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Abstract. Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths
worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and
resolving pathologically related features on human lung tissues. However, conventional means of analyzing
CARS images requires extensive image processing, feature engineering, and human intervention. This study
demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and
cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural
networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying
normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational
method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts
aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging. © The Authors. Published by SPIE

under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the

original publication, including its DOI. [DOI: 10.1117/1.JBO.22.10.106017]

Keywords: nonlinear microscopy; medical imaging; lung cancer; classification; artificial intelligence; deep learning.

Paper 170444RR received Jul. 7, 2017; accepted for publication Oct. 4, 2017; published online Oct. 30, 2017.

1 Introduction
Lung cancer is responsible for the most cancer-related deaths in
the world. In 2017, it is estimated that there will be 222,500
cases of lung cancer and 155,870 deaths from lung cancer in
the United States.1 Despite the steady increase in survival for
most cancers in recent years, advance has been slow for lung
cancer, resulting in only 18% 5-year survival rate.1,2 This low
rate is partly due to the asymptomatic nature of lung lesions,3

which prevents lung cancer from being diagnosed at an earlier
stage.4 There are two main types of lung cancer: about 80% to
85% of lung cancer is nonsmall cell lung cancer (NSCLC), the
remaining forms are small-cell lung cancer. Adenocarcinoma
and squamous cell carcinoma are the two major subtypes of
NSCLC. Adenocarcinoma is the most common form of lung
cancer that accounts for about 40% of total lung cancer inciden-
ces. Squamous cell carcinoma accounts for about 30% of total
lung cancer incidences, and they are often linked to a history of
smoking. Currently, a computed tomography (CT)-guided fine
needle biopsy is the standard routine for pathological analysis
and definitive diagnosis of lung cancer.5,6 Although CT-guided
fine needle aspiration can reduce the amount of tissue taken and
complications, because of the limited resolution of CT scans and
the respiratory motion of patients, it is sometimes difficult to
obtain samples precisely at the site of neoplastic lesions and
thus the correct diagnosis.7 Some patients will have to undergo
rebiopsy, resulting in increased costs and delay in diagnosis and
definitive treatment. Therefore, it would be beneficial to develop

techniques that allow medical practitioners to detect and diag-
nose lung cancer with high speed and accuracy.

In recent years, although needle biopsy and pathology
analysis still remain the gold standard for definitive lung cancer
diagnosis, rapid development in nonlinear optical imaging tech-
nologies has contributed to advancing diagnostic strategies in
cancer, including autofluorescence bronchoscopy,8–10 two-pho-
ton-excited fluorescence microscopy,11,12 and optical coherence
tomography.13–15 Our group has previously demonstrated the
use of coherent anti-Stokes Raman scattering (CARS) imaging
as a fast and accurate differential diagnostic tool for the detection
of lung cancer.16–18 CARS is an emerging label-free imaging tech-
nique that captures intrinsic molecular vibrations and offers real-
time submicron spatial resolution along with information of the
biological and chemical properties of samples, without applying
any exogenous contrast agents that may be harmful to humans.19

In CARS, two laser beams are temporally and spatially over-
lapped at the sample to probe designated molecular vibrations
and produce signals through a four-wave mixing process19 in a
direction determined by the phase-matching conditions.20 When
the frequency difference between the pump field and the Stokes
field matches the vibrational frequency of Raman active mole-
cules in the sample, the resonant molecules are coherently driven
to an excited state and then generate CARS signals that are
typically several orders of magnitude stronger than conventional
spontaneous Raman scattering.21 We have shown that CARS
can offer cellular resolution images of both normal and cancerous
lung tissue where pathologically related features can be clearly
revealed.16 Based on the extracted quantitative features describing
fibrils and cell morphology, we have developed a knowledge-
based classification platform to differentiate cancerous from
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normal lung tissues with 91% sensitivity and 92% specificity.
Small-cell carcinoma was distinguished from NSCLC with 100%
sensitivity and specificity.18 Since CARS has the capability to
provide three-dimensional (3-D) images, we have also designed
a superpixel-based 3-D nuclear segmentation and clustering algo-
rithm22–24 to characterize NSCLC subtypes. The result showed
greater than 97% accuracy in separating adenocarcinoma and
squamous cell carcinoma.17

