Paper
10 September 2014 Computational electromagnetic analysis of plasmonic effects in interdigital photodetectors
Avery M. Hill, Ahmad I. Nusir, Paul V. Nguyen, Omar M. Manasreh, Joseph B. Herzog
Author Affiliations +
Abstract
Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices. This study focuses on computational electromagnetic (CEM) analysis of GaAs photodetectors with gold interdigital electrodes. Experiments have shown that the photoresponse of the devices depend greatly on the electrode spacing and the polarization of the incident light. Smaller electrode spacing and transverse polarization give rise to a larger photoresponse. This computational study will simulate the optical properties of these devices to determine what plasmonic properties and optical enhancement these devices may have. The models will be solving Maxwell’s equations with a finite element method (FEM) algorithm provided by the software COMSOL Multiphysics 4.4. The preliminary results gathered from the simulations follow the same trends that were seen in the experimental data collected, that the spectral response increases when the electrode spacing decreases. Also the simulations show that incident light with the electric field polarized transversely across the electrodes produced a larger photocurrent as compared with longitudinal polarization. This dependency is similar to other plasmonic devices. The simulation results compare well with the experimental data. This work also will model enhancement effects in nanostructure devices with dimensions that are smaller than the current samples to lead the way for future nanoscale devices. By seeing the potential effects that the decreased spacing could have, it opens the door to a new set of devices on a smaller scale, potentially ones with a higher level of enhancement for these devices. In addition, the precise modeling and understanding of the effects of the parameters provides avenues to optimize the enhancement of these structures making more efficient photodetectors. Similar structures could also potentially be used for enhanced photovoltaics as well.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Avery M. Hill, Ahmad I. Nusir, Paul V. Nguyen, Omar M. Manasreh, and Joseph B. Herzog "Computational electromagnetic analysis of plasmonic effects in interdigital photodetectors", Proc. SPIE 9163, Plasmonics: Metallic Nanostructures and Their Optical Properties XII, 91633Q (10 September 2014); https://doi.org/10.1117/12.2074251
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Electrodes

Polarization

Plasmonics

Photodetectors

Finite element methods

Nanostructures

Gallium arsenide

Back to Top