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Abstract. Turbo-Satori is a neurofeedback and brain–computer interface (BCI) toolbox for real-time functional
near-infrared spectroscopy (fNIRS). It incorporates multiple pipelines from real-time preprocessing and analysis
to neurofeedback and BCI applications. The toolbox is designed with a focus in usability, enabling a fast setup
and execution of real-time experiments. Turbo-Satori uses an incremental recursive least-squares procedure for
real-time general linear model calculation and support vector machine classifiers for advanced BCI applications.
It communicates directly with common NIRx fNIRS hardware and was tested extensively ensuring that the cal-
culations can be performed in real time without a significant change in calculation times for all sampling intervals
during ongoing experiments of up to 6 h of recording. Enabling immediate access to advanced processing fea-
tures also allows the use of this toolbox for students and nonexperts in the field of fNIRS data acquisition and
processing. Flexible network interfaces allow third party stimulus applications to access the processed data and
calculated statistics in real time so that this information can be easily incorporated in neurofeedback or BCI
presentations. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction
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1 Introduction
In recent years, the developments of brain–computer interfaces
(BCIs) based on functional near-infrared spectroscopy (fNIRS)
have been continuously evolved establishing its use for
human–computer interaction (HCI)1–3 as well as for brain state
decoding4–8 and neurorehabilitation.9 fNIRS is a very attractive
method for these applications, because it is a noninvasive, port-
able, and low-cost technique, compared to methods like func-
tional magnetic resonance imaging (fMRI), while also relying
on the blood-oxygen-level-dependent (BOLD) effect.10 The
increased usage of fNIRS for HCI and BCI applications is
only possible because previous research improved the signal
quality and reliability of fNIRS measurements.11 A lot of the
BCI research in this field was based on individualized analyses
using various machine learning methods such as support vector
machines (SVMs) or other classifiers.12 While these methods
allow the use of BCIs, they usually do not providing insights
in the signal quality and trial-by-trial performance of the partici-
pant. We developed a software package called Turbo-Satori
bridging the gap between comprehensive analysis methods
and the detailed inspection of fNIRS signals in real time during
an ongoing experiment. This possibility is very important since
it allows real-time quality assurance by inspecting individual
fNIRS channels and the overall signal quality of all channels
at the same time. Especially when using neurofeedback routines,
the quality of individual channels is crucial because they can be

used as the basis for the neurofeedback signal, translated for
example to the level of a thermometer display.13,14 But also
in other BCI applications, transparent information and statistical
data about the signal quality of individual channels are impor-
tant to relate it to the overall performance. Therefore, the men-
tioned features allow several potential use cases for Turbo-Satori
requiring minimal implementation time because of the available
interfaces and clearly structured user interface. We provide dif-
ferent use case examples for Turbo-Satori including SVM-based
left–right finger tapping discrimination, neurofeedback example
experiments, and BCI application examples. Another aspect is
the usability of the software which needs to fulfill the require-
ment of integrating and controlling complex routines while
assuring its ease of use. Such a system allows even early
stage researches to perform advanced real-time fNIRS-based
BCI experiments with relatively little effort. In this paper, we
will cover all major aspects of the software starting with the
unique user interface and controls followed by specific prepro-
cessing and analysis routines.

2 Methods
Turbo-Satori is written in C++ and uses different libraries and
frameworks such as Qt15 and Eigen16 as well as a collection of
useful C++ classes for digital signal processing.17 While devel-
oped for cross-platform use, the software currently runs only on
the Windows platform in combination with devices from the
company NIRx (NIRx Medical Technologies, LLC, 5670
Wilshire Blvd., Suite 1800, Los Angeles, California). The
next section describes the user interface of Turbo-Satori that
is designed to focus mainly on rich time course information
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and ease of use, especially for research investigating individual
fNIRS channels.

2.1 User Interface

The user interface of Turbo-Satori mainly consists of four parts
with specific settings and options. These interface parts can be
freely rearranged or hidden to be able to limit the data represen-
tation to only the currently desired information. A screenshot of
the running application is shown in Fig. 1. The first part of the
interface (see number 1 in Fig. 1) allows the user to configure
global settings of analysis, controls, and plotting. It also contains
the control settings to start/stop the real time, online, or offline
analysis. On the left side of the interface, all available channels
are displaying the beta value of each channel at the current point
in time using the currently defined contrasts. The arrangement of
the channels starts with first source and first detector in the top
left corner to source and detector in the bottom right like the
definition in the NIRStar data acquisition software allowing
the user to immediately observe whether the expected pattern
is present ensuring data quality.