The above-mentioned classification algorithms, however,
require extensive image preprocessing, nuclei segmentation,
and feature extraction based on the cellular and fibril structural
information inherent in CARS images. A total of 145 features
was directly calculated from the CARS images to separate fibril-
dominant normal from cell-dominant cancerous lung lesions.18

A semiautomatic nuclei segmentation algorithm was imple-
mented to facilitate the measurement of morphological features
that describe both the attributes of individual cells and their rel-
ative spatial distribution, such as cell volume, nuclear size, and
distance between cells.25 Thirty-five features were extracted
based on the segmentation result to distinguish cancerous lung
lesions. Partial least squares regression26 and a support vector
machine27 were employed as the classification algorithms.
Aiming at improving the classification accuracy of the two sub-
types of NSCLC, we extended the two-dimensional (2-D) analyti-
cal framework to a 3-D nuclear segmentation, feature extraction,
and classification system. This diagnostic imaging system
involved partitioning the image volume into supervoxels and man-
ually selecting the cell nuclei.28 Another thirty-two features were
computed to build a classifier capable of differentiating adenocar-
cinoma and squamous cell carcinoma lung cancer subtypes.17

To circumvent the complex image processing and feature
engineering procedure and avert any possible human interven-
tions, in this paper, we demonstrate the classification of CARS
images on lung tissues using a deep convolutional neural
network (CNN) that needs no hand-crafted features.29–34 Deep
learning algorithms, powered by advances in computation and
very large datasets, have recently been shown to be successful in
various tasks.35–39 CNN is effective for image classification
problems because the nature of weight sharing produces infor-
mation on spatially correlated features of the image. Since
training a deep CNN from scratch is computationally expensive
and time-consuming, we apply a transfer learning approach
that takes advantage of the weights of a pretrained model
named GoogleNet Inception v3, which was pretrained on
∼1.28 million images (1000 object categories) from the 2014
ImageNet large-scale visual recognition challenge and achieved
5.64% top-5 error.40–45 To the best of our knowledge, the char-
acterization of CARS or other label-free microscopic images
using deep CNN has not been attempted. Combining the label-
free high-resolution imaging modality and deep learning image
classification algorithm will lead to a strategy of automated
differential diagnosis of lung cancer.

2 Materials and Methods

2.1 Tissue Sample Preparation

Fresh human lung tissues were obtained from patients under-
going lung surgery at Houston Methodist Hospital, Houston,
Texas, approved by the Institutional Review Board. The excised
tissues were immediately snap-frozen in liquid nitrogen for
storage. Frozen tissue samples were passively thawed for 30 min
at room temperature, placed on a 170-μm cover slide (VWR,

Radnor, Pennsylvania), and then reversely placed on an imaging
chamber to keep the samples from being pressed. CARS images
were acquired ex vivo using a modified confocal microscope.
Each lung tissue was imaged at several different locations,
and at each location a series of images was acquired at different
image depths, called a z-stack.46 Each z-stack was considered as
an independent sample. A total of 388 z-stacks (7926 images)
was collected, including 83 (1920 images) normal cases, 156
(2618 images) adenocarcinoma cases, 111 (2535 images) squ-
amous cell carcinoma cases, and 38 (853 images) small-cell car-
cinoma cases. Small-cell carcinoma cases are seldom resected
clinically, resulting in a lower number. After experiments, all
samples were marked to indicate the imaged locations, fixed
with 4% neutral-buffered formaldehyde, embedded in paraffin,
sectioned through imaged locations, and stained with hematoxy-
lin and eosin (H&E). Bright-field images of the H&E slides were
examined by pathologists with an Olympus BX51 microscope.
Pathologists labeled the tissue based on the H&E-sectioning
results, which was then used as the ground truth for the CARS
images. Each tissue has only one specific label, i.e., we did not
use tissues that might have both normal and tumor cells.

