Recent upsurge on virtual and augmented realities (VR and AR) has re-ignited the interest to the immerse display technology. The VR/AR technology based on stereoscopic display is believed in its early stage as glasses-free, or autostereoscopic display, will be ultimately adopted for the viewing convenience, visual comfort and for the multi-viewer purposes. On the other hand, autostereoscopic display has not yet received positive market response for the past years neither with stereoscopic displays using shutter or polarized glasses. We shall present the analysis on the real-world applications, rigid user demand, the drawbacks to the existing barrier- and lenticular lens-based LCD autostereoscopy. We shall emphasize the emerging autostereoscopic display, and notably on directional backlight LCD technology using a hybrid spatial- and temporal-control scenario. We report the numerical simulation of a display system using Monte-Carlo ray-tracing method with the human retina as the real image receiver. The system performance is optimized using newly developed figure of merit for system design. The reduced crosstalk in an autostereoscopic system, the enhanced display quality, including the high resolution received by the retina, the display homogeneity without Moiré- and defect-pattern, will be highlighted. Recent research progress including a novel scheme for diffraction-free backlight illumination, the expanded viewing zone for autostereoscopic display, and the novel Fresnel lens array to achieve a near perfect display in 2D/3D mode will be introduced. The experimental demonstration will be presented to the autostereoscopic display with the highest resolution, low crosstalk, Moiré- and defect- pattern free.
|