Index

A

Acousto-optical deflectors	67
Aluminized surface	50
Amplitude	
dispersion	74, 75, 82-86,
100,101	
fluctuations	86
Angle-averaged intensity	122
Angle-resolved scattering(ARS) 48,51,53,54
Angular-scattering distribu	tions 63, 64
Ankistrodesmus fusiformis	178, 182
Arbitrarily shaped surfaces	93, 96, 97
Asymmetry	86, 87,136
Autocorrelation function	9, 11, 19, 20,
128, 135- 137, 140, 146	
Autocovariance function	9, 21, 52, 55,
58, 59, 67, 70	
Average roughness	17

B

Band-averaged intensity	123
Bidirectional reflectance dist	ribution
function(BRDF)	41,65,66
Bispectrum analysis	136, 149
Booker-Gordon model	13
Boundary field 72-75	5, 82, 86, 92, 93,
96, 102, 103, 105, 113, 14	17
Brownian	
fractal	139, 141, 143
motion	178, 179
particles	179, 180, 184

С

Calcite wedges	96, 97,99
Cantor bars	118, 128, 129-135
Chaos	113, 142, 143
Chaotic speckle field	113
Characteristic function	87
Chlorella vulgaris	178, 182
Clusters	119
Coherence	

characteristics	155, 163
function	9, 25
first and second	9
Colloidal system	31
Complex degree of coherence	9
Complexity of fractal objects	119
Concentration 155,	158, 161, 174
Continuous random non-unifor	m media 7
Correlation	
function 45-48, 73, 1	137-145, 151,
156, 158, 169, 175, 181	
exponent 114-117, 128-	131, 143-148
length 14, 20, 26, 2	38, 73-82, 90,
95, 106, 112, 137, 138, 141,	153
matrix	11
mixed moment	83
higher-order moment	10
Cross section	158
Crystal	89-95
•	

D

Delay function	173-176
Detector array for laser light	angular
scattering(DALLAS)	53
Diamond-turned surfaces	20
Dielectric constant	12, 13, 103-106
Diffractals	120, 152
Diffraction	
Fraunhofer approximation	23,121
Fresnel approximation	24
Diffusely reflected light	49, 98
Diffusion coefficient	178, 179
Diffusion-limited aggregation	n 119
Dimension 112-122, 127	-139, 142- 146,
150, 153	
Disperse media 15	5, 164, 168, 184
Dispersive media	21
Dissipation energy	14
Distribution function of parti	al signals over
paths	176
Doppler anemometry	178
Doppler frequency shift	178

Dynamical

diagnostics	177
light scattering	31
Dynamic	
system	113, 114
objects	177

Ε

Ellipsometry	112
Enhanced backscattering	65
Extinction theorem	46

F

Fabry-Perot interferometer	174
Far-field	
approximation	74
zone 28	3, 29, 45
Fianite 89	90, 92
Field locally uniform and isotropic	137
Field	107
intensity	10
amplitude	27
mbase 7 16 21	21 26
phase 7, 10, 21	, 24- 30
amplitude and phase	113
Fourier optical transform theory	77
Fourier transform 13,19, 21, 43,	44, 52,
55, 58, 59, 61, 64, 87	
Fractal 112-114, 118-143,	150-154
dimension	120
geometry	113
Fraunhofer diffraction	121
Fredholm's integral 164, 1	169,181
Fresnel zone	27
Fringe contrast	77.78
Fused-silica surface	140
	1.0

G

Gaussian	
correlation function	14
field statistics	77
model	13
particle size distribution function	on 149
surface	157
Geometric factor	43
Green's	
function	23, 24, 172
formula	23
theorem	46

H

Hausdorff measure	114
Hausdorff-Besicovitch dimension	139

Heaviside step function	114
Height distribution function	18, 85
Heterodyne techniques	66
Histogram of surface heights	18
Holographic	
methods	177, 178
recording	179, 182
Hydromechanical relations	105