2.2 Coherent Anti-Stokes Raman Scattering
Imaging System

The schematic of the CARS imaging system was previously
described.16 The light sources include a mode-locked Nd:
YVO4 laser (High-Q Laser, Hohenems, Austria) that delivers
a 7-ps, 76-MHz pulse train at 1064 nm used as the Stokes
beam, and a frequency-doubled pulse train at 532 nm, which
is used to pump a tunable optical parametric oscillator (OPO,
Levante, APE, Berlin, Germany) to generate the 5-ps pump
beam at 817 nm. The resulting CARS signal is at 663 nm, cor-
responding to the CH2 stretch vibration mode (2845 cm−1). The
Stokes and pump laser beams are spatially overlapped using
a long-pass dichroic mirror (q10201pxr, Chroma, Vermont) and
temporally overlapped using an adjustable time-delay line. They
are tightly focused by a 1.2-NA water immersion objective
lens (60×, IR UPlanApo, Olympus, Melville, New Jersey),
yielding CARS signals with a lateral resolution of 0.4 μm and
an axial resolution of 0.9 μm. A bandpass filter (hq660/40m-2p,
Chroma Inc.) is placed before the photomultiplier tube (PMT,
R3896, Hamamatsu, Japan) detector to block unwanted back-
ground signals. The PMT is designed to be most sensitive
in the visible wavelength region. The upright microscope is
modified from an FV300 confocal laser scanning microscope
(Olympus, Japan) adopting a 2-D galvanometer. A dichroic mir-
ror is used in the microscope to separate the CARS signals from
excitation laser beams. The acquisition time is about 3.9 s per
imaging frame of 512 × 512 pixels. Image is displayed with the
Olympus FluoView v5.0 software. The field of view (FOV) that
we can normally achieve is 236 × 236 μm2. The average laser
power is 75 mW for pump beam and 35 mW for Stokes beam,
both within the safety range. In the human body, the tolerance to
laser power is much higher than that in thawed tissues, therefore
less photodamage is expected and the current laser power is
expected to be suitable for clinical applications.47

2.3 Data Preparation

While CARS images corresponding to the same tissue but from
different viewpoints look very different, a z-stack is likely to
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contain similar images at different imaging depths, as the small-
est z-step is only 1 μm. Therefore, extensive care was taken to
ensure that images from the same z-stack were not split between
the training and testing sets. We randomly picked eight normal
lung z-stacks (160 images), 16 adenocarcinoma z-stacks (257
images), 12 squamous cell carcinoma z-stacks (239 images),
and four small-cell carcinoma z-stacks (102 images) as our
holdout test set. The rest of the dataset (7168 images) was used
for training and validation. We converted our grayscale CARS
images into RGB and resized each image to 299 × 299 pixels as
required by the pretrained model.

To facilitate the training of deep neural networks, a large
amount of labeled data is normally needed. Unlike image data-
bases, such as the ImageNet43 and MS-COCO,48 that are pub-
licly available for the computer vision community, we have
only a limited number of CARS images on human lung tissues,
thus data augmentation was applied to prevent overfitting.49

Overfitting occurs when a model is excessively complex as com-
pared to the number of training data, so the model is not able to
learn patterns that can generalize to new observations. Since
tissues do not possess a particular orientation, performing
augmentation with rotation and mirroring transformation should
not alter the pathological information contained on the CARS
images. Each image in the cross-validation set was augmented
by a factor of 120 by randomly rotating the image 60 times and
then flipping the rotated image horizontally. The cross-valida-
tion set contains 860,160 images after image augmentation.
We did not use other augmentation methods that might involve
artificial distortions on pixel values. The largest inscribed rec-
tangle was then cropped from each image, resulting in an image
with 362 × 362 pixels.