The second part of the interface covers the channel selection
for the plotting interface using a standard table which also shows
basic statistical analysis results allowing to inspect the beta-
value of the oxy-hemoglobin (HbO) and deoxy-hemoglobin
(Hb) time courses in individual channels based on a real-time
general linear model (GLM) calculation. It is also possible to

average selected channels and get a separate analysis and
plot for the average. In the bottom of this interface section,
one can set specific contrasts of each available condition defined
in the experiment. Part three of the interface handles the prepro-
cessing of the raw or converted HbO/Hb data. More details
about the filtering options are described in the next section
of this paper. In the bottom of this interface section, basic infor-
mation about the experiment and settings are available.

Most of the interface (see number 4 in Fig. 1) is used to visu-
alize and inspect time course data. There are two different types
of data shown. The first one is presented in the top left (indi-
vidual time course of selected channels, number 5 in Fig. 1),
top right (event related averages of each condition for each
selected channel, number 6 in Fig. 1), and bottom left (combined
overview of all channels, number 7 in Fig. 1) of this interface
section. These parts represent the individual time courses of the
channels and allow to inspect each channel individually while at
the same time provide an overview of all channels which makes
it possible to check for overall artifacts in the data or in individ-
ual channels. The event related average plot gives more insights
in condition-based response profiles allowing to compare differ-
ent tasks as well as overall performance and data quality.

In the bottom right of this section, a layout overview is pre-
sented which shows the sources, detectors, and the respective
channels on a predefined montage (number 8 in Fig. 1). The
source and detector positions are stored with respect to the
underlying montage image and can be individually adapted

Fig. 1 The graphical user interface of Turbo-Satori. The interface consists of four parts: 1. The real-time
analysis setup window, which includes configurations to set up the real-time analysis as well as con-
nection, plotting, and control settings. 2. The channel selection and analysis window. It contains
the basic parameters and table to perform real-time analysis of the available channels. 3. The prepro-
cessing window allows to change the preprocessing parameters for raw wavelength data as well as for
the HbO/Hb converted data. Additionally, the status information is shown in the bottom of the window. 4.
The main application window provides three different plots and a layout view, frequency spectrogram and
log window area (numbers 5 to 8) showing useful information or the layout of the sources, detectors, and
channels. 5. The time course of the selected channels (or average) for raw wavelength 1 and/or 2, HbO
and/or Hb signal. 6. The event related average of the selected channels time course. 7. The combined
plot for all marked channels. 8 The layout view, (layout shown in this figure, see tab bar at bottom).
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using an integrated layout manager or loaded from the stored
information if reanalyzing a dataset (stored with NIRStar soft-
ware bundled using an NIRx device).

The configuration of Secs. 1–3 is very flexible, allowing to
choose where to place each part or to have it as a floating inter-
face for multiscreen configurations.

2.2 Real-Time Preprocessing

In comparison to offline analysis, the major constraint of real-
time analysis is to achieve a constant calculation time from time
point to time point that is shorter than the sampling interval of
two consecutive measurements during the whole experiment.
This requirement is especially important for neurofeedback
and BCI experiments using data from extended time windows
or even the full-time course to calculate values for visualization
and classification. The constant calculation time constraint is
required for all subparts in the moment-to-moment processing
pipeline including I/O operations, conversion from raw to HbO/
Hb signals, preprocessing, analysis and neurofeedback/BCI
calculation, and presentation, and the sum of operation times
of these steps must be smaller than the sampling interval.

Turbo-Satori provides online HbO/Hb concentration value
calculations from raw wavelength data using the modified
Beer–Lambert law (MBLL).18 The parameters for concentration
changes are based on the work of Essenpreis et al.19 who per-
formed a study on adults to calculate the across-subject average
differential path length (DPF) and the molar extinction coeffi-
cients (ε) from Gratzer,20 see Table 1.

