Poster + Paper
26 August 2024 Optimization of flexible opto-mechanical mounts design in metallic mirror for space-based telescope using finite element analysis
Author Affiliations +
Conference Poster
Abstract
Space telescopes are required to be lightweight and small without compromising high optical performance. A Metallic mirror is one of the technologies that can meet launch conditions, the harsh space environment and achieve the optical requirements of an imaging payload and have been widely used from JWST to new space payloads. Flexible mounting pads are one of the geometrical designs within a metallic mirror that is a very critical part which mounts the mirror to the supporting structure. Flexible pads improve optical stability by reducing screw pressure from mounting and increase vibration endurance by creating more flexibility in the design. This study will use Finite Element Analysis to optimize the shape of flexible pads, examining the effects on mechanical and optical performance by varying geometric dimensions in a parametric study under multiple scenarios from manufacturing to operating in orbit. The results highlight the parameters that have the biggest impact on mechanical and optical performance in each scenario and describe the relation between the parameters that affect mechanical and optical performance that improve the understanding of the opto-mechanical design of metallic mirrors. Finally, the design will be optimized with multiple objectives to get the most optimal design based on all scenario’s conditions.

The parametric study could be analyzed with the sensitivity study, response surface, and optimization. The results show the parameters that have the most impact on performance and show its effect on performance in various conditions such as manufacturing load, grounded based stability with screw pressure, natural frequency, thermal load, and gravity release. The optimization process can lead to the improvement of the optical design. This study improves understanding of opto-mechanical design of the flexible pads in metallic mirrors, which can be applied to other metallic mirror designs.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Natnicha Mahawan, Pantakant Panpang, Naphat Muangnin, Cyril J. Bourgenot, Carolyn Atkins, Robert M. Snell, Maroay Phlernjai, Weerapot Wanajaroen, Patcharadanai Sombatsatien, and Pearachad Chartsiriwattana "Optimization of flexible opto-mechanical mounts design in metallic mirror for space-based telescope using finite element analysis", Proc. SPIE 13100, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation VI, 131003Z (26 August 2024); https://doi.org/10.1117/12.3018676
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Design

Deformation

Optical surfaces

Finite element methods

Mirrors

Manufacturing

Mirror surfaces

Back to Top