Paper
28 October 1994 Noncausal nonminimum phase ARMA modeling of non-Gaussian processes
Athina P. Petropulu
Author Affiliations +
Abstract
A method is presented for the estimation of the parameters of a noncausal nonminimum phase ARMA model for non-Gaussian random processes. Using certain higher-order cepstra slices, the Fourier phases of two intermediate sequences, hmin(n) and hmax(n), can be computed, where hmin(n) is composed of the minimum phase parts of the AR and MA models, and hmax(n) of the corresponding maximum phase parts. Under the condition that the AR and MA models do not have common zeros, these two sequences can be estimated from their phases only, and lead to the reconstruction of the AR and MA parameters, within a scalar and a time shift. The AR and MA orders do not have to be estimated separately, but they are a byproduct of the parameter estimation procedure. Unlike existing methods, the estimation procedure is fairly robust if a small order mismatch occurs. Since the robustness of the method in the presence of additive noise depends on the accuracy of the estimated phases of hmin(n) and hmax(n), the phase errors occurring due to finite length data are studied.
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Athina P. Petropulu "Noncausal nonminimum phase ARMA modeling of non-Gaussian processes", Proc. SPIE 2296, Advanced Signal Processing: Algorithms, Architectures, and Implementations V, (28 October 1994); https://doi.org/10.1117/12.190828
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Autoregressive models

Error analysis

Process modeling

Fourier transforms

Signal to noise ratio

Statistical analysis

Monte Carlo methods

RELATED CONTENT

Joint estimation of carrier frequency and 2 D DOA for...
Proceedings of SPIE (September 27 2024)
All-pass identification with modulated cumulant sequences
Proceedings of SPIE (October 22 1996)
Harmogram feature sets for 1D and 2D data
Proceedings of SPIE (July 17 1998)
Bootstrap: theory and applications
Proceedings of SPIE (November 01 1993)

Back to Top