Since the HbO/Hb concentration values need a baseline of
raw data before they can be calculated in real time for future
time points, the program initially shows raw data and switches
to the HbO/Hb data display as soon as the baseline is available.
As default, the baseline is calculated from the first 200 received
values, but this can be changed using the “Hb/HbO baseline cal-
culation period, “begin” and “end” fields in the “analysis set-
tings” setup dialog. Raw wavelength and converted HbO/Hb
data have their own preprocessing subpanels. The values of
the full channel plotter and especially of the selected (and
event-related) channel plotter should be scaled so that they
fall within −1 and þ1 (the range of the y-axis). Preprocessing
options allow to detrend the raw data and apply a moving aver-
age-based low-pass filter with an order up to five. The order
defines a repeated application of the low-pass filter on the
data for stronger high-frequency noise removal. The HbO/Hb
data can be low- and high-pass filtered in real time using a vari-
ety of different infinite impulse response (IIR) filters like the
exponential moving average filter and a simple moving average
filter. Implementations of RBJ Biquad, Butterworth, Chebyshev,
Elliptic, Bessel, and Legendre filter designs are based on the
work of Ref. 17, including low-pass, high-pass, bandpass,
and bandstop transformations for most of the filters. This allows
to adapt the filtering to each participant separately, giving the
individual advantages and drawbacks of each filter type.21,22

To verify the effect of the used filtering settings, a frequency
spectrogram is available showing the magnitude response for
frequencies in a range from 0.0 to 1.4 Hz. The frequency
plot is updated in real time and displays the frequency spectro-
gram of the selected channel for HbO and/or Hb. In addition to
the real-time filtering procedures, a motion correction approach
described in Ref. 23 is implemented which is based on the neg-
ative correlation of oxygenated and deoxygenated hemoglobin
dynamics.23 This approach is very well suited for real-time cal-
culation because of three major characteristics which are essen-
tial for real-time signal quality improvement. The correction at a
specific point in time only relies on the data before and does not
need data later than the current point, the computation time for
this procedure is low and constant and it does not require user
interaction because the method can be used in an automatic
fashion.23 The method is applied after the MBLL and filtering
of the data. The motion correction can be turned on using the
motion correction check box in the HbO/Hb preprocessing field.
For further performance details, refer to Ref. 23.

2.3 Real-Time Data Analysis

The analysis performed in Turbo-Satori is based on a real-time
implementation of the GLM, the recursive least squares GLM
(rlsGLM).24 Fitting an ordinary least squares (OLS) GLM is
the same as finding estimates of the beta values minimizing
the sum of squared error values (e). y represents the HbO or
Hb data

EQ-TARGET;temp:intralink-;e001;326;447e 0e ¼
XN

t¼1

e2t ¼ ðy − XβÞ 0ðy − XβÞ; (1)

EQ-TARGET;temp:intralink-;e002;326;399 ¼ y 0y − 2β 0X 0yþ β 0X 0Xβ; (2)

EQ-TARGET;temp:intralink-;e003;326;374

dS
dβ

¼ −2X 0yþ 2X 0Xβ ¼ 0: (3)

The solution can be directly calculated as

EQ-TARGET;temp:intralink-;e004;326;324β ¼ ðX 0XÞ−1X 0y: (4)

For the rlsGLM, the beta values ðβÞ and inverted X 0X design
matrix can be updated incrementally using only information of
the new time point with the following recursive equations:

EQ-TARGET;temp:intralink-;e005;326;260βtþ1 ¼ βt þ ðX 0
tXtÞ−1

ðytþ1 − xtþ1βtÞ
1þ x 0

tþ1ðX 0
t XtÞ−1xtþ1

; (5)

EQ-TARGET;temp:intralink-;e006;326;215ðX 0
tþ1Xtþ1Þ−1 ¼ ðX 0

t XtÞ−1 −
ðX 0

t XtÞ−1xtþ1x 0
tþ1ðX 0

tXtÞ−1
1þ x 0

tþ1ðX 0
t XtÞ−1xtþ1

:

(6)

Since the ðX 0XÞ−1 term is the same for all channels, it can be
precomputed before solving the β for individual channels reduc-
ing the calculation time for each new data point in time.

In its standard formulation, rlsGLM results in the same beta
estimates as a standard GLM over the whole time course up to
the current point in time.

