The advantage of this method is that it allows for the localization of structures which are not contained within the scan field of view of truncated acquisitions but within an extended projection field of view. Therefore, it is shown that for certain high contrast structures, e.g. the skull, this localization method can be used to estimate the maximum extent of a patient from truncated projection data, which is an important information for extrapolation methods, or to localize highly absorbing structures outside of the scan field of view which contribute to the severity of the typically observed truncation artifacts. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Optical flow
3D acquisition
Tomography
Bone
Motion estimation
Skull
Biomedical optics