Mission Testing for Improved Reliability of CubeSats

Maeve Doyle, University College Dublin (UCD), Ireland

CubeSats

- Satellites measuring in units (U) of 10×10×10 cm³.
- To date >1000 CubeSats have been launched. >~30% of which were university-class missions.

- Pro: Small-scale design reduces typical barriers to space, increasing accessibility and enabling a wide range of sciences.
- Con: shorter development times, less resource investment and lower requirements on experience and expertise lead to high levels of risk and low levels of reliability (i.e. likelihood of mission success).
 - → The failure rate of CubeSats is high.

	Research Topic	CubeSat Mission	Mission Details
>	Solar Physics	MINXSS GUBESAT	3U, Student-led (University of Colorado), Deployed into Low Earth Orbit (LEO) on 05/2016, Operational until 05/2017
	Earth Science	HARP	3U, Student-led (University of Maryland), Deployed into LEO on 02/2020, Operations on-going
	Interplanetary Science	THE PARCE	Two 6U CubeSats (MarCO-A and B), NASA, Launched on 05/2018, Mars flyby on 11/2018, Operational until 12/2018 (A) and 01/2019 (B)
	High Energy & Multi-messenger Astrophysics	HERMES &	3U CubeSat constellation, Future mission concept, Scientific pathfinder (HERMES-SP) currently under development as part of the EU's Horizon 2020 Research and Innovation programme

EIRSAT-1: Ireland's 1st Satellite

- The Educational Irish Research Satellite is a 2U CubeSat being developed by a student-led team at UCD as part of the 2nd edition of ESA's Fly Your Satellite! programme.
- Aims: education, technology demonstration and science.
 - \hookrightarrow The Gamma-ray Module (*GMOD*) is a miniaturised, scintillator-based γ-ray detector that will be used to detect Gamma-Ray Bursts (GRBs).

GMOD will act as a technology pathfinder for future scientific missions and show the capabilities of CubeSats, as well as constellations of CubeSats, for conducting GRB research.

• Challenge: given the high failure rate of CubeSats, how do we improve the reliability of EIRSAT-1?

> Mission Testing, where the performance of the fullsystem is tested and evaluated during scenarios that are expected to occur over the mission's lifetime and which are simulated with in-flight representative conditions.

Innovation programme

Do CubeSat teams view Mission Testing as a key step to reduce risk and improve reliability?

 \hookrightarrow To answer this, a <u>survey</u> was developed.

Do CubeSat teams Perform Mission Tests?

- Most respondents to the survey indicated that Mission Testing was performed for their CubeSat project.
 - However, further details provided show that the scope of testing performed varies widely across teams, e.g.

Participant ID	Number of Mission Tests Performed	Duration of Each Test
1	2	1-2 weeks
2	5	12 hours
3	1	Couple of hours

• Early loss of the mission where only ~hours of Mission Testing were performed demonstrates the potential impacts of poor quality testing on mission reliability.

Concluding points:

- This work highlights that, for improved mission reliability:
 - Mission Testing should be considered an essential part of a CubeSat development project.
 - There is a need for clearer guidance and standards on the quality of Mission Tests that should be performed by CubeSat teams.
- More information as well as details on the Mission Test plans developed for EIRSAT-1 are available in the accompanying conference paper.