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Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging
model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the
scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed
tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to
develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of lIR algo-
rithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of
the estimated data with the available projection data. In order to characterize this optimization problem, we apply
it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data
containing a level of noise comparable to that of the breast CT application. The proposed method is demon-
strated for both complete field-of-view and ROl imaging. To demonstrate the potential utility of the proposed ROI
imaging method, it is applied to actual CT scanner data. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
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1 Introduction

Iterative image reconstruction (IIR) for x-ray computed tomog-
raphy (CT) has been heavily investigated in recent years.' It is
well known that IIR involves a substantially greater computa-
tional effort than direct reconstruction algorithms such as fil-
tered back-projection (FBP). For CT, this issue is particularly
acute because it is a high-resolution imaging modality, requiring
the use of small voxels to achieve the inherent resolution of the
CT data.” Because IIR is based on implicit estimation of the
image, a complete representation of the subject within the scan-
ner view domain is also necessary. Objects appearing in the
x-ray projections such as the patient couch, which have no rel-
evance to the imaging task, must also be accounted for in the
reconstruction volume. Such a complete representation is only
necessary for implicit methods and not direct reconstruction
algorithms such as FBP, where the inversion equation need
only be evaluated at points within an ROI. The combination
of IIR requiring the representation of large volumes and use
of small voxel exacerbates the computational burden issue
for CT image reconstruction. To address this problem, we pro-
pose a method for direct ROI IR, which will allow for the use of
smaller reconstruction volumes focused on ROIs relevant to a
given imaging task.

The main tool employed to realize ROI IIR appears in our
conference record (CR) publication for the 2014 SPIE medical
imaging conference.’ In the CR, we presented an offshoot of
our adaptive steepest descent—projection onto convex sets algo-
rithm for edge enhanced image reconstruction applied to
clinical digital breast tomosynthesis (DBT) projection data.

*Address all correspondence to: Emil Y. Sidky, E-mail: sidky @uchicago.edu
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To reach the desired DBT image quality goals, we proposed
to compare the estimated and DBT projection data after con-
volving with a derivative kernel. The resulting IIR algorithm
was seen to behave analogously to a class of analytic image
reconstruction methods called A or local tomography.*”’ The
resulting DBT images accentuated small structures relative to
IIR employing the standard data fidelity term. Furthermore,
the proposed derivative data fidelity yielded an IIR algorithm
robust against heavily truncated projection data allowing for
direct image reconstruction of a DBT ROL. It is this latter feature
of the modified data fidelity term that we exploit for ROI IIR
in CT.

The algorithm developed in Ref. 3 was designed to obtain a
useful image after only a few iterations, but it was not run to
convergence of the optimization problem upon which the algo-
rithm was based. As a result, the obtained images depend on
parameters characterizing the derivative filter in addition to
other optimization and control parameters of the algorithm.
In this article, we aim to characterize the solution of the pro-
posed optimization problem and accordingly we employ an
accurate solver developed by Chambolle and Pock (CP).*?
In this way, we narrow down the IIR parameter space to only
those needed in specifying the optimization problem. With the
understanding gained by thoroughly investigating the solution
of the proposed optimization problem, design of IIR with
severely truncated iteration is facilitated.

In Sec. 2, we present the proposed optimization problem and
the CP algorithm derived to solve it. In Sec. 3, we characterize
the solution of the optimization problem with ideal and noisy
simulated data for sparse-view and standard CT acquisition.
In Sec. 4, we focus on ROI image reconstruction, comparing
the use of the proposed derivative weighted data fidelity term
with that of a standard Euclidean data fidelity with no additional
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weighting. Finally, in Sec. 5, we demonstrate ROI reconstruction
on actual CT scanner data.

2 Optimization for CT IIR Using a Derivative
Weighted Data Fidelity Term

We introduce an optimization problem designed to allow for
direct ROI image reconstruction in CT, and present the algo-
rithm used to solve the optimization problem. The CT data
model is presented in Sec. 2.1; the particular data fidelity
term of interest is introduced in Sec. 2.2, where the link with
A-tomography is also explained; incorporation of this fidelity
into an optimization for CT IIR is discussed in Sec. 2.3; and
finally, a pseudocode for the solver is given in Sec. 2.4.

2.1 Data Model

We employ the standard x-ray transform as the data model for
developing CT image reconstruction algorithms

9(70.0) = A * dif (7 + 1), ()

where the data function g is a line integration over the object
function f over a ray originating at a source location 7, and
point in the direction 6. For x-ray transmission, imaging samples
of this data function are usually estimated by taking the negative
logarithm of the transmitted x-ray intensity divided by the inci-
dent x-ray intensity. Analytic image reconstruction algorithms
such as FBP or fan-beam FBP are devised by seeking direct
inversion equations for this model.

For IIR, the most common approach, and the approach taken
here, is to represent f with a finite size expansion set such as
pixels and relate the expansion coefficients directly to the dis-
crete samples of the x-ray projection data

g = Xf, ()]

where g is a vector denoting the projection data samples; X is the
discrete form of the x-ray transform; and f is a vector denoting
the expansion coefficients. For the present work, f is a vector
denoting pixel coefficients and X is computed by the line-
intersection method.

