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ABSTRACT. Purpose: Two-dimensional single-slice abdominal computed tomography (CT) pro-
vides a detailed tissue map with high resolution allowing quantitative characteriza-
tion of relationships between health conditions and aging. However, longitudinal
analysis of body composition changes using these scans is difficult due to positional
variation between slices acquired in different years, which leads to different organs/
tissues being captured.

Approach: To address this issue, we propose C-SliceGen, which takes an arbitrary
axial slice in the abdominal region as a condition and generates a pre-defined
vertebral level slice by estimating structural changes in the latent space.

Results: Our experiments on 2608 volumetric CT data from two in-house datasets
and 50 subjects from the 2015 Multi-Atlas Abdomen Labeling Challenge Beyond the
Cranial Vault (BTCV) dataset demonstrate that our model can generate high-quality
images that are realistic and similar. We further evaluate our method’s capability to
harmonize longitudinal positional variation on 1033 subjects from the Baltimore
longitudinal study of aging dataset, which contains longitudinal single abdominal
slices, and confirmed that our method can harmonize the slice positional variance
in terms of visceral fat area.

Conclusion: This approach provides a promising direction for mapping slices from
different vertebral levels to a target slice and reducing positional variance for single-
slice longitudinal analysis. The source code is available at: https://github.com/
MASILab/C-SliceGen.
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1 Introduction
Body compositional analysis is an important term to determine an individual’s health condition
which refers to the percentage of fat, muscle, and bone percentages in the human body.1 Studying
the change of body composition on aging enables better prognosis and early disease detection for
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various diseases, such as heart disease,2 sarcopenia,3 and diabetes.4 Computed tomography body
composition is a widely employed technique for assessing body composition.5

Existing longitudinal CT scans of the abdomen from the Baltimore longitudinal study of
aging (BLSA) dataset6 provide a valuable opportunity to characterize the relationship between
body composition changes and age-related disease, cognitive disease, and metabolic health.7–12

To minimize radiation exposure for longitudinal imaging and potential risk associated with con-
trast administration, two-dimensional (2D) non-contrast axial single-slice CT is taken as opposed
to three-dimensional (3D) volumetric CT commonly acquired in clinical practice. However, it is
difficult to locate the same cross-sectional location in longitudinal imaging, and thus there is
substantial variation in the organs and tissues captured in different years, as shown in Fig. 1.
The organs and tissues scanned in 2D abdominal slices strongly correlate with body composition
measures. Therefore, increased positional variance can make accurately analyzing body compo-
sition challenging. Despite this issue, no method has been proposed to address the problem of
positional variance in 2D slices.

Our goal is to decrease the effects of positional variance in body composition analysis, to
facilitate more precise longitudinal interpretation. A major challenge is that the distance between
the scans taken in different years is unknown, as the slice can be taken at any abdominal region.
Image registration is a commonly used technique in other contexts for correcting pose or posi-
tioning errors. However, this approach is not suitable for addressing out-of-plane motion in 2D
acquisitions where the tissues/organs that appear in one scan may not appear in the other scan.
Based on Ref. 13, image harmonization methods are categorized into two main groups:
deep learning and statistical methods. Notable statistical methods include Combat14 and its
variants,15–17 ConvBat,18 and Bayesian factor regression.19 However, unlike generative models,
statistical methods often lack the generative capability crucial for our scenario.

Modern generative models based on deep learning have recently shown significant success
in generating and reconstructing high-quality and realistic images.20–26 The fundamental concept
of generative modeling is to train a generative model to learn a distribution so that the generated
samples x̂ ∼ pdðx̂Þ are from the same distribution as the training data distribution x ∼ pdðxÞ.27 By
learning the joint distribution between the input and target slices, these models can effectively
address the limitations of registration. Variational autoencoders (VAEs),28 which are a type of
generative model, consisting of an encoder and a decoder. The encoder encodes inputs to an
interpretable latent distribution, and the decoder decodes the samples of the latent distribution
to new data. Generative adversarial networks (GANs)20 are another type of generative model,
which contains two sub-models, a generator model that generates new data and a discriminator
that distinguishes between real and generated images. By playing this two-player min-max game,
GANs can generate realistic images. VAEGAN29 incorporates GAN into the VAE framework to
create better-synthesized images. By using the discriminator to distinguish between real and
generated images, VAEGAN can generate more realistic and high-quality images than traditional
VAE models. However, original VAEs and GANs suffer from the limitation of lack of control
over the generated images. This issue is addressed by conditional GAN (cGAN)30 and condi-
tional VAE (cVAE)31 which allow for generating specific images with a condition, providing
more control over the generated outputs. However, the majority of these conditional methods
necessitate specific target information, such as a target class, semantic map, or heatmap,32 as
a condition during the testing phase, which is not feasible in our scenario since we do not have
any direct target information available.