2.4 Transfer Learning

Transfer learning refers to the process of using the knowledge
learned on a specific task and adapting this knowledge to a dif-
ferent domain, based on the hypothesis that the features learned
by the pretrained model are highly transferable.42,50 Transfer
learning reduces the time and computational resources needed
to train deep neural networks from scratch on a large amount of
data because it does not need to take time optimizing millions of
parameters. Despite the disparity between natural images and

biological images, deep CNN architectures comprehensively
trained on the large-scale well-annotated ImageNet can still be
transferred to biological and medical domains and have demon-
strated their successes in various image classification tasks, such
as skin cancer,37 colon polyps,51 thyroid nodules,52 thoraco-
abdominal lymph nodes, and interstitial lung disease.53 The
GoogleNet Inception v3 model consists of 22 layers stacked
on top of each other (see Fig. 1).40 We replaced the final clas-
sification layer with four classes instead of the original 1000
ImageNet classes, the previous layers remained unchanged
because the existing weights are already valuable at finding
and summarizing features that are useful for image classification
problems. Generally speaking, earlier layers in the model con-
tain more general features, such as edge detectors or shape
detectors, which should be ubiquitous for many image classifi-
cation tasks, whereas later layers contain higher level features.
We retrained the Inception v3 model using only pixels and labels
of CARS images as inputs, and fine-tuned the final classification
layer using a global learning rate of 0.05.

We randomly divided the training and validation set into nine
partitions so that we could use ninefold cross validation to val-
idate the performance of the algorithm. We then calculated and
cached the bottleneck values for each image to accelerate the
following training process. The bottleneck values are the infor-
mation stored in the penultimate layer, which will be used multi-
ple times during training.36 In each step of training, the model
selected a small batch of images at random, found their bottle-
necks from the cache, and fed them into the final classification
layer to perform prediction. Those predictions were then com-
pared against the ground-truth labels to iteratively update the
final layer’s weights through backpropagation.55 We used cross
entropy as the cost function to measure the performance of our
model. Smaller cross-entropy value means smaller mismatch
between the predicted labels and the ground-truth labels. After
40,000 steps, the retrained model was evaluated on the holdout
test set that was separated from the training and validation sets.
All methods were implemented using Google’s TensorFlow
(version r1.1) deep learning framework56 on Amazon Web
Services (AWS) EC2 p2.xlarge instance, which contains 4
vCPU with 61 GiB memory and 1 GPU with 12 GiB memory.
It took about 3 days to calculate and cache all the bottleneck

Fig. 1 Transfer learning layout. Data flow is from left to right: a CARS image of human lung tissue is fed
into GoogleNet Inception v3 CNN pretrained on the ImageNet data and fine-tuned on our own CARS
images comprising four classes: normal, small-cell carcinoma, squamous carcinoma, and adenocarci-
noma. The model outputs the probability distribution over the four classes and we label the CARS image
with the largest probability class. GoogleNet Inception v3 CNN architecture reprinted from Ref. 54.
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values for each image in the cross-validation set. After that, each
cross-validation round took about half an hour, whereas the
prediction on the holdout test set needed only 6 min.

3 Results

3.1 Coherent Anti-Stokes Raman Scattering
Imaging of Human Lung Tissues

Figure 2 represents cellular-level CARS images (upper panels)
and the corresponding H&E staining results (lower panels)
obtained from normal, adenocarcinoma, squamous cell carci-
noma, and small-cell carcinoma human lung tissues. The normal
lung mainly consists of well-organized fibrous elastin and col-
lagen structures [shown as bright structures in Fig. 2(a)], and
they work together to form a supporting network for the main-
tenance and integrity of lung tissues. Elastin constitutes up to
50% of the lung connective tissue mass and acts as the elastic
protein allowing the lung tissue to resume its original shape after
stretching. Collagen fibers are well-aligned proteins that provide
support to maintain the tensile strength of lungs during the res-
piration process.57 In contrast, cancerous lung tissues no longer
preserve rich fibrous structures because cancer progression
is often associated with the destruction and degradation of
the original matrix network at the tumor invasion front.58,59

