
crosscorrelation between biomarker spectra ci, cj is defined
as cTi cj∕ðkcikkcjkÞ. Flavin has low crosscorrelations with
other biomarkers in the fluorescence spectrum. This implies
that flavin can provide a significant component additional to
the subspace spanned by {collagen, NADH, elastin}.
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Fig. 2 Average spectra of normal and cancerous samples with standard
deviations.
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In all the experiments, the linear kernel is applied in the SVM
classifier. To classify the data in an identical space, the sample
spectra in the subspace of biomarker spectra s are identically
linearly transformed to locate in the cube ½0; 1�K (replacing K
by L for the PCA approach). The linear transform retains the
topological relationship among sample spectra and therefore
does not affect the classification result. Then the parameter
of C in the SVM classifier can be identical in all experiments.
By a number of tests on the data of fluorescence spectra in this
paper and others for Raman, resonant Raman, and Stokes shifts
spectra, it is found that C ¼ 1000 can achieve reasonably good
performances and is then used in all experiments.

Figure 4 illustrates the basis spectra of the subspace spanned
by the spectra of all four biomarkers, which are obtained by the
Gram-Schmidt method in the order of collagen, NADH, flavin,
and elastin. That is, b1 is obtained by normalizing spectrum of
collagen to unit length, b2 is obtained by taking the component
of NADH spectrum that is orthogonal to b1 and then normalized
to unit length, etc. The correlations between the biomarker spec-
tra and the basis spectra are illustrated in Table 2. If all the four
biomarkers are used to classify the 74 samples using SVM, the
power usage by BSS is 0.949, specificity is 0.973, sensitivity is
0.919, positive predictivity is 0.971, and therefore Score1 is
0.919, and AC is 0.946. By changing b with the fixed w, the
ROC AUC is 0.993, close to one, the maximum Score1 is
0.973, and the number of support vectors (SV #) is 18 as listed
in the last row of Table 3.

To investigate the efficacy of a biomarker in cancer detection,
performance of all possible combinations of four biomarkers is
calculated, and the results are presented in Table 3. In each row,
a subset of biomarkers is given, the basis spectra of their spectral
subspace are obtained by the Gram-Schmidt method, and then
the SVM is trained. For example, Fig. 5 illustrates the data sam-
ples, support vectors, SVM classifier and NADH in the subspace
spanned by the spectra of {collagen, NADH}. It is clear that
collagen alone is incapable of properly classifying the normal
and cancerous samples as shown in Fig. 5 and the first row
of Table 3. However, collagen and NADH jointly can classify
very well the samples with specificity of 0.973, sensitivity of
0.919, þP of 0.971, Score1 of 0.919, AC of 0.946, ROC
AUC of 0.962, and maximum Score1 of 0.919 shown in Table 3.
Figure 6 shows the sensitivity and positive predictivity (þP) ver-
sus 1−specificity. The ROC AUC, the area under the sensitivity
curve, is equal to 0.962. As the specificity decreases, the sensi-
tivity increases but þP decreases, and their intersection is the
maximum Score1 ¼ 0.919.

From Table 3 the order of efficacy of biomarkers can be
obtained. If one biomarker is used, collagen outperforms the
other three biomarkers. If two biomarkers are used, {NADH,
elastin} outperforms the other five combinations. If three bio-
markers are used, {collagen, NADH, elastin} outperforms the
other three combinations. If all four biomarkers are used, the
performance is the best in terms of the maximum Score1 and
ROC AUC. Hence the order of efficacy of biomarkers in breast
cancer detection in this experiment is collagen, NADH, elastin,
and flavin.
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Fig. 3 Fluorescence spectra of four biomarkers.

Table 1 Crosscorrelations of biomarkers spectra.