Visit Count 1st Gender Male Visit Count 2nd Gender Male Visit Count 3rd Gender Male

Fig. 1 An example of a subject with slices acquired at different vertebral levels in different visits.
The blue line represents the approximate axial position where the CT scan is taken. The yellow
masks represent visceral fat. The shape and size of the captured organs and tissues vary largely
among different visits leading to large variations in the visceral fat area.
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To provide a condition during testing, we aim to have the network generate a slice of that
specific target at a pre-determined vertebral level, which will serve as the generation target. By
defining the target slice, the generative model will implicitly learn the organ/tissue composition
in the target slice and have this condition learned during training time. We hypothesize that by
giving an arbitrary abdominal slice, the model will generate the slice at the target vertebral level
while preserving subject-specific information derived from the conditional image such as body
habitus. Inspired by Refs. 32–34, we introduce the conditional SliceGen (C-SliceGen) model
based on VAEGAN, which enables the generation of subject-specific target vertebral level slices
from an arbitrary abdominal slice input. We use 3D volumetric data to train and validate our
model since in 3D data the target slice [ground truth (GT)] is available for direct comparison
with the generated images. The training datasets include an in-house portal venous phase CT and
an in-house non-contrast phase CT volume with 1120 and 1488 subjects, respectively. We further
evaluate on the 2015 Multi-Atlas Abdomen Labeling Challenge Beyond the Cranial Vault
(BTCV) dataset35 for external validation. Structural similarity index (SSIM),36 peak signal-
to-noise ratio (PSNR),37 learned perceptual image patch similarity (LPIPS),38 and normalized
mutual information (NML)39 are used for image quality assessment. We further apply our trained
model to the BLSA dataset, comprising 1033 subjects, to illustrate our model’s capability in
reducing longitudinal variance caused by positional variation. We achieve this by comparing
changes in body composition metrics before and after harmonization.

This paper is an extension of our conference version.40 We focus on improving the general-
izability of our model and validate our model’s harmonization capability on the longitudinal
single-slice data. The difference can be summarized as follows:

• We revisit the target slice selection method and propose a semi-BPR method that improves
the structural similarity of the selected target slice.

• We collect an in-house non-contrast phase CT dataset and validate model performance on
different contrast phases to minimize the domain shift problem mentioned in the limitations
section in the conference version.

• More metrics are introduced to evaluate our model and generated images in both 3D
datasets and 2D single-slice dataset.

• We conduct a comprehensive longitudinal evaluation on the BLSA single-slice dataset with
1033 subjects, which is a significant increase compared to the 20 subjects evaluated in the
conference version.

• We conduct an ablation study on validating the most effective distance range between the
given and target slice for our proposed method.

Our contributions in this work can be summarized as follows. We present C-SliceGen, a
VAEGAN-based generative model for generating subject-specific abdominal slices at predefined
vertebral levels. Using an arbitrary axial slice as input, C-SliceGen can implicitly incorporate
unknown target slices during testing, producing realistic and structurally similar images. Our
experiments demonstrate that the proposed method can harmonize variance in body composition
metrics caused by positional variation in the longitudinal setting, facilitating accurate longi-
tudinal analysis.

2 Method

2.1 Technical Background
Here, we provide a brief review of generative models (VAE and GAN) and their variants, upon
which our C-SliceGen is based. While generative models have proven effective in sample gen-
eration, it is important to note that no existing method can be directly applied to our specific task.