Therefore, Figs. 2(b)–2(d) showmuch denser cellularity and sig-
nificantly less fibrous structures compared with the normal sam-
ples. Because cell nuclei (yellow arrow) have less CH2 bonds
compared to cell membrane and cytoplasm, they appear as
dark spots in CARS images.

Commonly used pathological features can be identified in the
three neoplastic lung types. Adenocarcinoma mostly contains

cancer cells that have nested large round shapes and vesicular
nuclei, with inhomogeneous cytoplasm forming glandular struc-
tures.60 Only a few broken elastin and collagen fibers are present
in the tissue. Typical features in squamous cell carcinoma are
pleomorphic malignant cells in sheets with abundant dense
cytoplasm and formation of intracellular bridges.60 Small-cell
carcinoma is noted by round/oval cells with high nuclear–cyto-
plasmic radio.61 All CARS images illustrate good pathological
correlation with H&E staining sections from the same tissue
samples. Minor observed discrepancies between CARS and his-
tology imaging and the inconsistent colors of H&E imaging
were attributed to tissue fixation, processing, staining, and sec-
tioning artifacts. The difficulty in locating the exact imaging
spots due to the small FOVof CARS imaging and small working
distance of the objective may also contribute to the mismatch
between CARS and H&E imaging.

3.2 Automatic Classification and Differential
Diagnosis of Lung Tissues

We first validated the effectiveness of transfer learning on CARS
images using a nine-fold cross-validation approach. The entire
training and validation dataset was split into nine folds (folds are
split into disjoint sets of patients). We held one fold at each time
as the test set and trained the model on the remaining eight folds
of the data, until each of the nine folds had served as the test
set. The overall accuracy that the retrained model achieves is
89.2%� 2.1% (mean� SD). The learning curves of training
and validation for one cross-validation round displayed by
TensorBoard are shown in Fig. 3. The stochastic gradient
descent optimization algorithm was used to iteratively minimize
the cost function. Sixty-four images were randomly picked in

Fig. 2 Representative CARS images (upper panels) and corresponding H&E-stained images (lower
panels) of human lung tissues: (a) and (e) normal lung, (b) and (f) adenocarcinoma, (c) and (g) squamous
cell carcinoma, and (d) and (h) small-cell carcinoma. Scale bars: 50 μm.
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each training step to estimate the gradient over all examples. The
cost functions of training and validation in Fig. 3 both incline
downward and converge to a low value after 40,000 steps.

We then tested the retrained model on the holdout test set that
had never been seen by the model. The model also achieves
91.4% prediction accuracy, indicating its robustness to data.
Figure 4(a) shows the normalized confusion matrix of our
method on the holdout test set. Each row represents the instances
in a ground-truth class and each column represents the instances
predicted by the model. It can be noted that 100% of the actual
normal cases are correctly classified as normal. 95% of the
actual small-cell lung carcinoma cases are correctly labeled as
small-cell lung carcinoma, only 4% of them are wrongly
identified as nonsmall cell lung carcinoma. It is also worth men-
tioning that the two subtypes of NSCLC are sometimes misclas-
sified as each other due to their morphological similarities,
especially in poorly differentiated areas. This is in accordance
with the challenges for pathologists in separating adenocarci-
noma and squamous cell lung carcinoma.62