2.2 Derivative Weighted Data Fidelity and its
Relation to A-Tomography

The majority of IIR algorithms that use Eq. (2) employ some
form of optimization because the data contain physical factors
that can make Eq. (2) inconsistent. This data model may also not
specify a unique image if there is insufficient sampling. An
example of a simple optimization problem for IIR is to minimize
the square of the Euclidean distance between estimated and
available projection data

= arg:nin quucl(f)’ 3)
where

1
Pevar(£) = S [|(XF = g)]. @)

Although there may be no solution to Eq. (2), there will always
be a minimizer for Eq. (3). Furthermore, this optimization
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problem can easily be extended to incorporate prior knowledge
on the image f, such as a smoothness penalty or physical con-
straints on pixel values.

In Ref. 3, we presented and motivated an alternative data
fidelity function

1
¢o,(f) = 5 1D, (X - g)l3. )

where the Euclidean distance is modified by performing numeri-
cal differentiation on the estimated and available projections.
The symbol d, refers to continuous differentiation of a data
function on each projection. In two-dimensional (2-D) CT, the
direction of this differentiation is unambiguous, up to a sign
(the sign plays no role because of the norm of the data fidelity),
and the coordinate u indicates position on the detector. In three-
dimensional (3-D) CT, the coordinate u is taken to represent the
location on the detector in the direction parallel with the x-ray
source trajectory. The symbol D, represents a matrix that encap-
sulates the action of numerical differentiation in the u-direction.
As discussed in Ref. 3, the use of this data fidelity can lead to IIR
algorithms robust against low-frequency data inconsistency and
it can facilitate ROI IIR.

In Ref. 3, we also consider the data fidelity modification
which combines g, (f) and ¢, (f) in order to provide control
over the absolute gray level of images obtained by the use of
¢o,(f). We define

1 1
¢c0mbo(f) = 5 HDu(Xf - g)H% +§('12||(Xf - g)”%

1
=5 1Dy + eD)(XE - g)|3. (6)

The second equality states that the sum of the quadratic terms in
Peombo (F) 18 equivalent for modifying the derivative filter on the
data by adding c times the identity matrix. The last form is con-
venient for developing the solver and this equality only holds if
D, is antisymmetric. Thus, the particular form of D, can vary,
but we require it to be an antisymmetric matrix. The finite dif-
ferencing weighting of D, de-emphasizes the low-frequency
components of the data, which, in turn, can impact the overall
gray level of the reconstructed images. Adding back the stan-
dard Euclidean data fidelity with a small constant c? addresses
this issue.

The use of differentiation in the data fidelity term has a sim-
ilar motivation as the local filtering employed in A-tomography,
and a precise connection between the two approaches can be
made. In A-tomography, see for example Ref. 7, the 2-D parallel
beam FBP algorithm is modified by replacing the ramp filter
with filtering of the projection data with a second derivative

2

g -
4z R* <_ W) gpara(g’ bt) = A?f(r)’ @)

where R is the 2-D Radon transform (forward projection for
2-D parallel-beam CT) and R* is the adjoint operation, back-
projection; the second derivative with respect to the detector
coordinate u is performed on the continuous 2-D parallel beam
sinogram gpa, (0, u) with @ indicating view angle; and the oper-
ator A; performs 2-D cone filtering on the continuous image
function f(7). The 2-D cone filter takes the form |k|, where
k is the spatial frequency vector counterpart to the spatial vector
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7. The advantage of A-tomography is that the filter is local, and
it can thus be performed on heavily truncated projection data.
The price to be paid is that A;f(7) is reconstructed instead
of f(7). Yet, the image A;f(r) can have utility in that the
cone filtering yields an image with enhanced edges highlighting
the discontinuous boundary between different tissue types.

To see the connection between A-tomography and use of the
data fidelity ¢, (f), we consider the optimization problem

t* = argmin ¢, (f). (3)
f

The solution set to this optimization problem can be identified
by taking the gradient of ¢, (f) and setting it equal to zero
X'™DI'D Xt = X"DID,g, X"(-D2)Xf = X"(-D2)g,

®

where the antisymmetry of D, is used to arrive at the second
equation. If the scanning configuration for X is a 2-D paral-
lel-beam with complete angular coverage, the following associ-
ations can be made in the continuous limit

2
D%—»—a—

X>R XI5 R, 5,
ou

f - f(7),

g gpara(‘gv “)

In the limit of this special case, the normal equation in Eq. (9)
becomes

2

. P . 1 . . 0
R (_ auz) Rf(r) = EA;f(r) =R <— au2> gpara(g’ u).
10

As a result, for parallel-beam data the operations on the projec-
tion data yields the cone-filtered image and the minimization of
¢o, can be interpreted as deconvolution from the cone-filtering.
Another important implication of this link is that the first step of
gradient descent on ¢, is the A-tomography image, provided
that gradient descent is initialized with the zero image. This
fact can be important for interpreting the image properties of
IIR algorithms exploiting ¢, and run with a truncated iteration.
A similar connection is available between ¢ ,mn, and modified
A-tomography, see Eq. (13) of Ref. 7. We remind the reader that
¢s, can be utilized for any CT configuration even though the
connection with A-tomography occurs under the special circum-
stances of parallel ray imaging.

2.3 Optimization Problem for CT IIR

The optimization equation we investigate here is

1
f* = argmin S [|(D,, + c)(Xf — g)l>
f
such that ||(|VE])|, < 7. (11

The operator V is a matrix representing a finite differencing
approximation to the image gradient. The number of pixels/vox-
elsin f is taken to be N and the spatial gradient operator V yields
a vector-valued image, e.g., Z, of size 2N or 3N depending on
whether the image is 2-D or 3-D, respectively. The vector sym-
bol is used to indicate a spatial vector-valued image, and the
spatial magnitude operator, | - |, converts a spatial vector-valued
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Fig. 1 Kernel used in specifying the derivative filter D, for different
values of w, the standard deviation of the Gaussian smoothing.

