The purpose of this note is to highlight some of the unique properties of spline wavelets. These wavelets can be classified in four categories: orthogonal (Battle-Lemarie), semi-orthogonal (e.g., B-spline), shift-orthogonal, and biorthogonal (Cohen-Daubechies-Feauveau). Unlike most other wavelet bases, splines have explicit formulae in both the time and frequency domain, which greatly facilitates their manipulation. They allow for a progressive transition between the two extreme cases of a multiresolution: Haar's piecewise constant representation (spline of degree zero) versus Shannon's bandlimited model (which corresponds to a spline of infinite order). Spline wavelets are extremely regular and usually symmetrical or anti-symmetric. They can be designed to have compact support and to achieve optimal time-frequency localization (B-spline wavelets). The underlying scaling functions are the B-splines, which are the shortest and most regular scaling functions of order L. Finally, splines have the best approximation properties among all known wavelets of a given order L. In other words, they are the best for approximating smooth functions.
|