Given that the distribution of class labels in our dataset is not
balanced, we plotted the receiver operating characteristic (ROC)
curves [see Fig. 4(b)] for three conditions: (1) separating cancer-
ous lung images from normal lung images; (2) separating small-
cell carcinoma lung images from nonsmall cell carcinoma lung
images; and (3) separating the subtypes of nonsmall cell carci-
noma lung images, i.e., adenocarcinoma and squamous cell lung
carcinoma. ROC curves feature false positive rate (1–specificity)

on the X axis and true positive rate (sensitivity) on the Y axis.63

Specifically, “true positive” in each condition is: (1) the number
of correctly predicted cancerous lung images; (2) the number of
correctly predicted small-cell lung images; and (3) the number
of correctly predicted adenocarcinoma lung images. When a test
CARS image is fed through the model, the very last classifica-
tion layer outputs a normalized probability distribution over four
classes (normal, small-cell, adenocarcinoma, and squamous cell
carcinoma). The ROC curve for each condition is created by
plotting the true positive rate against the false positive rate at
various discrimination thresholds. The area under the curve
(AUC score) is also computed for each condition, whereas an
AUC score close to 1 indicates an excellent diagnostic test. From
a medical perspective, minimizing false negatives (known as
type II error) is more important in cancer diagnosis because
missing a cancerous case will lead to patients being untreated.

To better understand the internal features learned by the
retrained model, we visualized the penultimate layer using t-dis-
tributed stochastic neighbor embedding (t-SNE) in Fig. 5.64,65

Each point in Fig. 5 represents a CARS image from the holdout
test set and the color represents its ground-truth label. The origi-
nal 2048-dimensional output of the model’s last hidden layer is
reduced and projected into a 2-D plane. t-SNE basically converts
similarities between data points to joint probabilities and tries to
minimize the Kullback–Leibler divergence between the joint
probabilities of the low-dimensional embedding and the high-
dimensional data.64 The points that belong to the same class

Fig. 3 Learning curves of training and validation for one cross-validation round visualized by
TensorBoard. The short-term noise is due to the stochastic gradient descent nature of the algorithm.
The curves are smoothed for better visualization.
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should be clustered close together. As can be seen in Fig. 5,
almost all the normal cases are grouped together clearly, which
corresponds to the results in the confusion matrix. A few mis-
classified small-cell cases are located near the squamous cell
carcinoma cases. Similarly, there exists some overlap between
adenocarcinoma and squamous cell carcinoma as these two lung
cancer subtypes have noticeable pathological similarities.

Neural networks have long been known as “black boxes”
because it is difficult to understand exactly how any particular,
trained neural network functions due to the large number of
interacting, nonlinear parts.66 In Fig. 6, we fed a normal and
small-cell carcinoma CARS images into the model and visual-
ized the first convolutional layer that consists of thirty-two
kernels. Certain conventional image descriptors developed for
object recognition can be observed in Fig. 6, such as detecting
the edges of cell nuclei and detecting round lipid droplets. The

visualization of internal convolutional layers thus gives us better
intuition on the convolutional operations inside the deep CNN
model.

Finally, we proposed a majority voting strategy to further
improve the performance of the model in predicting lung tissue
classes. Since multiple CARS images at different imaging
depths were acquired at each sampling point, we label the tissue
type with the majority class to adjust the conflicting results
among each z-stack. In the holdout test set, we correctly predict
8 out of 8 normal lung tissues, 4 out of 4 small-cell carcinoma
lung tissues, 15 out of 16 adenocarcinoma lung tissues, and
9 out of 11 squamous cell carcinoma lung tissues. The overall
prediction accuracy of this strategy is 92.3%, which is expected
to be higher if we have more z-stacks for testing. This method
gives more confidence in determining the tissue types without
sacrificing too much time, as the acquisition of a z-stack nor-
mally takes less than a minute.