2.1.1 VAE

VAEs can be expressed probabilistically as PðxÞ ¼ PðzÞPðxjzÞ, where x represents input
images and z represents latent variables. The goal of these models is to maximize the like-
lihood of pðxÞ ¼ ∫pðzÞpθðxjzÞdz, where z ∼ Nð0; 1Þ is the prior distribution, pθðxjzÞdz is the
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posterior distribution, and θ represents the decoder parameters. However, it is not feasible to
find decoder parameters θ that maximize the log-likelihood. Instead, VAEs optimize encoder
parameters ϕ by estimating pθðxjzÞ using qϕðzjxÞ, which is assumed to be a Gaussian
distribution with μ and σ as the outputs of the encoder. VAEs are trained by optimizing the
evidence lower bound (ELBO).

EQ-TARGET;temp:intralink-;e001;114;675LVAEðθ;ϕ; xÞ ¼ E½log pθðxjzÞ� −DKL½qϕðzjxÞkpθðzÞ�; (1)

where E½logpθðxjzÞ� represents the reconstruction loss and DKL½qϕðzjxÞkpθðzÞ� represents the
KL-divergence, which facilitate the posterior distribution to be close to the prior distribution
pðzÞ. During testing, new data can be generated by sampling from the normal distribution
z ∼ Nð0; 1Þ and inputting it into the decoder. Conditional VAE can be optimized with the
following ELBO equation as well with little modification:

EQ-TARGET;temp:intralink-;e002;114;586LVAEðθ;ϕ; x; cÞ ¼ E½log pθðxjz; cÞ� −DKL½qϕðzjx; cÞkpθðzjcÞ�: (2)

2.1.2 GAN

GANs consist of two parts: discriminator and generator. Suppose we have input noise variables
pzðzÞ, the generator will map the input noise to data space GðzÞ and mix it with the real data x.
The discriminator D, on the other hand, transforms image data into a probability indicating
whether the image belongs to the real data distribution or the generator distribution.41 To be
more specific, the discriminator and the generator play the two-player minmax game with value
function VðD;GÞ in the following manner:42

EQ-TARGET;temp:intralink-;e003;114;452min
G

max
D

VðD;GÞ ¼ Ex∼pdataðxÞ½log DðxÞ� þ Ez∼pzðzÞ½1 − log DðGðzÞÞ�: (3)

The Wasserstein GAN with gradient penalty (WGAN-GP)43 is an alternative to traditional
GAN that enhances the stability of the model during training and addresses problems such as
model collapse. The loss function of WGAN-GP can be written as

EQ-TARGET;temp:intralink-;e004;114;383LWGAN-GP ¼ Ex̃∼Pg
½Dðx̃Þ� þ Ex∼Pr

½DðxÞ� þ λEx̂∼Px̂
½ðk∇x̂Dðx̂Þk2 − 1Þ2�; (4)

where Pg, Pr, and Px̂ represent the generator distribution, data distribution, and random sample
distribution, respectively.

2.2 C-SliceGen
Our task involves generating a new slice at a pre-defined vertebral level from an arbitrary slice
that is obtained at any vertebral level within the abdominal region. Our proposed method is
shown in Fig. 2, which comprises two encoders, one decoder, and one discriminator.

2.3 Target Slice Selection
The first step is to select a target slice for each individual, with the criterion of selecting a slice
that is most similar in terms of organ/tissue structure and appearance across all subjects.
Choosing a comparable target slice for each individual is a challenging task as it involves taking
into account subject-specific variations in organ structure and body composition. We use two
methods to select similar target slices for each subject:

BPR-based method: We select slices with similar body part regression (BPR) score44 as the
target slices across subjects. BPR gives different scores to different slices in the abdominal
region and is efficient in locating slices. We first select a target slice in a reference subject
and document its BPR score, and then we select the slices that have the most similar BPR
score as the target slices across subjects.