Biomarker 1 2 3 4

1 1 0.423 0.065 0.940

2 0.423 1 0.342 0.691

3 0.065 0.342 1 0.218

4 0.940 0.691 0.218 1

1: Collagen; 2: NADH; 3: Flavin; 4: Elastin
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Fig. 4 Basis spectra of four biomarkers obtained by the Gram-Schmidt
method in the order of collagen, NADH, flavin, and elastin.

Table 2 Correlations between the biomarker and basis spectra.

Biomarker b1 b2 b3 b4

Collagen 1 0 0 0

NADH 0.423 0.900 0 0

Flavin 0.065 0.347 0.936 0

Elastin 0.940 0.324 0.048 0.099
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Table 3 also demonstrates that whenever collagen or elastin is
used, about more than 85% power of data spectra is used in the
cancer detection, which means a high power usage by the
biomarkers. Table 3 also implies that when a combination of
biomarkers makes samples easier to be classified in a subspace,
the support vectors are fewer.

The performance of the MCR using SVM classifier is pre-
sented in Table 4. When one biomarker is employed, the per-
formance of MCR is identical to that of BSS. However,
when more biomarkers are employed, overall the BSS with
ROC AUC of 0.993 and maximum Score1 of 0.973 outperforms
the MCR with ROC AUC of 0.973 and maximum Score1 of

Table 3 Performance of BSS.

Biomarkers Power usage Spec. Sens. þP Score1 AC ROC AUC Max. Score1 SV #

1 0.846 0.514 0.649 0.571 0.571 0.581 0.589 0.596 74

2 0.417 0.541 0.486 0.514 0.486 0.514 0.530 0.558 74

3 0.057 0.568 0.459 0.515 0.459 0.514 0.583 0.569 74

4 0.908 0.514 0.595 0.550 0.550 0.554 0.557 0.574 74

1, 2 0.934 0.973 0.919 0.971 0.919 0.946 0.962 0.919 30

1, 3 0.880 0.865 0.838 0.861 0.838 0.851 0.907 0.842 48

1, 4 0.923 0.946 0.865 0.941 0.865 0.905 0.927 0.868 42

2, 3 0.420 0.730 0.486 0.643 0.486 0.608 0.678 0.659 73

2, 4 0.919 0.973 0.946 0.972 0.946 0.959 0.971 0.946 30

3, 4 0.912 0.838 0.784 0.829 0.784 0.811 0.884 0.811 54

1, 2, 3 0.942 0.919 0.919 0.919 0.919 0.919 0.969 0.923 28

1, 2, 4 0.936 0.973 0.946 0.972 0.946 0.959 0.993 0.949 18

1, 3, 4 0.929 0.919 0.838 0.912 0.838 0.878 0.952 0.895 35

2, 3, 4 0.923 0.946 0.919 0.944 0.919 0.932 0.970 0.946 29

1, 2, 3, 4 0.949 0.973 0.919 0.971 0.919 0.946 0.993 0.973 18

1: Collagen; 2: NADH; 3: Flavin; 4: Elastin
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Fig. 5 Normal and cancerous samples, support vectors, SVM classifier
and NADH component in the subspace spanned by the spectra of col-
lagen and NADH. Specificity is 0.973, sensitivity is 0.919, þP is 0.971,
Score1 is 0.919, and AC is 0.946.
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mum Score1 ¼ 0.919.
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Table 4 Performance of MCR.