The GLM is calculated for each channel individually and for
the average of the selected channels. The resulting beta values of
the calculations are represented in the channel selection and

Table 1 Parameters to calculate concentration changes using MBLL.

DPFλ εHbOλ
ð l
cmmmolÞ εðHbλ l

cmmmolÞ
λ1 ¼ 760 nm 6.40 1.4865865 3.843707

λ2 ¼ 850 nm 5.75 2.526391 1.798643
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analysis window as values as well as color coded in each chan-
nels row header. The user can change the thresholds for the
color coding using the threshold spin boxes below the table.
This allows a quick inspection of all channels and makes it
easy for the user to select the most promising channel. A source
of confounding noise in fNIRS analysis is serial correlations.
Recent studies have proposed different methods to correct for
this noise using offline12,23 and real-time25 data analysis. In
this real-time analysis approach, the computed beta values
are used for qualitative judgments, which are unaffected by
serial correlations. The GLM may also be used to estimate sin-
gle-trial responses (beta values) in the context of classifier
applications.

The results are also shown in the connection color and
strength of a source and a detector in the layout view. This
view allows a spatial inspection of the activation on a predefined
montage or image. In some cases, it is even useful to take a pic-
ture of the fNIRS cap on a participant’s head and directly point
the sources, detectors, and channels onto this image allowing an
immediate translation from activity patterns to source–detector
locations on the participants head.

2.4 Real-Time Multivariate Pattern Classification

Multivariate pattern classification (MVPC) is gaining increasing
interest in the neuroimaging community for both offline and
real-time fNIRS data analysis, because it allows detecting
differences between conditions with higher sensitivity than con-
ventional univariate analysis by focusing on the analysis and
comparison of distributed patterns of the activity. In such a
multivariate approach, data from many sources (e.g., channels
in fNIRS and EEG, voxels in fMRI) are jointly analyzed.

The high sensitivity of MVPC allows “brain reading” applica-
tions that aim to decode (predict) specific mental states or rep-
resentational content from activity patterns. After performing a
training phase, the decoding/prediction phase requires little
computational load and it is, thus, suitable for real-time BCI
applications including the decoding of mental states. Turbo-
Satori uses MVPC based on the widely used SVM learning
algorithm. The library used in Turbo-Satori is the LIBSVM
library.26 In the “tools” menu, the “SVM training” item can
be used to open the “multichannel pattern classification” dialog
allowing to train a SVM on the data from one or more completed
runs of a real-time session (currently only one training run is
supported); the dialog can also be used to perform offline test-
ing, e.g., on the data of a subsequent run. After the training
phase, the “real-time SVM classification” dialog can be used
to start trial-by-trial online classification producing prediction
values that indicate to which class a distributed activity pattern
belongs according to the information extracted by the classifier.

The “multichannel pattern classification” dialog as shown in
Fig. 2 can be used to train SVMs to associate distributed activity
patterns with class labels that correspond to two or more con-
ditions (“classes”) of a paradigm.

The “trial estimation” tab (Fig. 2) is used to specify how
responses should be estimated for individual trials at each chan-
nel. The “train SVM classifier” tab (see Fig. 3) is used to create
training data suitable for SVMs and to perform the actual train-
ing process.

The classifier supports multiclass problems, i.e., distributed
patterns may be assigned to two or more different conditions.
The trained classifier can then be tested on completed run
data using the “test classifier” tab. For real-time classification,
the “real-time SVM classification” dialog is used. In order to

Fig. 2 Multichannel pattern classification dialog. The trial estimation tab is selected, allowing control of
the estimation of response values per trial.
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obtain input patterns for different classes, response values are
estimated for each individual trial using a standard OLS-
GLM. Estimated single-trial responses across relevant channels
(e.g., all nonmasked channels of a montage) then form the fea-
ture vectors used to train or test the classifier. An estimated trial
response might be as simple as the activity level at a certain time
point (e.g., at the time of the expected hemodynamic peak
response) or the mean response of a few measurement points
around the peak response relative to a prestimulus baseline.
In Turbo-Satori, however, trial-related time points are integrated
by running single-trial GLMs to estimate beta values using an
expected hemodynamic response shape. The estimated single-
trial responses (beta values) across channels form multivariate
patterns that can be used for training runs and for online clas-
sification at the end of a trial. For a more robust fit of the model,
a linear trend confound predictor may be added (next to the con-
stant predictor and the main predictor) for estimating (and
removing) a linear trend. The single-trial channel estimates
may be specified as either t values, beta values, or percent signal
change beta values. The beta values’ option is selected as
default. As default, the time course data within each trial win-
dow is z-normalized, which can be turned off if raw time courses
should be used. The “plot” button can be used to create a visu-
alization of the created training data (see Sec. 3 for snapshot).