Registration-based method: Initially, we select a reference subject’s slice as the reference
target slice. Subsequently, we register the axial slices of every subject’s volume to the
reference target slice and identify the slice that has the largest NML score as the subject
target slice.
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2.3.1 Training

The input image for the model is the arbitrary slice, which provides subject-specific information,
including organ shape and tissue localization. Note the assumption that the input is intended to
represent the target which is not a random input. We believe that this information remains inter-
pretable after encoding to latent variables zc by encoder1. All selected target slices (x) should
have similar organ/tissue structures and appearances. This information is encoded in the latent
variables zt. The distribution of zt can be expressed as qϕðztjxÞ, where ϕ denotes the encoder2
parameters. We combine the organ/tissue structure and appearance of the target slice with the
subject-specific information by concatenating the latent variables zc and zt. This combination
facilitates the decoder to reconstruct the target slice for the given individual. To regularize the
reconstruction process, we compute the L1-norm between the target slice (x) and the recon-
structed slice (xrecon) using the following equation:

EQ-TARGET;temp:intralink-;e005;117;343Lrecon ¼ kx − xreconk: (5)

Since no target slice is available during testing, we follow the similar approach as in VAEs.
We assume that qϕðztjxÞ is a Gaussian distribution with parameters μt and σt, which are the
outputs of encoder2. We optimize the KL-divergence to encourage qϕðztjxÞ to be close to the
prior distribution zprior ∼ Nð0; 1Þ, which can be written as

EQ-TARGET;temp:intralink-;e006;117;268LKL ¼ 1

2

XK

k¼1

ð1þ logðσ2kÞ − μ2k − σ2kÞ; (6)

where K represents the dimension of the latent space. To mimic the process of image generation
in the testing phase, we added another input to the decoder by concatenating zc with zprior for
target slices generation. We denote these generated images as xgen. xgen is also regularized by
L1-Norm with the equation:

EQ-TARGET;temp:intralink-;e007;117;176Lgen ¼ kx − xgenk: (7)

The combined loss function of the above-mentioned steps can be expressed as

EQ-TARGET;temp:intralink-;e008;117;138LcVAE ¼ Lrecon þ Lgen þ LKL: (8)

However, the major drawback of VAEs is that they tend to generate blurry images. On the
other hand, GANs can produce images with sharp edges. Following Ref. 29, we add GAN regu-
larization into our model. The discriminator in our proposed C-SliceGen model classifies both
the generated and reconstructed images as fake images, while the target images are considered

KL-
divergence

Encoder2 Decoder

Share

Input

Target

L1-
Norm

L1-
Norm

Encoder1 Decoder

real

Discriminator
Inference

fake

real

fake

fake

reconrecon

priorprior

priorprior
gengen

Fig. 2 The input image is an arbitrarily acquired slice in the abdominal region. During the training
phase, target images (x ) are used as the GT for the generation and reconstruction process. Latent
variables, such as zc , zt , and zprior, are derived from conditional images, target images, and
the normal Gaussian distribution, respectively. xgen and x recon are considered fake images and
target images are considered real images for the discriminator.
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real images. The decoder acts as the generator for the GAN part. GAN loss adds another
constraint to force the generated and target images to be similar. The total loss function for
our C-SliceGen model can be written as follows:

EQ-TARGET;temp:intralink-;e009;114;700L ¼ LcVAE þ βLGAN: (9)

The adversarial regularization is adjustable by the weighting factor β.
The weights of the conditional VAE and discriminator are alternately updated. The condi-

tional VAE is updated using the loss in Eq. (8). Subsequently, the conditional VAE transitions to
inference mode and its outputs xgen and xrecon are utilized to update the discriminator parameters.
The discriminator is then updated based on Eq. (4).

2.3.2 Testing

During testing, encoded conditional image zc is combined with zprior, which is sampled from
a normal Gaussian distribution, and then fed into the decoder to generate the target slice.

3 Implementation Details

3.1 Dataset
We train and evaluate our methods on 3D volumetric CT datasets in both the portal venous phase
and the non-contrast phase as well as 2D single-slice CT dataset in the non-contrast phase.

3.1.1 In-house portal venous dataset

This dataset contains 1120 3D portal venous CT volumes from 1120 de-identified subjects from
Vanderbilt University Medical Center (VUMC). The data have been approved by the Institutional
Review Board (IRB) with IRB #160764. A quality check is performed on every CT scan to
ensure normal abdominal anatomy. The dataset is divided into training, validation, and testing
with 1029, 8, and 83 subjects, respectively.

3.1.2 In-house non-contrast dataset

To minimize the domain shift problem when applying models trained with the portal venous
dataset to non-contrast single-slice data, we further train and validate our method using a 3D
non-contrast CT dataset with IRB #172167. This dataset contains 1488 subjects. We split the
dataset into training, validation, and testing with 1059, 117, and 312 subjects, respectively.

