At present, the project has reached the stage where a probatory mission is needed to validate its operation in space. In collaboration with institutes in Spain and Russia, we will propose a mission to the Russian space agency Roscosmos, to board a small prototype Fresnel imager on the International Space Station (ISS) for a UV astronomy program. We have improved the Fresnel array design to get a better Point Spread Function (PSF), 2 different ways. Numerical simulations have first allowed us to confirm these optical improvements, before manufacturing the diffractive optics and using them for new lab tests. In our previous setups, the opaque Fresnel zones in the primary Fresnel array (playing the role of the telescope objective) were maintained with an orthogonal bars mesh, following the pseudo-period of the Fresnel zones. We show that the PSF improves when these bars are regularly spaced. Furthermore, the optical system is apodized to get a better peaked PSF, and increase its high contrast performances. In our case, to apodize a binary mask the solution is to modulate the Fresnel zones in relative thickness ratio (opaque versus void), thus driving the local light transmission ratio. In earlier implementations, our Fresnel arrays were apodized with a circularly symmetric law, but an orthogonal apodization law is more efficient. That is why we are developing this particular type of apodized square aperture Fresnel arrays. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Sensors
Microchannel plates
Amplifiers
Electronics
Field programmable gate arrays
Analog electronics
Ultraviolet radiation