Biomarkers Spec. Sens. þP Score1 AC ROC AUC Max. Score1 SV #

1 0.514 0.649 0.571 0.571 0.581 0.589 0.596 74

2 0.541 0.486 0.514 0.486 0.514 0.530 0.558 74

3 0.568 0.459 0.515 0.459 0.514 0.583 0.569 74

4 0.514 0.595 0.550 0.550 0.554 0.557 0.574 74

1, 2 0.946 0.919 0.944 0.919 0.932 0.963 0.919 29

1, 3 0.865 0.838 0.861 0.838 0.851 0.907 0.842 48

1, 4 0.838 0.919 0.850 0.850 0.865 0.922 0.865 44

2, 3 0.730 0.568 0.677 0.568 0.649 0.665 0.632 72

2, 4 1.000 0.865 1.000 0.865 0.932 0.869 0.865 45

3, 4 0.865 0.784 0.853 0.784 0.824 0.885 0.825 53

1, 2, 3 0.946 0.892 0.943 0.892 0.919 0.970 0.947 27

1, 2, 4 0.946 0.946 0.946 0.946 0.946 0.979 0.946 23

1, 3, 4 0.919 0.838 0.912 0.838 0.878 0.949 0.892 35

2, 3, 4 0.946 0.865 0.941 0.865 0.905 0.927 0.865 39

1, 2, 3, 4 0.946 0.946 0.946 0.946 0.946 0.973 0.947 24

1: Collagen; 2: NADH; 3: Flavin; 4: Elastin

Table 5 Performance of PCA.

PCs Power usage Spec. Sens. þP Score1 AC ROC AUC Max. Score1 SV #

1 0.926 0.514 0.595 0.550 0.550 0.554 0.563 0.574 74

2 0.036 1.000 0.946 1.000 0.946 0.973 0.994 0.947 14

3 0.025 0.703 0.514 0.633 0.514 0.608 0.576 0.541 74

4 0.008 0.432 0.432 0.432 0.432 0.432 0.486 0.507 74

1, 2 0.962 1.000 0.946 1.000 0.946 0.973 0.995 0.973 14

1, 3 0.951 0.459 0.676 0.556 0.556 0.568 0.673 0.622 74

1, 4 0.934 0.459 0.568 0.512 0.512 0.514 0.571 0.566 74

2, 3 0.061 0.973 0.946 0.972 0.946 0.959 0.997 0.973 12

2, 4 0.043 0.973 0.946 0.972 0.946 0.959 0.995 0.947 14

3, 4 0.033 0.649 0.622 0.639 0.622 0.635 0.606 0.622 74

1, 2, 3 0.987 0.973 0.973 0.973 0.973 0.973 0.994 0.973 13

1, 2, 4 0.970 1.000 0.973 1.000 0.973 0.986 0.994 0.973 13

1, 3, 4 0.959 0.459 0.649 0.545 0.545 0.554 0.655 0.622 73

2, 3, 4 0.068 0.919 0.973 0.923 0.923 0.946 0.986 0.923 14

1, 2, 3, 4 0.995 0.865 0.973 0.878 0.878 0.919 0.957 0.921 14
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0.947 as some useful information might be lost by the MCR
process.

The performance of the PCA using SVM classifier is pre-
sented in Table 5. Although taking into account 92.6%
power of sample spectra, PC 1 is not the most effective PC
in cancer detection; instead, taking only 3.6% power of sample
spectra, PC 2 is the most effective PC in cancer detection. If two
PCs are used, PCs 1, 2 outperform the other combinations. If
three PCs are used, PCs 1, 2, 4 outperform the other combina-
tions. Hence the order of efficacy of PCs in cancer detection is
PC 2, PC 1, PC 4, and PC 3. In fact, PCs 1, 2, 4 outperform PCs
1, 2, 3, 4. In other words, PC 3 deteriorates the performance.
These results imply that employing the PCs with more power
of sample spectra may not result in a better performance, and
using more PCs may not necessarily improve the performance
in cancer detection. Overall, with properly chosen PCs, the PCA
can achieve the same performance of the BSS using all biomar-
kers. However, it is unknown how each biomarker contributes to
the PCs. Moreover, the PCs and their subspace are determined
by the training samples, which may change as the number of
tissue samples increases while the biomarkers spectral space
is completely determined by the biomarkers.

In the above experiments, all 74 samples are used to train the
SVM. To further compare the performance, cross validation
with leave-one-out is also carried out for BSS, MCR, and
PCA using the SVM classifier. The results are presented in
Table 6. As expected, BSS outperforms MCR and achieves
the highest accuracy of PCA among all combinations of PCs.

