Manufacturing of 3D-printed micro optics using two photon lithography (2PL) has been advancing rapidly over the last decade, enabling production of high-performance micro optics. Among many more, 3D-printed miniaturized sensors, imaging optics, OCT systems, spectrometers and optical tweezers appear to be promising for application in the biomedical field. Here, immersion of optical systems into aqueous solutions is required regularly, hence capsulation for protection of the optical system's interior is required. Yet, specific properties of the 2PL fabrication process render capsulation of fabricated optics a delicate task.
In this talk, we outline a wholistic design strategy for 3D-printed immersion micro optics. The optical design and the mechanical manufacturing process are addressed, as well as approaches to combine metrology and simulation techniques for accurate assessment and performance optimization of manufactured systems. The feasibility of the proposed concept is experimentally validated. We discuss current limitations and evaluate the future potential of 3D-printed immersion micro optics.
|