Algorithm 1 Pseudocode for N steps of the CP algorithm instance
for solving Egs. (12) and (14). For conciseness, we set the data filter
F. = D, + cl. Note that the transpose of this filter is FL. = —D,, + cl.
The smoothing parameter selects the specific form of D, see Fig. 1.
The expression, (F.X,vV), is a linear operator combining the filtered
projection with the gradient. This combined operator takes in an image
vector and yields the concatenation of a data vector and a spatial vec-
tor-valued image.® In Line 11, the ratio of image vectors is to be com-
puted pixel-wise, and in the case of a zero pixel in the denominator,
the ratio for that pixel is set to 1. In Line 12, a scalar-valued image is
multiplied by a spatial vector-valued image. This operation is again
performed pixel-wise, where the spatial vector at each pixel of t is
scaled by the corresponding pixel value of r yielding a spatial vec-
tor-valued image.

1: INPUT: data g, TV constraint parameter y, combination
parameter c, filter smoothing parameter o

2: INPUT: algorithm parameter A

3: v = |FoX[lo/I1 VI,

4: L ||(FoX, 09|l
5:7<1/L;0<1/L;60<1; n<0

6: initialize f,, y,, and 2, to zero

7: f0<—f0

8: repeat

9 YooY+ oFc(XT,-9))/(1+0/2)
10:  t=2,+ ovVi,

11:  r=1-cProjectOntos; Ball,,([t|/o)/[{|
12: E,,+1<—ri

130 fpaefy —e(XTFLYp +0V24.4)
14 fn+1 Fopy +0(f g — 1)

15: nen+1

16: until n > N

17: OUTPUT: image fy
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Algorithm 2 Pseudocode for the function ProjectOntoZ; Ball,(x),

which projects x onto the #4-ball of scale y. In terms of an optimization

problem, this function takes in a vector x and returns x* such that

x* =argmin} |x — x’||3, such that ||x'|[; < a. The vector x is taken
o

to be one-dimensional with length N, and the individual components
are labeled x; with index i being an integer in the interval [1, N].

1: function PROJECTONTOZ; BALL, (X)

2 if ||x||; < a then
3: return x

4: end if

5. m=[x

6: Sort m in descending order: my > m, >--- my

7:  p<max j such that m —}(Z’,'(:1 my —a) >0,
for je[1,N]

8 0<(1/p)(Xhy mi—a)
9:  w=max(|x| —6,0)
10:  return w sign(x)

11: end function

image to a scalar image by taking the vector magnitude at each
pixel/voxel. The quantity Vf is the spatial gradient of f; |Vf] is
the gradient magnitude image (GMI); and ||(|Vf])||;, the sum
over the GMI, is the image total variation (TV). The optimiza-
tion equation, Eq. (11), seeks the image with lowest combined
derivative and Euclidean data discrepancy amongst all images
with TV less than or equal to y.

This particular optimization problem is one variation of
many that combines some form of data fidelity with a term
involving image TV. The TV term is useful for exploiting
sparsity in the GMI for image reconstruction problems with

limited data. We use it exactly for this reason; the direct ROI
reconstruction problem is a form of limited data acquisition,
because this problem is equivalent to the projection truncation
problem for IIR. The reason for this is that in the implicit sol-
ution of Eq. (2), only transmission rays that pass through the
ROI are used. This contrasts with direct reconstruction through
FBP, where all projection data are used in filtering before back-
projecting to the ROI. The particular form of the gradient spar-
sity exploiting optimization problem, where the constraint is
placed in the image TV, is particularly convenient because
the data fidelity metric is actually the sum of two fidelity met-
rics. Furthermore, for computer simulation studies, as performed
in this article, the phantom TV provides a good reference for
selecting the parameter y.

To completely specify Eq. (11) for the following CT simu-
lations, we select a particular form of D,. As required, D, is
chosen to be purely antisymmetric and it represents convolution
with a 21-point kernel. This kernel is generated by smoothing an
antisymmetric differencing kernel with a Gaussian of standard
deviation @ measured in detector bin units. The smoothing of
the finite differencing kernel is useful for controlling noise tex-
ture in the reconstructed images. The kernel is shown in Fig. 1
for different values of w.

Aside from the usual scanning geometry parameters, there
are three parameters—y, ¢, and w—involved in the optimization
problem of study in Eq. (11). The goal of this article is to dem-
onstrate the effect of each of these parameters on the solution of
Eq. (11) in order to gain intuition about this optimization prob-
lem for various CT imaging configurations and in particular for
direct ROI IIR. For real data applications, such as the DBT
reconstructions presented in Ref. 3, an IIR algorithm with a trun-
cated iteration may be used. In this case, we do not expect to
achieve the solution to Eq. (11) and as a result, the attained
reconstructed volume depends on all the parameters of the IIR
algorithm further complicating the characterization of the algo-
rithm. Thus, before a thorough investigation of truncated IIR
motivated by Eq. (11), it is important to characterize the solution
of this optimization problem. To this end, we employ the CP
algorithm for its accurate solution.