3.1.3 BTCV dataset

The MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge (BTCV) dataset consisting of
30 portal venous CT volumes for training and 20 for testing is used for the evaluations. We
finetuned the model trained with the in-house portal venous dataset with 22 data for training
and 8 for validation.

3.1.4 BLSA dataset

We assess the effectiveness of our method in harmonizing the positional variation on single-slice
data with the BLSA dataset. To minimize the radiation exposure during longitudinal imaging, the
BLSA CT protocol captures single-slice data at specific anatomical landmarks instead of acquir-
ing 3D CT data as is typically done in clinical settings. A total of 1033 subjects have more than
one visit with some subjects having up to 12 visits and the median number of scans being three
for the past 15 years. The total number of CT axial scans is 4223, and all the scans are in the non-
contrast phase.
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3.2 Metrics
We perform a quantitative evaluation of our C-SliceGen generative models using different target
slice selection approaches and varying values of β [as defined in Eq. (9)].

3.2.1 Metrics for 3D datasets

For the 3D volumetric dataset where the target slices are available for comparison, we use four
metrics to assess image quality: SSIM, PSNR, LPIPS, and NML. SSIM assesses the image based
on three factors: luminance, contrast, and structure, and the final score is derived from the multi-
plication of those three independent factors. PSNR is most determined by mean squared error.
LPIPS is utilized to assess the perceptual similarity of two images by calculating the similarity
between the activations of their respective patches through a pre-defined network. This measure
is highly correlated with human perception. NML measures the degree of information present in
one image that is contained in the other image.45

3.2.2 Metrics for 2D single-slice dataset

In the BLSA dataset, each subject only has one axial abdominal CT scan taken per visit, resulting
in the absence of GT for direct comparison with the generated target slices. We use NML and
coefficient of variation (CV) to evaluate the model performance on harmonizing the positional
variation. CV indicates the amount of differences between scans,46,7 which is defined as

EQ-TARGET;temp:intralink-;e010;117;482CV ¼ σ

μ
: (10)

3.3 Training and Testing
BPR44 is used to ensure a consistent field of view in the abdominal region for all the 3D volu-
metric data. We preprocess the data with a soft-tissue CT window range of ½−125; 275�
Hounsfield units (HU) and further rescale the data to the range of 0 to 1. The 2D axial CT scans
are resized from size 512 × 512 to 256 × 256 before being fed into the models. Pytorch is used to
implement the proposed methods, with the Adam optimizer and a learning rate of 1e-4, and a
weight decay of 1e-4 to optimize the network’s total loss when training the model from scratch.
When finetuning the BTCV dataset, the learning rate is reduced to 1e-5. The encoder, decoder,
and discriminator structures are modified based on Refs. 47 and 48. We adopt common data
augmentation methods, such as shift, rotation, and flip, with a probability of 0.5 to facilitate
training.

4 Results

4.1 3D Datasets Evaluation
We present the quantitative performance of our model with various metrics on different datasets
in Table 1. Comparing with target slices selected by the registration-based method and BPR-
based method, the registration-based method achieves better performance on the in-house portal
venous dataset while the BPR-based method performs slightly better on the BTCV dataset which
might indicate that the BPR-based method and registration-based method have comparable
performance on selecting target slices on the portal venous phase CT scans. We show qualitative
results on the BTCV test set in Fig. 3, which demonstrates that our model is capable of generating
target slices irrespective of whether the conditional slice is at a higher, lower, or similar verte-
bral level.

On the non-contrast dataset, however, our empirical results indicate that the generated
images are not on a similar vertebral level as opposed to what they are supposed to be. We trace
back the reason and find that the selected target slices in the non-contrast dataset are not on a
similar vertebral level initially, making the network hard to learn the target location and resulting
in significant noise in the generated images. To address this issue, we use a semi-BPR method
wherein we compare the target slice with the eight axial slices preceding and succeeding it to
select the new target slice. The results with the manually corrected target slices are presented in
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TargetInput Slice Position

Fig. 3 The image enclosed within a pink bounding box depicts the input slice, while the image
enclosed within a light blue bounding box represents the model outputs and target slice from four
different subjects in the BTCV test set. The pink and light blue lines in the rightmost column indicate
the axial position of the input and target slices, respectively. The structural differences in organs
between the input and target slices are highlighted by orange arrows. The results indicate our
model can implicitly learn the subject-specific target slices and generate realistic and structurally
similar slices given input slices from arbitrary vertebral levels.

