DAM (Discretized Aperture Mapping) is an original filtering device able to improve the performance in high-angular resolution and high-contrast imaging by the present class of large telescopes equipped with adaptive optics (Patru et al. 2011, 2014, 2015). DAM is a high-spatial frequency filter able to remove the problematic phase errors produced by the small scale defects in the wavefront. Various effects are related to high-order aberrations (ie the high-spatial frequency content) which are neither seen by any wavefront sensor (WFS) nor corrected by any adaptive optics (AO) and is thus transmitted up to the final detector. In particular, any wavefront sensor, due to its finite sub-apertures size, is fundamentally limited by the well-known aliasing effect, where high-spatial frequencies are seen as spurious low frequencies. DAM can be used as an anti-aliasing filter in order to improve both the accuracy of the WFS measurements and the stability of the AO compensation.
|