Fig. 2 Breast phantom for computed tomography (CT) and its corresponding gradient magnitude image
(GMI). (a) The linear attenuation map of the phantom in the gray scale window [0.174,0.253] cm~'. The
attenuation values for the tissues, fat, and fibro-glandular, simulated in the phantom are 0.194 and
0.233 cm™', respectively. These values model a monochromatic x-ray source at 50 keV. (b) The GMI
[0.0,0.1] cm~" illustrating the test phantom’s sparsity in the GMI.
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[0.174,0.232]

[-0.007,0.013]

Fig. 3 Analytic reconstruction from noiseless data comprised of 1024
projections. (a) Reconstruction by filtered back-projection (FBP),
using a pure ramp filter, and (b) A-tomography where the data are
convolved with a finite differencing approximation to the second
derivative prior to back-projection. The A-tomography image aids in
the interpretation of the images at low iteration numbers of the pre-
sented iterative image reconstruction (IIR) algorithm. The gray scale
is computed by use of Eq. (15).

[0.147,0.225]

[0.151,0.234]

2.4 CP Algorithm to Solve the Proposed
Optimization Problem

We have found that the CP algorithm provides a useful frame-
work for prototyping convex optimization problems, con-
strained or unconstrained, for image reconstruction in CT. For
such problems our experience indicates that an accurate solution
can be obtained in hundreds to thousands of iterations. Although
this is too many for practical IIR on realistic size systems with
current computational technology, the required number of iter-
ations is acceptable for characterization studies. Nevertheless,
we introduce a few slight modifications to Eq. (11) that we
have found to improve the convergence rate and thereby facili-
tate theoretical investigation. In addition, the CP algorithm is
primal—dual and it solves convex minimization problems simul-
taneously with its dual maximization. The details on how to
derive the dual maximization and the corresponding CP algo-
rithm instance for CT is presented in Ref. 9. Here, we simply
state the primal and dual problems along with the CP pseudo-
code for their solution.

[0.176,0.242]

[0.167,0.254]

[0.154,0.242]

[0.170,0.234]

Fig. 4 lterative image reconstruction from noiseless projection data containing 1024 views by use of a
Chambolle and Pock (CP) algorithm designed to minimize ¢g.(f). The image sequence shows inter-
mediate iterations, and the iteration number is indicated in each panel. The gray scale window appears
above each image. The gray scale is computed by use of Eq. (15).
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We modify Eq. (11) by introducing two constants, A and v,
1
£ = argmin 2| (D, + 1) (X - g)
f
x such that ||(|JoVE])||;, < vy. (12)

Note that A and v do not affect the solution, but we have found in
Ref. 10 that they can have a large impact on the algorithm con-
vergence rate. The parameter v is not varied. Instead it is used to
balance the magnitude of the linear operators (D, + ¢I)X and V
and we set

v =Dy + DX/ |1V |2, (13)

where the norm || - ||, applied to a linear operator, also known as
the spectral norm, is its largest singular value. This norm can be
evaluated by the power method. Use of v balances the two linear
operators, which have different physical units. The parameter 1
does not impact the solution of Eq. (12) because of the hard
constraint, but it can have a strong impact on the CP algorithm
convergence rate.

[-0.010,0.015]

[-0.013,0.024]

The dual maximization to Eq. (12) is

N 1 -
(y',z*) = argmaX{—ﬁllyH% +g"(D, - Cl)y—vrl(lll)lloo}
(v.2)
such that X7 (D, — cl)y =vV'z, (14)

where y is dual to a data vector and, therefore, has the same size
as a sinogram; z is dual to an image gradient, having size 2N or
3N for 2-D or 3-D CT, respectively; and the norm || - ||, yields
the magnitude of the largest component of the vector argument.
In implementing the back-projection, X7, care must be taken to
insure that its action is equivalent to that of the true matrix trans-
pose of X. We note that the transpose of V is a finite differencing
approximation to the negative divergence of a vector-val-
ued image.

The pseudocode for solving the primal, Eq. (12), and dual,
Eq. (14), appears in Algorithm 1. This algorithm requires a pro-
jection onto an #; ball,'"'? which is given in Algorithm 2.
Although this projection algorithm is described in detail in

[-0.014,0.052]

[0.073,0.200]

Fig. 5 lterative image reconstruction from noiseless projection data containing 1024 views by use of a
CP algorithm designed to minimize ¢¢omno(f). The image sequence shows intermediate iterations, and
the iteration number is indicated in each panel. The gray scale window appears above each image. The

gray scale is computed by use of Eq. (15).
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41.9 ‘ ‘ ‘ : ‘ ‘ 14.6 : : : : : :
[ — logyy(4y) =—0.15 -logy(N) +1.82] [ — logyy(a,,) =—0.22 logy(N) +1.51
~ 26.8 1 75} )
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Fig. 6 Maximum and minimum singular values for the combined system matrix D, X for a two-
dimensional CT configuration with image pixel array N x N and projection data set consisting of 2N pro-
jections over a 2z scanning arc and a linear detector array with 2N detection elements. The solid circles
represent singular values arrived at through direct SVD of a small system with N ranging from 18 to 64.
The solid diamond represents extrapolation to the case of interest at N = 512. The linear fitting model is
displayed in the legend of each graph.

[-0.008,0.014] [-0.011,0.022] [-0.014,0.052]

[-0.005,0.113] [0.068,0.196] [0.197,0.304]

[0.168,0.234]

Fig. 7 Same as Fig. 5 except that the projection data contain only 256 views. The gray scale is computed
by use of Eq. (15).
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Ref. 11, we provide it here for completeness. Discussion on con-
vergence criteria for the CP algorithm appears in Refs. 9, 10, and
12, but for the sake of brevity we do not go into detail on con-
vergence here. For the presented results, we have performed the
convergence checks and verified that the images are indeed
accurate solutions to Eq. (11).