Table 1 Quantitative results on two in-house test sets and BTCV test set using different target
slice selection methods with different β in Eq. (9) for training.

Method SSIM ↑ PSNR ↑ LPIPS ↓ NML ↑

The in-house portal venous dataset

β ¼ 0, registration 0.636 17.634 0.361 0.344

β ¼ 0, BPR 0.618 16.470 0.381 0.316

β ¼ 0.01, registration 0.615 17.256 0.209 0.377

β ¼ 0.01, BPR 0.600 16.117 0.226 0.364

The BTCV dataset

β ¼ 0, registration 0.603 17.367 0.362 0.340

β ¼ 0, BPR 0.605 17.546 0.376 0.330

β ¼ 0.01, registration 0.583 16.778 0.208 0.422

β ¼ 0.01, BPR 0.588 16.932 0.211 0.423

The in-house non-contrast dataset

β ¼ 0.01, semi-BPR 0.570 18.312 0.210 0.405

Note: bold values indicate the best in each column/dataset.
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Table 1. Comparing the results from the non-contrast phase dataset and the portal venous phase
dataset, two out of four metrics show slightly worse performance while the other two metrics
show comparable or even better performance. This may indicate our model has good general-
izability on different CT phases.

4.2 2D Single-Slice Evaluation
We use NML and CV to evaluate our model’s longitudinal variation harmonization capability.
We evaluate the model’s performance using the visceral fat area as the primary metric. This is
because visceral fat is highly susceptible to positional variation as mentioned in Ref. 7,
and it is a crucial component of body composition, which indicates an individual’s health
condition.7,49

The BLSA single-slices CT scans are fed into the model trained with non-contrast 3D CT
volumes. The generated images are resized to the original image size of 512 × 512. We use the
method in Ref. 7 to extract the segmentation mask of the visceral fat which includes feeding the
data in a pre-trained model for inner/outer abdominal wall segmentation and using fuzzy
c-means50,51 to extract the adipose tissues. In the inner abdominal wall segmentation, we observe
that the model performs unsatisfactory to exclude the retroperitoneum from both real and gen-
erated images. The retroperitoneum is an anatomical region situated behind the abdominal cavity,
which comprises the aorta, and left and right kidneys, and often lacks well-defined boundaries,
making it difficult to segment accurately. We follow the practice in Ref. 7 and manually assess the
results from both the real and generated images to ensure that the retroperitoneum is segmented
correctly. We mask the inner abdominal wall with the adipose tissues to get the final visceral
fat mask.

We calculate the NML on every two scans of the same subjects on both original and harmon-
ized images; and the results are shown in Fig. 4(a). According to the result, the harmonized
images have higher NML compared with the original images which indicates the generated
images of the same subjects share a higher degree of similar information compared to those
of the original images. We further evaluate with the CV, while we observe higher CV in the
harmonized images compared with the original images, as shown in Fig. 4(b), which implies
that differences between slices are increased after generation. As the metrics show contradictory
results, we conduct a human assessment of the harmonization results. We find that 431 out of
1033 subjects have at least one scan that is taken in obviously different vertebral levels compared
with the other scans. For those 431 subjects, our model can help harmonize the positional varia-
tion resulting in a significantly lower CV than the original images with p < 0.01 under the
Wilcoxon signed-rank test, as shown in Fig. 5. Our models can effectively reduce the positional

(a) (b)

Fig. 4 Quantitative results of applying the trained model on 1033 subjects from the BLSA dataset.
(a) The results with NML as metrics, and (b) the results with CV as metrics. We observed higher
NML and CV among the harmonized images. NML and CV show contradictory results where
higher NML suggests that the generated images of the same subjects share a higher degree
of similar information compared to those of the original images while higher CV implies the
differences between slices are increased after harmonization.
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variance in subjects with both a lesser and greater number of longitudinal visits, as shown in
Figs. 6 and 7, respectively. In Fig. 6, our model reduces the variance by 36.3% and 42.5%,
respectively. And in Fig. 7, the variance is reduced by 37.8% and 76.9%, respectively.
However, for those subjects whose original slice was already taken at a similar vertebral level,
our model can introduce additional noise and result in larger variance among scans, as it shown
in Fig. 8.