I

Incommensurable ha	rmonics 117
Index of refraction	173-177
effective	177
Infinitely extended s	creen 73
Integral equation	157, 166-169, 174, 181
Integrating sphere	50
Intensity dispersion	78
Interference	
measurement	86, 110
technique	82
Interferometer	66, 67, 70
Mach-Zehnder	80,81
polarization	145
Inverse problem	155, 170,179
Isotropic medium	13
-	

K

Kinematic viscosity	105
Kirchhoff's	
approximation (KA)	43, 46, 48
formalism	55, 57, 61, 64
method	42
theory	41, 42, 46
Koch	
curves	118, 122-126
fractal	121, 122
Kolmogorov	
macroscale	105
microscale	103, 105
-Obukhov's law	15
region	14
theory	13
Kurtosis	18, 86, 87

L

Lambertian samples	66
Laser speckle	65
Light-scattering	21, 30, 31, 34
multiple	40, 163, 166
methods	38
particles	155, 156, 175, 176

Longitudinal	
autocorrelation function	174, 175
field coherence function(LFCF)	170-177
Low-reflectance surfaces	93
Lyapunov exponent	114
Lycopodium spores	161, 163

\mathbf{M}

Microcystis aeroginosa	161-163, 178
Microwave reflection	112
Mie formulas	30
Multifractals	121, 136

Ν

Non-uniform objects and media	7
Number of particles along direct rays	176

0

Optical	
correlation diagnostics	7,16
correlation methods	155, 164
factor	52, 54
path	176
surfaces	44, 62, 69, 70

P

Packard-Takens	procedure	143,148
Particle		
image	15	56, 163, 178
radius	156, 157, 16	53, 166, 167
size	161, 16	5, 175, 183
distribution	21, 34, 36, 3	7, 156, 157,
161, 163, 169	9, 179, 181	
Perturbation met	hod	42, 46
Phase		
correlation co	efficient	80
inhomogeneit	ies	91, 92, 96
object		72
screen		74, 75
variance	72-103, 105, 11	3, 138, 143
Photometric sphe	ere	98
Piezoceramic mo	odulator	94
Polydisperse par	ticles ensemble	156,
169,179		
Polydispersity		31, 34, 36
Power		
law	120-123, 12	27, 136, 138
spectral densi	ty	21,137
spectrum	128, 135, 136, 1	38, 140,141
Probing beam	1	55, 171-175
PSD function	51, 52	2, 57-59, 67

R

Random	
media and field	7
phase objects (RPO)	72, 73, 81, 87,
89, 95, 100, 111, 113, 14	42, 143
discrete scatterers	7
fields	7-11
fractals	119, 121, 151
height	43
noise 136, 148,	149, 153, 154
object	7,113
phase screen (RPS)	16, 24
screen approximation	74
Rayleigh	
criterion	76
-Gans-Debye scatterer	32
scattering	30
Ray-optics method	103
Refractive index 13, 31,	34, 89, 91, 101
Regularization method	157, 181
Relative index of refraction	158, 161, 175
Root-mean-square (rms)	17, 25, 48-51,
55, 58, 48, 49, 53, 56, 61-6	5, 67, 70
Rough surfaces	17, 18, 40, 113
interferometry	72
Roughness	
height distribution function	n 89
large-scale	136, 143
measurements	77, 93, 95, 99

S

Scalar approximation	45
Scalar scattering theory	49
Scanning	
differential-heterodyn	e-interferometer 67
Mach-Zehnder interfe	erometer 159
polarization interferor	meter 96
Scattered field 156, 158	8, 171-174, 178- 181
Scattering	
angle	30, 31
azimuthal	52
by a rough surface	41
medium 159	0, 169, 170, 172, 177
objects	111
single	156, 158, 175, 180
Scintillation index 28	8-30,74,75,78,79,
84, 139, 140	
Self-similar	118, 119, 121, 134
Size	
distribution functions	161-163, 183, 184
of a speckle	76
Sizing	155, 156, 163,179
Skewness	18

