Paper
14 February 2012 Quantization of reconstruction error with an interval-based algorithm: an experimental comparison
A. Hassoun, O. Strauss
Author Affiliations +
Abstract
SPECT* image based diagnosis generally consists in comparing the reconstructed activities within two regions of interest. Due to noise in the measured activities, this comparison is subject to instability, mainly because both statistical nature and level of the noise in the reconstructed activities is unknown. In this paper, we experimentally show that an interval valued extension of the classical MLEM algorithm is efficient to estimate this noise level. The experimental settings consist in simulating the acquisition of a phantom composed of three zones having the same shape but different levels of activity. The levels are chosen to simulate usual medical image conditions. We evaluate the ability of the interval-valued reconstruction to quantify the noise level by testing whether or not it allows the association of two zones having the same activity and the differentiation between two zones having different activities. Our experiment shows that the error quantification truly reflects the difficulty in differentiating two zones having very close activity level. Indeed, the method allows a reliable association of two zones having the same activity level, whatever the noise conditions. However, the possibility of differentiating two zones having different levels of activity depends on the signal-to-noise ratio.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Hassoun and O. Strauss "Quantization of reconstruction error with an interval-based algorithm: an experimental comparison", Proc. SPIE 8314, Medical Imaging 2012: Image Processing, 83143Q (14 February 2012); https://doi.org/10.1117/12.910781
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Reconstruction algorithms

Expectation maximization algorithms

Signal to noise ratio

3D image reconstruction

Single photon emission computed tomography

Quantization

Radon

RELATED CONTENT


Back to Top