To test the performance of the classifier, we conducted an
experiment using a finger tapping paradigm described in
Sec. 2.6, including two training runs and one test run. A subset
of 8 sources and 8 detectors incorporating 20 channels from
the finger tapping paradigm was used in this experiment. The
subset includes sources 2,3,4,6,12,13,14,16 and detectors
1,2,4,5,11,14,15,16, of the used sources and detectors described
in Sec. 3.1. The channel number is based on subset source–
detector pairs sorted in increasing numerical order (e.g., channel

#1: source 2, detector 1, channel #2: source 2, detector 2, . . . ).
The first 10 channels (1 to 10) are placed on the left hemisphere
and the 10 last channels (11 to 20) are placed on the right
hemisphere. Only these 20 channels were used to train the
classifier. A portable fNIRs system (NIRSport 8 × 8, NIRx
Medizintechnik GmbH, Berlin, Germany) was used in combi-
nation with an fNIRs cap having the proper size for each indi-
vidual participant. The sampling rate was 7.8125 Hz.

2.5 Neurofeedback Calculation

For many (clinical) neurofeedback applications, it is desirable to
visualize, e.g., in a thermometer, the mean activation level from
selected channels during a modulation period relative to a base-
line level, and to present the activity visualization to the partici-
pant as feedback. The neurofeedback dialog, Fig. 4, can be used
to select one channel or the average of multiple channels for
feedback calculation and visualization and to prepare details
about the feedback display.

In this section, details about the calculation of neurofeedback
signals from selected channels and how calculation is controlled
are described using options in the “feedback settings” field in
the neurofeedback dialog. Values for neurofeedback are calcu-
lated by subtracting the last baseline (BL) from the current
scaled oxy/deoxy value. Note that deoxy values are inverted
so that a negative deflection results in a positive feedback signal.
In detail, the calculations are as follows:

EQ-TARGET;temp:intralink-;e007;326;129fboxy ¼ ðoxyvalue − oxyBLÞ; (7)

EQ-TARGET;temp:intralink-;e008;326;98fbdeoxy ¼ −1 � ðdeoxyvalue − deoxyBLÞ; (8)

Fig. 3 Multichannel pattern classification training dialog. Here, the train SVM classifier options are
shown, enabling specification of the classification task and channels used for training.
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EQ-TARGET;temp:intralink-;e009;63;397

fbcombined ¼
1

2
� ½ðoxyvalue−oxyBLÞ− ðdeoxyvalue−deoxyBLÞ:

(9)

Note that Eqs. (7)–(9) assume a negative correlation between
the patterns of HbO and Hb. This results in a percent signal
value that is used to fill the thermometer display. To convert
this value into a corresponding fill level of the thermometer,
the resulting value is related to the “max val oxy” and “deoxy”
values as specified in the max val oxy and max val deoxy field.
If, for example, the calculated fboxy value is 0.25 and the max val
oxy value is set to 0.5, the thermometer is half filled, i.e., 5 out
of 10 rectangles will be filled since fb∕max valoxy ¼ 0.5. To
find good values for the maximum, it might be useful to observe
achievable neurofeedback amplitudes for specific channels in
localizer or test runs.