Slightly rough surfaces 8	35, 93, 110, 112,
137, 153, 154	
Small perturbation method	46
Small phase fluctuations	25, 30
Smooth surfaces 49	9, 50, 57, 62, 70
Space coordinates	8
Spatial	
complexity 111-112	3, 128, 143, 152
frequencies	74, 99
Speckle contrast	77, 107, 108
Speckled structure	76, 77
Spectral	
amplitude	22, 23
density	13, 14, 16, 19
Spherical particle	21
Standard deviations	101
Statistical	
moments	7, 10, 24, 113
description	8, 11
optics	7,16
Stochastic characteristics	113
Structure function 11, 1	2, 15, 25, 103,
104, 106, 130, 144-146	
Structure diagnostics	71, 73, 84
Surface	
factor	52, 54, 55
microrelief	77
plasmon absorption	112
profile 19	9-21, 55, 58, 59
roughness 40, 48-50, 54	, 55, 57, 61, 62,
66, 69-71	
topography	20
-averaged correlation	44
-roughness diagnostics	77
with roughness scales con	nparable to λ 98

Т

TALYSURF-5M120 profilometer	95
Time-frequency spectrum	155
Total integrated scattering (TIS)	41, 48-51,
55	
Transverse	
autocorrelation function	170

coherence function 75, 80,	81, 83, 85,
89-91, 103, 104, 156-160	
correlation function	25
intensity correlation functions	144
Turbulence	12-16, 178
developed	105
external scale	14
internal scale	14
in a liquid	102, 110
locally isotropic	14
spectrum	14
vortices	14
layer thickness	103
Two-dimensional probability dens	sity 9

U

Uniform medium	7, 8, 12, 13, 17, 22-
24, 26, 30	

\mathbf{V}

Vector theory	47
Viscosity	14, 35
Viscous interval	14
Volterra integral	164

W

Wave parameter	27, 29
Wiener-Khinchin theorem	13
Wyko profiling microscope	140

X

X-ray topography

89

Z

Zeroth-order interference	fringe	94
Zygo heterodyne profiler		66

Oleg V. Angelsky is the dean of the Technical-Engineering Faculty of the State University in Chernivtsy and the head and professor of the Department of Correlation Optics. He received a Ph.D. degree in quantum electronics in 1982 from the Institute of Physics, Ukrainian Academy of Science (Kiev) and the degree of doctor of science in optics in 1990 from Saratov State University (Russia). He has been an active researcher in correlation optics and holography for more than 15 years. He is a member of OSA and SPIE, a fellow of the Institute of Physics, and a member of the

Advisory Committee of the European Optical Society. He was awarded the Yaroslav Mudryi medal of the Academy of the Higher School of the Ukraine in 1996 and the Rozhdestvensky medal of the Russian Optical Society in 1997. In addition to correlation optics and holography, his research interests include surface roughness diagnostics and fractal optics.

Steen G. Hanson is the head of the Research Program on Optical Diagnostics and Information Processing at Risoe National Laboratory in Denmark. He received a Ph.D. degree in applied laser physics from the Danish Technical University in 1975. Since 1980 his work has been in the field of optical sensors, beam propagation through complex optical systems, and more recently in bio-optics, with special emphasis on the investigation of light interaction with random media, both in the area of rough surface scattering and for optical beam propagation through turbulent media. Several patents have been filed in this field,

some of which have been turned into industrial sensors. Recently he has been a visiting guest scientist at The Environmental Technology Laboratory (National Oceanographic and Atmospheric Administration) in Colorado, where he was recognized by the United States Department of Commerce in the form of a certificate of recognition for outstanding performance.

Peter P. Maksimyak received the B.S. degree in optical engineering from Chernivtsy University, and a Ph.D. degree in quantum electronics from the Institute of Physics of the Ukrainian Academy of Sciences (Kiev) in 1979 and 1987, respectively. He currently holds the position of leading researcher in the Department of Correlation Optics at Chernivtsy University. Dr. Maksimyak is the author/co-author of more than 40 scientific papers, mainly in correlation optics. His current research interests are optical diagnostics in science and industrial applications, and fractal optics.