Paper
19 May 2006 First-principles based LIDAR simulation environment for scenes with participating mediums
Author Affiliations +
Abstract
Employing a modified photon mapping technique that originated within the computer graphics community, a first-principle based elastic LIDAR model was developed within the Digital and Remote Sensing Image Generation (DIRSIG) framework that calculates time-gated photon counts at a sensor from topographic reflections and multiply scattered returns. The LIDAR module handles a wide variety of complicated scene geometries, diverse surface and participating media optical characteristics, multiple bounce and multiple scattering effects, and a variety of source and sensor models. This flexible modeling environment allows the researcher to evaluate sensor design trades for topographic systems and the impact that scattering constituents (e.g. water vapor, dust, sediment, soot, etc.) could have on a Differential Absorption LIDAR (DIAL) system's ability to detect and quantify constituents of interest within volumes including water and atmospheric plumes. This paper will present the numerical approaches employed to predict sensor reaching photon counts including specific approaches adopted to model multiple scattering and absorption within a plume. These approaches will be discussed and benchmarked against analytically predicted results using a non-stationary, diffusion approximation and a multiple scattering LIDAR equation. The analytical development and consistency of the modified photon mapping method with the underlying physics and radiative transfer theory for participating media is also presented. A representative dataset generated by DIRSIG of a DIAL system will be presented and analyzed for a synthetic scene containing a factory stack plume containing absorption and scattering effluents.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniel D. Blevins, Scott D. Brown, and John R. Schott "First-principles based LIDAR simulation environment for scenes with participating mediums", Proc. SPIE 6214, Laser Radar Technology and Applications XI, 62140G (19 May 2006); https://doi.org/10.1117/12.665958
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Scattering

LIDAR

Sensors

Atmospheric modeling

Absorption

Laser scattering

Systems modeling

RELATED CONTENT


Back to Top