Fig. 5 CV result of applying the trained model on subjects that have at least one scan that is taken
in obvious different vertebral levels. Note: * represents statistically significant (p < 0.01) by
Wilcoxon signed-rank test. The result demonstrates that our model is effective in harmonizing
the variance caused by positional variation in longitudinal imaging.

1st Visit 2nd Visit 3rd Visit 4th Visit 5th Visit

Original

Original

Harmonized

Harmonized

Visceral fat change on aging

Subject 1
Subject 2

Fig. 6 The yellow mask represents the visceral fat for two subjects in the BLSA dataset that have
five repeated visits. The rightmost column shows the visceral fat area change on aging. The hori-
zontal lines represent the maximum and minimum values of different image types. We highlight
the images with different organs or tissues captured compared to most other images by the white
arrows. The generated images manage to harmonize organ/tissue differences. We observed the
range between the maximum and minimum values of the among different visits decreased after
harmonization which implies the harmonized images have less variation.
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4.3 Ablation Study

4.3.1 Adversarial regularization

We compare our models trained with different β scores to evaluate the impact of adversarial
regularization. As it is shown in Fig. 3, when β ¼ 0.01, the generated images are realistic and
similar to the target slices. When β ¼ 0, there is no adversarial regularization, resulting in blurry
generated images. By comparing the results with β ¼ 0 and β ¼ 0.01 in Fig. 3, it can be inferred
that the adversarial regularization greatly improves the quality of the generated images.

This human qualitative assessment is aligned with LPIPS and NML results, as it is shown in
Table 1. However, it is different from the observation of the SSIM and the PSNR score, which are

1st Visit 2nd Visit 3rd Visit 4th Visit 5th Visit 6th Visit 7th Visit 8th Visit 9th Visit 10th Visit Visceral fat change on aging

Original

Harmonized

Original

Harmonized

1st Visit 2nd Visit 3rd Visit 4th Visit 5th Visit 6th Visit 7th Visit 8th Visit

Subject 1

Subject 2

Fig. 7 Two subjects in the BLSA dataset that have 8 or 10 repeated visits. The yellow mask rep-
resents visceral fat. The rightmost column shows the visceral fat area change on aging. Similar to
Fig. 6, we highlight the image that is captured in different vertebral levels with white arrows.
Subjects with a larger amount of repeated visits are more likely to have images captured at
various vertebral levels.

Subject 1 Subject 2

Subject 3

1st Visit 2nd Visit 3rd Visit2nd Visit1st Visit

1st Visit 2nd Visit 3rd Visit 4th Visit 5th Visit

Original

Original

Harmonized

Harmonized

Visceral fat Muscle Subcutaneous fat

Fig. 8 Visualization of the original and harmonized images on the subjects that have scans taken
at a similar vertebral level. Yellow, blue, and red masks represent visceral fat, muscle, and sub-
cutaneous fat, respectively, which are generated by automatic segmentation methods. When the
input images are at a similar vertebral level already, our model can introduce additional noise by
predicting different heterogeneous soft tissues, as highlighted with the red arrows.
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higher with β ¼ 0. This observation supports that SSIM and PSNR scores may not completely
reflect human perception, as mentioned in Refs. 52 and 53.

4.3.2 Distance impact

In our method, we aim to map an abdominal axial scan at an arbitrary vertebral level to a pre-
defined target vertebral level, where the distance between the given scan and the target scan is
unknown. This is also the case in the BLSA single-slice dataset. We assume that as the distance
difference between the scans increases, the scans will undergo more structural changes, making
the generation process more challenging. To evaluate the impact of distance on our model
performance, we conduct validation experiments. Specifically, we assess the performance of
models trained on scans from varying distance ranges and compare them to models trained using
known distances. We also include the model trained with the abdominal region with unknown
distance for comparison (model in Table 1). All the models are trained and tested with β ¼ 0.01,
using the in-house portal venous dataset and BPR-based target slice selection method. We evalu-
ate the model performance with the LPIPS and SSIM scores. The results are shown in Fig. 9.