Because of the sluggishness of the fNIRS (BOLD) response,
the values defined by a baseline interval should not be directly
used as defined in the protocol, but should take the hemo-
dynamic delay into account. In order to protect the BOLD
decay from a previous modulation condition, values at the
beginning of the baseline condition need to be excluded. The
number of points to excluded can be specified with the “shift
at begin” spin box. If the previous baseline condition occurred,
for example, from time points (s) 50 to 70 (20 s), the actual val-
ues considered for baseline calculation would be from 55 to 70
in case of value 5 for the shift at the beginning of the baseline
interval. In a similar way, one can also extend points “to the right
side” at the end of a baseline interval since it takes some time
until the BOLD signal rises in the modulation block. Since it is

expected that the signal already starts to rise after about 2 to 3 s,
the shift into the modulation interval should be, however,
smaller than at the beginning of the baseline condition.
Using 1 s for the shift at end parameter results in the final inter-
val 55 to 71 for the baseline period. The signal values of the
identified data points within this period (16 s in the example)
will be averaged to obtain the baseline level BL for the sub-
sequent modulation block. Note that 4 s are minimally required
for a premodulation baseline (at least 10 are recommended); oth-
erwise, no feedback output is produced in the thermometer
display.

2.6 Real-Time Preprocessing and Analysis
Verification

We used data from four experiments to verify the calculation
times for the whole preprocessing and analysis using second-
order real-time Butterworth low- and high-pass filters and
rlsGLM calculation with two main predictors. The four experi-
ments were analyzed post hoc using the same routines as used
during real-time measurements allowing for a direct translation.
The first experiment (Fig. 8, yellow, 20 channels [10.4167 Hz])
consisted of 224,990 data points which were generated auto-
matically simulating an ∼6-h experiment. The second experi-
ment (Fig. 8, blue, 64 channels [7.8125 Hz]) was a mental
drawing paradigm which consisted of 3291 data points and
took ∼7 min. The third and fourth experiments were data
from the NIRx support website27 including both a left- or
right-hand finger tapping experiment. The first of these two
experiments (Fig. 8, orange, 256 channels [7.8125 Hz])

Fig. 4 The neurofeedback dialog.
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consisted of 2750 data points and took ∼6 min and the second
experiment (Fig. 8, gray, 256 channels [3.91 Hz]) consisted of
2460 data points which required ∼10 min. These two datasets
were also used to show the performance of the rlsGLM and user
interface as describe in the results section.

2.7 Experimental Setup

BCI and especially neurofeedback experiments can require a
complex setup involving multiple devices and software. It is,
therefore, important to clarify the connections from and to
Turbo-Satori as well as the position in an example setup as
shown in Fig. 5.

The data acquisition is based on an NIRx fNIRS system
(NIRScout, NIRSCOUTX, or NIRSport) which is operated
by a computer or laptop running NIRStar (version 14.2)27.
The NIRx device is connected via a universal serial bus
cable to the computer with NIRStar. Turbo-Satori is installed
on a separate computer which connects to the computer running
NIRStar via a TCP/IP Ethernet connection. The two software
packages use the NIRx network software development kit to
communicate in real-time and exchange data between
NIRStar and Turbo-Satori. For BCI or specifically neurofeed-
back applications, the stimulus presentation software needs to
read or receive the BCI or neurofeedback information in real
time. In this example setup, the stimulus presentation software
also runs on a separate computer. This computer is also con-
nected to the computer running Turbo-Satori using a TCP/IP-
based Ethernet network connection. The data are exchanged
using a self-designed network interface enabling real-time
access to raw and preprocessed fNIRS data as well as protocol
and statistical information. This interface is available for soft-
ware tools like Expyriment,28 BrainStim,29 or MATLAB
(MATLAB, The MathWorks Inc., Natick, Massachusetts).
The prepared stimuli and BCI or neurofeedback information
are then presented to the participant.

The separation of all three software tools ensures a fast
processing of each element in the chain and ensures compli-
ance to the time critical requirements of these kinds of
experiments.

3 Results

3.1 Finger Tapping Example

The rlsGLM analysis revealed different patterns for left and
right finger tapping visualized in the layout view of Turbo-
Satori. The task specific patterns on the right hemisphere
for left finger (red task period) tapping and on the left hemi-
sphere for right finger tapping (green task period) appear after
three task epochs on the right hemisphere during the left tap-
ping task and after four task epochs on the left hemisphere for
the right tapping task using a fixed beta threshold. The mini-
mum beta threshold was set to 0.40 (white color and thin lines)
and the maximum color coding (red) and strength was set to
0.70. For both tasks, a separate task versus rest contrast was
selected. After each task block, a state of the current layout
was extracted and put together in Fig. 6.

