Paper
15 April 2005 Nanosurgery in live cells using ultrashort laser pulses
Alexander Heisterkamp, Iva Z. Maxwell, Sanjay Kumar, J. M. Underwood, J. A. Nickerson, Donald E. Ingber, Eric Mazur
Author Affiliations +
Abstract
We selectively disrupted the cytoskeletal network of fixed and live bovine capillary endothelial cell using ultrashort laser pulses. We image the microtubules in the cytoskeleton of the cultured cells using green fluorescent protein. The cells are placed on a custom-built inverted fluorescence microscope setup, using a 1.4 NA oil-immersion objective to both image the cell and focus the laser radiation into the cell samples. The laser delivers 100-fs laser pulses centered at 800 nm at a repetition rate of 1 kHz; the typical energy delivered at the sample is 1-5nJ. The fluorescent image of the cell is captured with a CCD-camera at one frame per second. To determine the spatial discrimination of the laser cutting we ablated microtubules and actin fibers in fixed cells. At pulse energies below 2 nJ we obtain an ablation size of 200 nm. This low pulse energy and high spatial discrimination enable the application of this technique to live cells. We severed a single microtubule inside the live cells without affecting the cell's viability. The targeted microtubule snaps and depolymerizes after the cutting. This nanosurgery technique will further the understanding and modeling of stress and compression in the cytoskeletal network of live cells.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexander Heisterkamp, Iva Z. Maxwell, Sanjay Kumar, J. M. Underwood, J. A. Nickerson, Donald E. Ingber, and Eric Mazur "Nanosurgery in live cells using ultrashort laser pulses", Proc. SPIE 5695, Optical Interactions with Tissue and Cells XVI, (15 April 2005); https://doi.org/10.1117/12.590467
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Laser ablation

Laser cutting

Transmission electron microscopy

Ultrafast phenomena

Microscopy

Femtosecond phenomena

Back to Top