3 Characterization with Simulated
Untruncated Projection Data

The simulated 2-D CT data are based on the breast CT imaging
application. The computer generated phantom shown in
Fig. 2 models fat and fibro-glandular tissues. The complex struc-
ture is obtained by generating an image with power-law filtered
white noise, followed by thresholding. The structure model is
described in Ref. 13. The scanning geometry is 2-D fan-
beam CT with full circular coverage, as what would be available
in the midplane of an actual breast CT scan. The source-to-
isocenter distance is 36 cm, and the source-to-detector distance
is 72 cm. A linear detector with 1024 bins is modeled, and for
the majority of the simulations, 256 projection views are taken.

[-0.006,0.010]

[-0.009,0.016]

The exceptions are 1024 views are used for the studies
without TV regularization, and 64 views are employed in
one study examining the possibility of sparse-view sampling.
In this initial series of characterization studies, we examine
image reconstruction from ideal noiseless data, where the pro-
jections are generated from a phantom defined on the same
512 x 512 pixel grid used for the image reconstruction. We
also perform studies for inconsistent CT data with noise mod-
eling a typical breast CT scan, and projection operating on mis-
matched grids. The phantom projections are generated from a
1024 x 1024 pixel grid and the image estimate projections
are generated from a 512 x 512 pixel grid.

Comparison of images presented in this work may not be
straight-forward because of the loss of absolute gray level infor-
mation. For some series of images, in order to have objective
image comparisons, we compute the mean, f ..., and standard
deviation, fq4, of the pixel values within a specified region
contained just inside the boundaries of the test phantom or
the field-of-view (FOV), whichever is smaller. The gray scale
range is computed by

[-0.013,0.039]

[-0.011,0.087]

[0.033,0.174]

[0.173,0.237]

Fig. 8 Same as Fig. 7 except that the image sequence results from use of Algorithm 1, which is designed
to solve total variation (TV)-constrained minimization of ¢compo (f), s€€ EQ. (12). Note that the firstimages
resemble that of A-tomography. We also observe that at convergence the phantom is recovered accu-
rately. The gray scale is computed by use of Eq. (15).
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Imin = fmean - 2fstdv Imax = fmean + 2fstd~ (15)

It is stated explicitly in the figure captions when this method is
used to compute the image gray scale.

To assist in the interpretation of the CT IIR results, we show
FBP and A-tomography images in Fig. 3. The A-tomography
image shows the expected enhancement at tissue borders and
loss of the absolute gray level. Again, the reason A-tomography
might be an interesting choice in addition to the edge enhance-
ment is that the filter is local, allowing for projection truncation.

The first set of IIR images result from a CP algorithm
designed to minimize the standard quadratic data fidelity
¢pua(f). The pseudocode appears in Algorithm 2 of Ref. 9.
Intermediate images of this algorithm are shown in Fig. 4,
where the 1024-view data are noiseless and perfectly consistent.
The behavior of the progression of images, starting from a zero
initial image, is generic to other first-order nonsequential algo-
rithms applied to minimization of ¢, (f). The image after the
first iteration is blurry; in fact, by a similar argument to the one
presented in Sec. 2.2, one can show that this image is

[-0.003,0.004]

[-0.005,0.007]

approximately the result of back-projection applied to the pro-
jection data. As the iterations progress, the images become less
blurry, and eventually the test phantom is obtained.

The next set of IIR images result from a CP algorithm
designed to minimize the proposed data fidelity ¢.ompo(f) with
® =0 and ¢ = 0. The same pseudocode from Algorithm 2 of
Ref. 9 can be employed to minimize this data fidelity. Similar to
gradient descent, one can show that the first iteration of this CP
algorithm is proportional to a A-tomography image if a zero ini-
tial estimate is used. Intermediate images of this algorithm are
shown in Fig. 5, where the 1024-view data are noiseless and
perfectly consistent. Indeed, we observe that the first panel
shows an image proportional to that of A-tomography and
as the algorithm proceeds to convergence we observe that the
images tend toward the phantom. Minimization of both ¢, (f)
and ¢eompo (F) results in accurate recovery of the test phantom,
but the approach to this solution is quite different; the first iterate
in minimizing @ompo (f) already has much of the tissue structure
information relative to that of minimizing ¢g, (f). Although the
image appearance of the early iterations in Fig. 5 has been

[-0.007,0.014]

[0.053,0.170]

Fig. 9 Same as Fig. 8 except that the simulated projection data contain only 64 views. In this case, the
low iteration images are contaminated by view-angle undersampling artifacts, which appear in the form of
streaks. As the image estimates approach convergence, we observe that the phantom is again accu-
rately recovered. The gray scale is computed by use of Eq. (15).
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explained, it is not obvious that the phantom should be recov-
ered accurately at convergence—in light of the finite-differenc-
ing filter applied to both system matrix and data in @compe(F)-

In order to understand the phantom recovery, we apply sin-
gular value decomposition (SVD) in a manner similar to that of
Ref. 14. We note that under ideal noiseless conditions, the mini-
mizer of Peompo (f) With @ = 0 and ¢ = 0 satisfies the following
linear equation:

D, Xt = D, Xf,, (16)

where f is the test phantom. If the combined system matrix
D, X is left-invertible then this equation can be reduced to f =
f, and the minimizer of ¢ympo(f) With @ = 0 and ¢ = 0 is the
test phantom f,. The system matrix D, X is left-invertible if its
condition number is finite. We demonstrate this by performing
SVD on smaller systems with the same sampling ratio, comput-
ing the corresponding condition numbers, and extrapolating to
the system size of interest. The present sampling ratio takes the
form of 2N projections onto a detector of 2N bins for an image
represented on an N X N pixel grid, where N = 512. The largest
and smallest singular values for systems with the same sampling
ratio are shown in Fig. 6 for N varying between 18 and 64.
Assuming a linear relationship between the logarithm of
these singular values and the logarithm of N, a condition number
of 8.87 is estimated for the present system corresponding to
N = 512. Thus, D,X is left-invertible and the minimizer of
Deombo(F) 18 £y, thereby explaining the accurate phantom recov-
ery shown in Fig. 5.