After a few repetitions of each task, one can see a pattern
evolving representing the channels exceeding the selected
beta threshold. Also, a difference in the pattern strength is vis-
ible; in Fig. 6(a) the right hemisphere for left finger tapping and
in Fig. 6(b) the left hemisphere for right finger tapping exhibit a
larger response strength. The beta values of the offline analysis
were highly correlated compared to the online analysis having
an average Pearson correlation coefficient of 0.999 with signifi-
cance at P < 0.0001. Comparing the neurofeedback levels and
the underlying preprocessed fNIRS signal (for HbO, Hb, and
mean) resulted in an average Pearson correlation of 0.9311
with significance at P < 0.0001.

3.2 Support Vector Machine Analysis of Finger
Tapping Experiment

In Fig. 7, the trained classifier is shown. The y-axis represents
the training patterns with black lines separating the different
classes for each run (first run class 1, first run class 2, second
run class 1, second run class 2); the x-axis represents the chan-
nels used for training (20 channels in this example). The colored
rectangles indicate the value of the estimated responses within a
pattern for a given channel (negative values green-to-blue, pos-
itive values yellow-to-red). The rows at the bottom of the graph
show the mean values averaged over the trials of the available
classes. In this example, one can clearly see in the average plot a
pattern in the trial responses. For the first class (left finger tap-
ping), the last 10 channels (11 to 20, placed on top of the right
hemisphere) show a stronger response and the first 10 channels
(1 to 10, placed on top of the left hemisphere) show a larger
response for the second class (right finger tapping).

We employed a leave-one-run-out splitting procedure to
cross-validate the classification performance between left and
right finger tappings using a 1000 folds’ permutation test.
For this dataset, using two training runs (12 trials per condition)
and one test run, an accuracy of 100% was reached having a
significant accuracy (p < 0.01). The 95th percentile of each
1000 permutations test was 69.36%.

3.3 Calculation Times

All experiments were analyzed successfully in Turbo-Satori
using a standard laptop computer with 3.0 GHz Intel®

Core™ i7-5500U CPU, 8 GB RAM and 512 MB SSD storage.
The calculation times were much lower than the respective sam-
pling rates. For the first experiment, an average calculation time

Fig. 5 Setup of real-time fNIRS neurofeedback experiment using
Turbo-Satori.
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of 0.361 ms (min 0.246 ms, max 2.249 ms, std. 0.0841) was
achieved using a sampling rate of 10.41467 Hz (∼96-ms inter-
val). The second experiment was performed with a mean calcu-
lation time of 0.741 ms (min 0.443 ms, max 4.480 ms, std.
0.164) with a sampling frequency of 7.8125 Hz (128-ms inter-
val). For the third experiment, a calculation time of 2.661 ms

(min 1.496 ms, max 15.544 ms, std. 0.509) was achieved
using a sampling rate of 7.8125 Hz (128-ms interval). The
last experiment performed similarly having an average calcula-
tion time of 2.753 ms (min 1.495 ms, max 16.712 ms, std.
0.503) using a sampling rate of 3.91 Hz (∼255-ms interval).
All experiments did not show any significant linear increase

Fig. 6 Incremental results of the left and right finger tapping experiment. (a) The right hemisphere pattern
and the oxy (bold line)/deoxy (thinner line) time course of the channel covering C4. (b) The left hemi-
sphere pattern and oxy (bold line)/deoxy (thinner line) time course of the channel covering C3. The
strength of the edges between sources (red points) and detectors (green points) represent the beta val-
ues using the HbO time courses for the GLM calculation in this example.

Fig. 7 Visualization of the finger tapping training dataset in the training pattern plot. Rows in the upper
part represent patterns of single trial with black lines separating different classes and runs (first run class
1, first run class 2, second run class 1, second run class 2). The colored rectangles indicate the value of
the estimated responses within a pattern for a given channel (negative values green-to-blue, positive
values yellow-to-red). The rows at the bottom of the graph show the mean values averaged over the
trials of the two available classes (left and right tapping).
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in calculation time over the whole dataset (see asterisks in
Fig. 8). An overview of these results is shown in Fig. 8.