To assess the performance of the model with fixed known spacing, we do not ask the model
to predict the target slice since in most of the CT volumes, the spacing in the z dimension is
3 mm. In this case, if we train with a fixed distance of 3 mm, we can only get two conditional and
target slice pairs for each subject, which leads to a data deficiency problem and cannot evaluate
the model performance properly. Therefore, instead of predicting the target slice, we design the
system to generate corresponding slices at intervals of 3, 6, and up to 75 mm upward in the
abdominal region for each given slice. For the model trained with a fixed spacing range—3,
6, and up to 75 mm—the models are trained with slices up to the specific distance from the
target slice, respectively. The line unknown distance refers to the results by applying the trained
model in Table 1 to a fixed distance test set.

According to Fig. 9, when the model has a fixed distance range of 3 and 6 mm, it has the
worst performance among the other distance ranges. This can be explained by the data deficiency
problem as mentioned before. The performance of models trained with a fixed distance is optimal
when the slice distance is small but gradually drops with an increase in distance. This indicates
that the model performs better with a smaller distance between the given and target slices.
The models trained using the entire abdominal region (with unknown spacing) consistently
performed poorly, starting from a distance of 6 mm. On the other hand, the models trained

(b)(a)

Fig. 9 Assessing the impact of the distance between the given slice and target slices on the model
performance. Fixed distance represents the model trained with a known distance, and fixed dis-
tance range line represents the model trained with up to a distance of the given point. Unknown
distance represents the inference performance of the model trained on the entire abdominal region
when tested on data with a fixed distance between the input and target slices. We observe that the
model’s most effective distance range is between 15 and 60 mm where performance is stable in
terms of both LPIPS and SSIM.
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using a fixed range of 15 to 60 mm showed stable performance in terms of LPIPS and SSIM.
These results indicate that the model’s most effective distance range is between 15 and 60 mm,
and training with a wider range can lead to decreased overall performance.

5 Limitations and Discussion
In this work, we improve the domain shift problem we observed in our previous publication40 that
when applying the model trained with the portal venous phase to the non-contrast phase BLSA
data, the model has limited performance. We manage to reduce this issue by using non-contrast
3D volumetric data for training together with semi-BPR-based target slice selection for accurate
target slice selection. From Figs. 4 and 5, we observe that our model can help reduce the longi-
tudinal variance on data that are taken at obviously different vertebral levels. However, when it is
applied to the data that are at similar vertebral levels, our model can introduce additional noise by
predicting different heterogeneous soft tissues, as shown in Fig. 8. Predicting and synthesizing
heterogeneous soft tissues, such as the colon and stomach, is challenging because these tissues’
size and shape are largely dependent on individual conditions and position at the time of the
CT scan, making it hard for the generative model to find a subject-specific distribution of such
tissues. Hence, this remains a critical limitation of this study. Solving the heterogeneous soft
tissue, shape, and size generation problem can be the future work direction. Exploring solutions
for the generation of heterogeneous soft tissue and preserving shape and boundary information
can also be the future work direction.

In addition, we validate our method’s most effective distance range. Models trained with
data that are up to 60 mm away from the target slice have comparable performance to that
of the model trained with up to 15 mm away from the target slice. Furthermore, the model trained
within the 60 mm range performs markedly better than the models presented in Table 1, which is
trained using slices from the entire abdominal region. Therefore, for the model to be most effec-
tive, it would be preferable to collect data within a range of no more than 60 mm, or roughly
around �3 vertebral level54 in future data collection.

6 Conclusion
Herein, we present our C-SliceGen model, which utilizes an arbitrary 2D axial abdominal CT
slice as input and generates a subject-specific slice at a desired vertebral level. Our model can
effectively capture changes in the organs across different vertebral levels and generate images
that are realistic and structurally similar. In addition, we demonstrate our model’s effectiveness in
harmonizing longitudinal body composition variance caused by positional differences among
different visits in the BLSA single-slice CT dataset. Specifically, in subjects with scans taken
at different vertebral levels, our model effectively harmonizes positional variation, resulting in a
significantly lower CV compared to the original images (p < 0.01, Wilcoxon signed-rank test).
Overall, this approach offers a promising solution for managing imperfect single-slice CT
abdominal data in longitudinal analysis.
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