It is also interesting to observe the evolution of the CP algo-
rithm iterates when the sampling ratio is more challenging.
Reducing the view number to 256 projections results in a system
matrix D, X with a much larger condition number. Intermediate
images of the CP algorithm are shown in Fig. 7, where the 256
view data are noiseless and perfectly consistent. We again

observe that the first panel shows an image proportional to
that of A-tomography and as the algorithm proceeds to conver-
gence we observe that the images seem to tend toward the phan-
tom; however, the converged image shows noise-like texture in
the images resulting from the insufficiency of the number of pro-
jections. Interestingly, however, the absolute gray level appears
to be accurately recovered despite the poor overall conditioning
of D, X with 256 projections.

As discussed in Sec. 2.3, the view angle undersampling can
be dealt with by exploiting GMI sparsity. To demonstrate this,
we solve the optimization problem in Eq. (12) using the pseu-
docode in Algorithm 1 and again model noiseless consistent
256-view projection data. Because the data are ideal, the param-
eters ¢ and @ are again set to zero. The TV constraint parameter
is selected to be that of the phantom, y = y,. The resulting
sequence of images is shown in Fig. 8, and they resemble
those of Fig. 7 except that at iteration 10 and after the noise-like
artifacts seem to be removed by the addition steps constraining
the image TV. Furthermore, at convergence, the phantom is
recovered to high accuracy. The accurate phantom recovery for
this example, of course, depends on the fact that we know the
correct TV constraint value y, but the purpose here is to show
that an ideal program can recover the phantom under ideal
conditions. That it can do so is not obvious because the data
discrepancy objective is different than the standard Euclidean
form. Although the A-tomography interpretation of the low iter-
ation images is useful, it is important to keep in mind that the
specific evolution of the images depends on the values of all of
the parameters in Algorithm 1 in addition to parameters of the
optimization problem Eq. (12). The converged image, on the
other hand, depends only on parameters of the optimization
problem.

In order to further test the robustness against view angle
undersampling, we reduce the ideal data set to only 64 projec-
tions. The resulting image sequence appears in Fig. 9. We

Fig. 10 Images reconstructed from 256 projections with an inconsistent data model by Algorithm 1. In the
top row, the derivative smoothing width is fixed at @ = 1, and for the bottom row the combination param-
eter is set to ¢ = 0. The gray scale for each of the images is [0.171, 0.233]. As can be seen ¢ has no
perceptible effect on these images where the data contain no truncated projections. The derivative
smoothing width, on the other hand, has a clear impact on the noise texture.
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observe that Algorithm 1 can accurately recover the test phan-
tom as the image estimates near convergence. The A-tomogra-
phy interpretation of the low iteration images, however, suffers
due to the streaks from the view angle undersampling.
Nevertheless, the insensitivity of the proposed data discrepancy
term to absolute gray level does not appear to hinder the ability
of Algorithm 1 to recover the phantom from sparse view data.

Finally, we investigate the response of Algorithm 1 to incon-
sistent projection data. Two forms of inconsistency are intro-
duced in the data model. First, there is mismatch between the
discrete phantom grid, 1024 x 1024, and reconstructed image
grid, 512 x 512. Second, noise is introduced with a Poisson-
like Gaussian distribution, i.e., the variance of the Gaussian is
set equal to the mean, where the mean is the average transmis-
sion at each detector bin assuming 7.5 x 10* photons are inci-
dent to each bin prior to passing through the subject. Thus, we
are modeling a low-dose CT scan as what is typically proposed
for breast CT. Images corresponding to the accurate solution of
Eq. (12) with the TV constraint parameter selected to be that of
the phantom, y = y,, and various values of the parameters @ and
¢, are displayed in Fig. 10. The parameter @ clearly impacts
noise texture, and here, we only aim to show how image quality
changes with this parameter. Optimal setting of @ can only be
determined based on the particular image task of the CT scan.
Although ¢ has little impact on the reconstructed images for
these simulations with untruncated projections and full image
representation, this parameter helps to control gray level for
ROI imaging.

4 Characterization for CT ROl Imaging

In this section, the CT simulations aim at illustrating the utility
of Algorithm 1 for ROI imaging, where an incomplete image
representation is used that spans only a given ROI. This
study is performed in two steps: first, using a full image repre-
sentation, we reconstruct the FOV of a truncated projection
acquisition; and second, using only image pixels in this same
FOV, we perform image reconstruction. By the use of the
term FOV, we specifically refer to the collection of all pixels
that are illuminated by all views in the data set. We use this
term instead of “interior tomography,”'> which has a specific
meaning in 2-D image reconstruction where the aim is to recover
a continuous region interior to the support of the subject from
projections illuminating only this interior region. Furthermore,
for interior tomography, the data model is the continuous 2-D
Radon or x-ray transform, while for the present FOV imaging,
the data model is the discrete x-ray transform. We make the dis-
tinction between ROI and FOV in order to allow for the design
of a scan where the FOV is larger than the ROI in order to avoid
potential artifacts at the FOV border.