4 Discussion
BCIs and especially neurofeedback applications using fNIRS
have gained increasing importance in recent years. Therefore,
software is needed that helps researchers and clinicians to easily
use state-of-the-art analysis methods and to apply these tech-
niques in broad research and increasingly in clinical fields.
Turbo-Satori has been developed to fulfill these needs by inte-
grating a fast calculation engine implemented in C++ with an
easy to use interface that provides useful information about
channel-level signal quality. The software offers analysis meth-
ods including statistical and classification (SVM) tools that
are useful for BCI applications. Furthermore, calculation and
visualization tools are provided that enable neurofeedback
applications.

The implemented incremental GLM, which has been used in
real-time fMRI applications for many years, could potentially be
used as a verification of a participant’s performance and speed
up the experiments by giving more insights during the experi-
ment. This would allow, for example, to stop a localizer experi-
ment earlier in the case where a required performance level is
not reached, saving time that can be used to better instruct the
participant. A standard (windowed) GLM is used to estimate
single-trial channel responses as part of the classification
tools. The (incremental) GLM can also be used to regress
out confounds (e.g., drifts) from the data providing cleaned
input data for neurofeedback and classification subroutines.
The high sampling frequencies used in fNIRS experiments
introduce a significant temporal autocorrelation within the
time course, which can lead to inaccurate estimation of the
signal degrees of freedom and error covariance using OLS-
based algorithms.30 Therefore, the current version of Turbo-
Satori reports beta-values as a default output. Nevertheless,
there are popular methods to mitigate this effect including
data “precoloring”31 and “prewhitening.”30 In a recent paper,
Barker et al.25 presented an online least square estimation algo-
rithm incorporating the “prewhitening” technique for real-time
fNIRS. These tools are planned to be integrated in a future
version of Turbo-Satori.

While Turbo-Satori already offers many relevant features,
further improvements and integration of new tools for real-

time fNIRS processing and analysis are needed. To allow adding
custom calculations, a plugin interface has been created ena-
bling software developers to extend the capabilities of the
software.

The broad spectrum of different kinds of IIR filters offer a
high flexibility for the researcher to easily select a good filter
and corresponding settings during data acquisition for each indi-
vidual participant. As shown in Ref. 12, these individual filter-
ings can be a crucial factor if the data quality is not optimal and
is very noisy.

The sampling rate of fNIRS data acquisition can be
selected in the hardware setup of the NIRx NIRs device. It
allows to freely decide based on the number of sources, detec-
tors, and steps, how fast the data should be acquired. For real-
time fNIRS, the sampling frequency is in principle the maxi-
mum time that is available to still perform the analysis and
preprocessing in real time. The calculation time strongly
depends on the number of channels used in the analysis.
Using only 20 channels resulted in a much faster calculation
allowing for an overall higher sampling rate in the future.
Using only the channels of interest in the data analysis
would, therefore, be the best option for real-time applications,
whereas for the localizer online analysis all channels could be
considered, ensuring the best selection for the BCI or neuro-
feedback experiment.

Also in the field of neurofeedback-based treatments, fNIRS
has gained more attention and many studies have recently been
published.9,32,33 This shows the importance and need of more
tools for real-time processing which will allow more researcher
to focus their research on real-time fNIRS applications and treat-
ments as was the case for real-time fMRI studies.34 The stand-
ardization of the accessibility of fNIRS data is also very
important to facilitate the applications of real-time fNIRS
experiments using different hardware to record the fNIRS sig-
nal. In this paper, we based our developments on hardware from
NIRx which uses a proprietary interface to gain access to the
fNIRS data in real time. An alternative would be the use of
an already elaborated library like the lab streaming layer35

for the unified collection of measurement time series in research
experiments. One can gain access to the software in a collabo-
rative environment since new tools and features are continuously
added. It is also possible that the software may become commer-
cially available in the future.

Fig. 8 Calculation times for the four conducted experiments with varying number of channels and sam-
pling rate. Asterisk indicates no trend in calculation times.
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5 Conclusion
We presented Turbo-Satori, a feature rich software toolbox for
real-time fNIRS neurofeedback and BCI applications. An exam-
ple setup was proposed using a clear differentiation between
data acquisition, processing, and presentation ensuring a
good workflow and straightforward interaction with the differ-
ent tools. With data from four experiments, we showed the sta-
bility and reliability of the calculation performance from
preprocessing and analysis methods ensuring a durable perfor-
mance even for very long experiments running for several hours.
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