4 Discussion
Automating image analysis is essential to promoting the diag-
nostic value of nonlinear optical imaging techniques for clinical
applications. Thus far, we have explored the potential of CARS
imaging in differentiating lung cancer from nonneoplastic lung
tissues and identifying different lung cancer types.16–18 These
strategies, however, are based on extraction and calibration of a
series of disease-related morphology features. Therefore, they
are not fully automatic because the quantitative measurement of
the features requires the segmentation of cell nuclei, which
involves a manual selection procedure and creates potential bias.
In the superpixel-based 3-D image analysis platform, labeling
the cell nuclei on all the images of one z-stack would take more
than five minutes, which is very inefficient for analysis of a large
amount of image data.

In this study, we exploited the recent advances in deep CNN
and demonstrated how we can apply the model pretrained on
the ImageNet data to a completely new domain such as
CARS images and yet achieve reliable results. Our experimental
results indicate that the proposed deep learning method has the

Fig. 5 t -SNE visualization of the last hidden layer representations in
the deep CNN of the holdout test set (758-CARS images). Colored
point clouds represent four different human lung tissue classes clus-
tered by the algorithm. Red points are normal lung images, blue points
are small-cell carcinoma images, green points are squamous cell
carcinoma images, and purple points are adenocarcinoma images.

Fig. 4 Deep CNNmodel performance on the holdout test set. (a) Normalized confusion matrix. Each row
represents the instances in a ground-truth class and the value in each column represents what percent-
age of the images is predicted to a certain class. (b) ROC curves for three conditions: separating cancer-
ous from normal lung images (light blue); separating small-cell carcinoma from nonsmall cell carcinoma
lung images (dark blue); separating adenocarcinoma and squamous carcinoma lung images (orange).
AUC scores are given in the legend.
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following advantages when coupled with label-free CARS
images. First, deep CNN can extract useful features automati-
cally,45 thus we can use raw image pixel values directly as the
input for the model. The algorithm described in this paper can
label a batch of images quickly (0.48 s per image) without any
preprocessing or human intervention. Second, we separated nor-
mal, small-cell carcinoma, adenocarcinoma, and squamous cell
carcinoma lung CARS images using a single retrained model. In
comparison, we previously built three different classifiers using
three different feature sets in a hierarchical manner to separate
normal from cancerous lung, small-cell carcinoma from non-
small cell carcinoma, and adenocarcinoma from squamous cell
carcinoma, respectively. Third, we used a larger dataset (7926
images as compared to previously ∼1000 images) and did not
exclude the images that have blurry cell nuclei, as in a previous
semiautomatic approach, resulting in a more robust model
performance. Yet we still achieved comparable results to the
previously reported results, i.e., 98.7% sensitivity and 100%
specificity in separating cancerous from normal lung, 96.1%
sensitivity and 96.2% specificity in separating small-cell
carcinoma from nonsmall cell carcinoma, and 93.0% overall
accuracy in separating adenocarcinoma from squamous cell car-
cinoma. Finally, in our previous works, we validated the perfor-
mance of the classification algorithm using the leave-one-out
method in which we repeatedly reserved one observation for
prediction and trained the model on the rest of the dataset.
However, this is a suboptimal validation method as compared

to the K-fold cross validation (in our method K ¼ 9), as it
leads to higher variation in testing model effectiveness and it
is computationally expensive when the size of the dataset is big.

We noticed that our CARS images have uneven background,
most likely due to the chromatic aberrations. Interestingly, the
traditional approach to remove background information of the
microscopic images before feeding images into the deep CNN
actually reduced the accuracy of prediction. This may be due to
the fact that the background information contains subtle infor-
mation about the foreground image features of interest, which
normally are ignored by human inspectors. Meanwhile, it should
be noted that most lung cancers are histologically heterogeneous
among different patients, and the same cancer subtype may have
different pathological characteristics at different stages, resulting
much larger within-class appearance variations.60 Figure 7 shows
certain representative misclassified CARS images. Figure 7(a) is a
false negative case where the model labels an adenocarcinoma
image as normal, which may be caused by the fibrous structure
(yellow arrow) that is rarely seen in cancerous tissues. This is
called a type II error, which must be minimized in clinical prac-
tice. In Fig. 7(b), a squamous cell carcinoma is incorrectly clas-
sified as adenocarcinoma with a probability of 76%, indicating
that the model is sometimes confused in differentiating adenoma
and squamous cell carcinoma cases. In fact, separating NSCLC
by visual inspection is also challenging for pathologists. In
Fig. 7(c), a small-cell carcinoma is wrongly identified as squ-
amous cell carcinoma. These mistakes might be induced by

