Recently, we have proposed an interferometric setup with a diffractive zoom-lens that includes two computer generated holograms for this purpose.1 Their surface phases are a combination of a cubic function for the adaption of aberrations and correction terms necessary to compensate substrate-induced errors. With this system based on Alvarez design a variable defocus and astigmatism controlled by a lateral shift of the second element is achieved. One of the main challenges is the calibration of the system. We use a black-box model2 recently introduced for a non-null test interferometer, the so called tilted wave interferometer3 (TWI). With it, the calibration data are calculated by solving an inverse problem. The system is divided in the two parts of illumination and imaging optics. By the solution of an inverse problem, we get a set of data, which describes separately the wavefronts of the illumination and imaging optics. The main difference to the TWI is the flexible diffractive element, which can be used in continuous positions. To combine the calibration data of a couple of positions with the exact placement, we designed alignment structures on the hologram. We will show the general functionality of this calibration and first simulation results. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.
Calibration
Wavefronts
Monochromatic aberrations
Interferometry
Chemical elements
Inverse optics
Inverse problems