All the analyses are performed in Matlab and the codes are
available at http://www-ee.engr.ccny.cuny.edu/www/web/ysun
/NanoscopeLab/Codes/BSS-JBO2012/BSS.htm.

4 Conclusions
We propose a novel theoretical approach to cancer detection
from the fluorescence spectral subspace of biomarkers. Projec-
tion of sample spectra onto the biomarkers spectra subspace
(BSS) retains all useful information for cancer detection
while significantly reducing data dimensionality. The efficacy
of biomarkers in cancer detection can be determined in the sub-
space. In comparison, multivariate curve resolution (MCR) and
spectral unmixing methods (SUM) may decrease the diagnosti-
cally useful information of sample spectra and make cancer
detection less reliable. Principal component analysis (PCA)
can achieve good performance if the best combination of
PCs is employed, but PCA relies on the spectra of all
sample tissues, and the contribution of biomarkers to PCs is
unknown.

Applied to breast cancer detection with fluorescence
spectrum of 340-nm wavelength excitation, the proposed
BSS with support vector machine (SVM) outperforms the
MCR-SVM and achieves the best performance of the PCA-
SVM among all combinations of PCs. It is found that the
efficacy of biomarkers in the breast cancer detection is in the
order of collagen, NADH, elastin, and flavin. In principle,
the BSS approach can be applied extensively to detection of
other types of cancers using fluorescence and other spectra.

Table 6 Performance in cross validation with leave-one-out.

Biomarkers or PCs

BSS MCR PCA

Spec. Sens. AC Spec. Sens. AC Spec. Sens. AC

1 0.514 0.595 0.554 0.514 0.595 0.554 0.514 0.595 0.554

2 0.514 0.351 0.432 0.514 0.351 0.432 0.973 0.919 0.946

3 0.568 0.460 0.514 0.568 0.460 0.514 0.676 0.487 0.581

4 0.514 0.541 0.527 0.514 0.541 0.527 0.432 0.432 0.432

1, 2 0.919 0.919 0.919 0.946 0.892 0.919 0.946 0.946 0.946

1, 3 0.865 0.838 0.851 0.865 0.838 0.851 0.460 0.676 0.568

1, 4 0.865 0.839 0.851 0.838 0.919 0.878 0.460 0.514 0.487

2, 3 0.649 0.405 0.527 0.730 0.541 0.635 0.973 0.919 0.946

2, 4 0.973 0.919 0.946 1.000 0.865 0.932 0.973 0.919 0.946

3, 4 0.811 0.784 0.797 0.811 0.757 0.784 0.595 0.595 0.595

1, 2, 3 0.917 0.865 0.892 0.919 0.865 0.892 0.946 0.919 0.932

1, 2, 4 0.946 0.865 0.905 0.865 0.946 0.905 0.973 0.892 0.932

1, 3, 4 0.892 0.838 0.865 0.892 0.838 0.865 0.405 0.595 0.500

2, 3, 4 0.919 0.919 0.919 0.892 0.811 0.851 0.919 0.919 0.919

1, 2, 3, 4 0.973 0.892 0.932 0.946 0.892 0.919 0.838 0.892 0.865

For BSS and MCR: 1: Collagen; 2: NADH; 3: Flavin; 4: Elastin
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In addition to the commonly used sensitivity and specificity,
the metrics of positive predictivity, Score1, maximum Score1,
and accuracy (AC) can jointly provide a proper measurement
of the sensitivity of a classifier to the true positive cancerous
samples.

Finally, it needs to be pointed out that the efficacy of the BSS
approach in cancer detection ultimately depends on the diagnos-
tic power provided by the used biomarkers; moreover, the BSS
approach does not attempt to quantify the fractions of biomar-
kers in a tissue. However, the BSS approach can retain all the
diagnostic information of biomarkers, while significantly redu-
cing the dimensionality, and provide a means to determine the
efficacy of a biomarker in cancer detection.
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