Fig. 6 Visualization of the first convolutional layer in GoogleNet Inception v3 model for a normal and a
small-cell lung carcinoma CARS images. The first convolutional layer contains 32 kernels with a size of
149 × 149 pixels.

Fig. 7 Representative CARS images of human lung tissues misclassified by the algorithm.
(a) Adenocarcinoma is labeled as normal lung, (b) squamous cell carcinoma is labeled as adenocarci-
noma, and (c) small-cell carcinoma is labeled as squamous cell carcinoma. Scale bars: 50 μm.
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the fact that these misleading images are minorities in the data-
set, and consequently the model has not been well trained to
label them correctly. Therefore, the best way to further improve
the current performance is collecting more data that can cover a
broader morphological spectrum of lung cancer tissues. Fine-
tuning the hyperparameters across all the previous layers may
also boost the model performance. However, the Inception v3
CNN contains about 5 millions tunable parameters and would
thus require sufficiently large numbers of uniquely labeled
images than our current method. Given the amount of data
(before augmentation) and the computational resources avail-
able, we believe that leveraging the pretrained weights would
be a more efficient solution than fine-tuning hyperparameters
of the previous layers.

In the past decades, increasing attention has addressed devel-
oping minimized optical fiber-based CARS imaging probes
for direct in vivo applications at clinical settings.67–70 Our
group has been studying the mechanisms of optical fiber deliv-
ered CARS,71–74 and recently reported a fiber-based miniatur-
ized endomicroscope probe design that incorporates a small
lens part with microelectro-mechanical systems.75 This device
has opened up the possibility of applying CARS in vivo to pro-
vide reliable architectural and cellular information without the
need for invasive and sometimes repetitive tissue removal. We
expect that combing a miniaturized fiber optics probe and a deep
learning-based automatic image classification algorithm will
have the potential to detect and differentiate lung tissue on-the-
spot during image-guided intervention of lung cancer patients
and save precious time in sending tissue specimens for frozen
sectioning diagnosis in a pathology laboratory. Furthermore,
deep learning is agnostic to the type of images, thus it can be
applied not only on CARS images, but also some other nonlin-
ear optical imaging and microscopy imaging modalities, such as
two-photon-excited autofluorescence (TPEAF) and second har-
monic generation (SHG). We have proven that the morphologi-
cal difference shown in TPEAF and SHG images can be used to
differentiate normal and desmoplastic lung tissues.76 A multi-
modal image classification algorithm can be developed in the
future to incorporate with multimodal imaging techniques, such
that more tissue structures can be detected and analyzed in real
time.

In conclusion, we demonstrated the viability of analyzing
CARS images of human lung tissues using a deep CNN that
was pretrained on ImageNet data. We applied transfer learning
to retrain the model and built a classifier that can differentiate
normal and cancerous lung tissues as well as different lung
cancer types. The average process time of predicting a single
image is less than half a second. The reported computerized
and label-free imaging strategy holds the potential for substan-
tial clinical impact by offering efficient differential diagnosis of
lung cancer, enabling medical practitioners to obtain essential
information in real time and accelerate clinical decision-making.
When coupled with a fiber-based imaging probe, this strategy
would reduce the need for tissue biopsy while facilitating defini-
tive treatment. This method is primarily constrained by data and
can be further improved by having a bigger and more general-
ized dataset, to validate this technique across the full distribution
and spectrum of lung lesions encountered in clinical practice.
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