First, we investigate the impact of truncated data while keep-
ing the image representation complete, i.e., the image pixels
cover the region where the object support is nonzero. The simu-
lated projection data are ideal and noiseless, containing 256 pro-
jections. Each of the projections is truncated so that the FOV of
the scan is a centered circle of diameter 9 cm, i.e., half the width
of the image array. The left column of images in Fig. 11 corre-
sponds to converged solutions of Eq. (12) forw =0 and ¢ =0,
and for comparison, the right column of images results from the
same optimization problem without the proposed weighting D,,.
For this configuration, it is not clear what is the optimal choice
of the TV constraint parameter y, even though we know what is
the test phantom. Using the TV of the phantom within the FOV,
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yrov and the TV of the entire phantom y, as lower and upper
bounds on y, respectively, we reconstruct images for four inter-
mediate values of y parametrized by y,,

y = (I =yw)rrov + 7wY0- 17)

For y,, = 1, use of the weighting D, seems to make little
difference; both images show cupping although that of the
D, weighting image has slightly less cupping than when no

v, =1, D, weighting| no weighting

Fig. 11 Images reconstructed from truncated, ideal noiseless data.
The shown images on the left column are converged solutions to
Eq. (12) with ¢ = 0 and w = 0, and those on the right column are con-
verged solutions of the same optimization without the weighting D,,,
i.e., TV-constrained Euclidean data discrepancy minimization. The
value of y,, indicated in each panel determines the TV constraint
parameter y by Eq. (17). The horizontal lines indicate the location
of the image profiles plotted in Fig. 12. The gray scale is set to
[0.165, 0.265].
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Fig. 12 Profiles of the images shown in Fig. 11 compared with the phantom profile.

weighting is used. As y,, decreases, both sets of images show a
decrease in resolution particularly in going from y,, = 0.5 to
0.25; however, for the D, weighting images edges within the
FOV appear to remain sharp relative to the edges in the images
generated without the proposed weighting. Moreover, the D,
weighting images show markedly less cupping. A quantitative
sense of these observations is obtained in the profile plots
of Fig. 12.

Second, we investigate the impact of employing an incom-
plete image representation, where pixels cover only the region of
the FOV from the previous study, a centered 9-cm diameter
circular ROI Note that in this case it does not matter whether
the projections are truncated to this 9 cm ROI or not. For untrun-
cated projections, measurements corresponding to the rays not
intersecting the ROI end up not playing any role in the IIR
algorithm. Converged images—with and without the D, weight-
ing—obtained by Algorithm 1 appear in Fig. 13. It is in the use
of the smaller ROI representation where we see a possible major
advantage of the D, weighting. The D, weighting reduces the
data discrepancy incurred by using too small an image represen-
tation. As a result, the TV constraint can be applied without
destroying structure information in the ROI while the use of
the TV constraint without the D, weighting destroys this infor-
mation. Inspecting the gray scale windows for both plots, we
note that the automatically computed gray scale for the D,
weighting image is substantially lower than the values of the
actual phantom, while the image without weighting has approx-
imately the correct absolute gray scale (aside from the fact that
the structure information is lost). That the absolute gray scale of
the D, weighting is lost is the primary motivation for introduc-
ing the parameter c.

For the final simulations, we again employ the ROI-only rep-
resentation, but model inconsistent projection data with grid
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[0.006,0.105]
D, weighting

[0.230,0.614]
no weighting

Fig. 13 Images reconstructed from ideal noiseless data containing
256 projections. The image representation is restricted so that all pix-
els are contained in a 9-cm diameter ROI. The left image is a con-
verged solution to Eq. (12) with ¢ =0 and @ = 0, and the the right
image is a converged solution of the same optimization without the
weighting D,, i.e., TV-constrained Euclidean data discrepancy mini-
mization. The TV constraint parameter is set to the TV of the phantom
within the ROI. The gray scale is computed by use of Eq. (15).

mismatch and measurement noise, corresponding to 7.5 x 10*
photons incident to each detector bin. Again, the data acquisi-
tion configuration is chosen so that the FOV coincides with the
9-cm diameter ROL. In the grid of images shown in Figs. 14 and
15, results are shown for various values of y and ¢, while w is
fixed to one. The value of y is parametrized in these figures with
the multiplicative factor y;
Y = YYFov- (18)

where yrgy is the TV of the phantom within the FOV. The same
results are shown in both figures, because Fig. 14, with its wide

Oct-Dec 2014 « Vol. 1(3)



Sidky et al.: Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

Fig. 14 Images reconstructed from inconsistent noisy data containing 256 projections. Each of the pro-
jections is truncated so that the field-of-view (FOV) of the scan is a centered circle of diameter 9 cm and
the image representation is restricted so that all pixels are contained in the FOV. The array of images
results from accurate solution to Eq. (12) for @ = 1 and various values of ¢ and the TV constraint param-
eter is set according to Eq. (18). The values of y;, see Eq. (18), indicated in the left most images remain
constant for each row, and the values of ¢ indicated in the bottom row of images remain constant for each
column. The image gray scale is [0, 0.35], wide enough to include all images for the sake of comparison.
For individual images, of course, a narrower gray scale may be employed to improve contrast. The test
phantom is displayed in the lower, right panel for reference.

all encompassing gray scale window, provides a sense of the
gray level shifting, while Fig. 15 depicts contrast and noise tex-
ture more clearly.

The leftmost column of images in Fig. 15 shows results for
¢ = 0. Each of these images show the structural information of
the phantom within the FOV, but the gray values are quite low
and independent of y. Within this column, the TV constraint is
an effective control over image regularization, and the image
corresponding to y, =1 shows almost no noise artifacts
while suffering minimal blurring due to the regularization. As
¢ increases, the gray levels of the reconstructed images also
increase. The restoration of the gray levels, however, comes
at the price of the TV constraint becoming less effective.
Following the y; =1 row, the increasing data discrepancy
caused by increasing c results in image details being smoothed
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away. Inspecting the ¢ = 0.05 column, the image details can be
recovered by loosening the TV constraint, but there is a clear
loss of detail relative to the ¢ = 0 images. Nevertheless, for
some imaging applications, it may be important to employ
the ¢ parameter to recover absolute gray level information.

5 Application of ROI IIR to Severely
Truncated Projections from Actual CT
Scanner Data

To demonstrate application of the proposed algorithm to actual
scanner data, we employ an XCounter CT scan of a rat. The
data set contains 1000 projections with a 768 X 512 detector
array where the detection elements are 0.1 mm in width. In
order to test the ROI capability, we truncate the projection
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[0.003,0.121] [0.018,0.146] [0.054,0.205] [0.184,0.362]

Vs =3.0, c=0

[0.004,0.120] [0.019,0.144] [0.055,0.203] [0.186,0.359]

[0.005,0.118] [0.020,0.142] [0.056,0.200] [0.189,0.351]

[0.006,0.114] [0.021,0.137] [0.059,0.190] [0.153,0.249]

Fig. 15 Same as Fig. 14 except that the gray scales are determined by Eq. (15) and written above each
of the corresponding image panels.

Fig. 16 From left to right are a transaxial slice, normal to the z-axis, and vertical slices normal to the y-
and x-axes reconstructed from the XCounter CT scan of a rat by a standard FBP implementation. The
display plane resolution is 0.1 mm. In order to reduce noise, three 0.1-mm thick slices along the view axis
are averaged. The display gray scale is [-0.08, 0.45]. The boxed regions indicate the display bounds of

Fig. 17.
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data to include only transmission rays passing through a cylin-
drical subvolume of radius 8 mm and height 18 mm. This vol-
ume contains part of the rat jaw and a fore paw. For reference,
we employed FBP to reconstruct the complete untruncated data
set, and display slices that traverse the chosen ROI in Fig. 16.

Returning to the truncated data set, we apply FBP, A-tomog-
raphy, and the proposed ROI IIR algorithm with c = w =0
for two different values of the TV constraint, y. The constraint
values correspond to an average gradient magnitude of

[-0.080,0.300]

FBP

[-0.080,0.300]

[-0.080,0.450]

125%x 1073 (em™!) and 6.0x 107 (cm™'). The resulting
images are shown in Fig. 17. The FBP images show the usual
cupping in the FOV of the scan, and it is difficult to see structure
near or beyond the FOV. The images generated by A-tomogra-
phy do not show a discontinuity at the FOV border, and the
edges of structures are clearly seen but the gray levels are, as
expected, lost. The ROI IIR algorithm appears to retain some
gray level information without suffering from strong discontinu-
ities at the FOV border. The difference in behavior near the FOV

[-0.080,0.300]

[-0.080,0.300]

[-0.030,0.060]

[-0.080,0.450]

Fig. 17 ROls reconstructed by, from bottom row to top row, FBP, A-tomography, ROl IR withc = w =0
and y = y4 and same for y = y,. The constraint parameters y; and y, correspond to average gradient
magnitudes of 1.25 x 10~ (cm~') and 6.0 x 104 (cm~"), respectively. From left to right are a transaxial
slice, normal to the z-axis, and vertical slices normal to the y- and x-axes. The display plane resolution is
0.1 mm. In order to reduce noise, three 0.1-mm thick slices along the view axis are averaged. The display
gray scale that was set by eye is given above each image.
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border is most striking in the images of the middle column of
Fig. 17 which show the rat fore paw. We point out that this
study on CT scanner data is only a preliminary demonstration
and we did not attempt to optimize image quality over the
parameters ¢, w, and y. Likewise, the implementations of FBP
and A-tomography are basic because these images serve only as
a reference. For the FBP images, we did not explore alternate
filter designs nor attempt to counteract the cupping artifact by
postprocessing or extrapolating projections.

6 Discussion

We have presented an IIR algorithm based on an alternative data
fidelity term that is designed to facilitate ROI reconstruction.
The use of the restricted image representation can allow for
IIR with high-resolution image representation without incurring
prohibitively high computational and memory demands.
Furthermore, the use of the proposed filtering on the data dis-
crepancy preserves edges allowing for a high degree of regulari-
zation before structures in the subject are blurred away.

The present investigation mainly focuses on image properties
of the converged solution of TV constrained data discrepancy
minimization, where the images depend on three parameters:
y controlling regularization, @ affecting noise texture, and ¢
allowing for gray level recovery. It may be that for practical
application of the proposed data fidelity term, IIR algorithms
operate with truncated iteration. Characterizing such algorithms
becomes more complicated as other algorithm parameters in
addition to the three of the optimization problems affect the
reconstructed image when convergence of the corresponding
optimization problem is not achieved. The established link with
A-tomography, however, can aid in the design of IIR using the
proposed derivative weight and operating with truncated
iteration.
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