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Abstract. The spectral analysis and classification for discrimination of
pulsed laser-induced autofluorescence spectra of pathologically certi-
fied normal, premalignant, and malignant oral tissues recorded at a
325-nm excitation are carried out using MATLAB@R6-based principal
component analysis �PCA� and k-means nearest neighbor �k-NN�
analysis separately on the same set of spectral data. Six features such
as mean, median, maximum intensity, energy, spectral residuals, and
standard deviation are extracted from each spectrum of the 60 training
samples �spectra� belonging to the normal, premalignant, and malig-
nant groups and they are used to perform PCA on the reference data-
base. Standard calibration models of normal, premalignant, and ma-
lignant samples are made using cluster analysis. We show that a
feature vector of length 6 could be reduced to three components using
the PCA technique. After performing PCA on the feature space, the
first three principal component �PC� scores, which contain all the
diagnostic information, are retained and the remaining scores contain-
ing only noise are discarded. The new feature space is thus con-
structed using three PC scores only and is used as input database for
the k-NN classification. Using this transformed feature space, the cen-
troids for normal, premalignant, and malignant samples are computed
and the efficient classification for different classes of oral samples is
achieved. A performance evaluation of k-NN classification results is
made by calculating the statistical parameters specificity, sensitivity,
and accuracy and they are found to be 100, 94.5, and 96.17%,
respectively. © 2007 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Cancers of the oral cavity represent a major health problem,
as indicated by their high incidences in many parts of the
world.1 This cancer is one of the 10 most common cancers all
over the world with more than 500,000 new cases projected
world wide annually.2 In India, there is a high incidence of
oral cancer accounting for as much as 50% of all cancers.3 It
predominantly occurs among males with a male:female ratio
ranging from 2 to 10 for various intraoral sites. The incidence
and mortality from oral cancer have either been stable or in-
creasing over the past three decades in several countries, with
the increase being more striking particularly among young
men in the western and eastern European regions.4 According
to the Indian cancer registry,4–6 malignant tumors of the lip,
oral cavities, and pharynx are the most commonly cited group
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of cancers. Between 90 and 95% of all oral cancers arise from
the cells that line the mouth. Despite the easy accessibility of
the oral cavity for examination, there is no satisfactory
mechanism to adequately screen and detect premalignant
changes and early lesions in the upper aerodigestive tract.7,8

Most oral lesions are usually ignored and are not treated until
they are advanced or have metastasized. At this advanced
stage, the effectiveness of chemotherapy, radiotherapy, and
surgery or combinations of these modalities have been disap-
pointing. Moreover, successful therapy of oral cancer has
been significantly hindered by the subsequent development of
secondary tumors, which leads to treatment failure and death.
Therefore, early detection of neoplastic changes in the oral
cavity may be the best approach to improve results of therapy
and survival rates.

Oral cancer is one among the few human cancers with a
vast potential for prevention. Several forms of tobacco use
�chewing, smoking, reverse smoking� and alcohol drinking
1083-3668/2007/12�1�/014028/9/$25.00 © 2007 SPIE
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are most causative factors for oral cancer.6 Because of the
widespread usage of tobacco, the incidence of oral cancer is
quite high in developing countries. Researchers in oral cancer
agree that the early detection of oral carcinoma greatly in-
creases the probability of cure with minimum impairment and
deformity. A recent review,6 pointed out that adults above the
age of 40 years should undergo regular oral cancer examina-
tions as part of their regular oral and dental health checkups.
Routine oral visual examinations can help in early detection
of oral cancer, enabling interventions that contribute to re-
duced morbidity and/or improved survival. Primary preven-
tion of oral cancer, which involves reducing the exposure to
tobacco, betel quid, and alcohol, has been shown to be effec-
tive in controlling the oral cancer incidence rates. Secondary
prevention involves screening for the early detection.4,7–9

However, the facilities for early detection of oral lesions in
developing countries, in terms of well-equipped clinics with
qualified clinicians and pathologists, are sparse and awareness
about screening for early detection is almost nil. A technique
that is fast; requires only minimally trained technicians to
operate; uses relatively reasonable, portable equipment; and
that can objectively evaluate in a community screening pro-
gram the state of an oral lesion as inflammatory, premalignant
or malignant, can speed up the identification of cases that
require professional medical/hospital examination for follow-
up. The laser-induced fluorescence �LIF� method with
statistical/mathematical data processing fulfills these require-
ments.

All oral lesions are not necessarily premalignant or
malignant.7,8 The development of a noninvasive and accurate
method for real-time screening and diagnosis of oral cavity
lesions would have great potential to improve early detection
of neoplastic changes.

LIF spectroscopy and fluorescence imaging have been
studied as potential noninvasive diagnostic tools for differen-
tiating normal and neoplastic oral tissues.10 Compared with
several other cancer diagnosis tools, the autofluorescence
technique has a high specificity and sensitivity for discrimi-
nation between the diseased and nondiseased tissue, and also
has the advantage of being noninvasive and producing a real-
time diagnosis.11 Recently, fluorescence spectroscopy has
been extended to the medical field to characterize various
metabolic and pathological changes at the cellular and tissue
level because it is the most sensitive method for monitoring
minor changes in the structure and microenvironment of a
fluorophore.12 The technique involves illumination of tissue
with monochromatic light and recording the fluorescence
spectrum. LIF can utilize the naturally occurring tissue fluo-
rophores �autofluorescence� or exogenous fluorophores.13–24

Autofluorescence techniques offer a number of advantages,
including avoidance of potential side effects of added dyes or
drugs. The fluorescence spectral profile of the tissues provides
information not only about their architecture �epithelial thick-
ness�, and organization, but also about their metabolic state
and concentrations of fluorescing molecules, which can be
correlated to histological changes. The alterations in tissue
architecture �epithelial thickness� and cellular composition in-
duced by processes such as dysplasia and inflammation are
reflected in variations in the optical properties of human tis-
sue. Any alterations in tissue architecture �epithelial thick-

ness� that inhibit the ability of excitation photons to reach the
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natural fluorophores or of the fluorescence emission photon to
escape from the tissue and be detected by the spectroscopic
system would affect the fluorescent signature. Additionally,
changes in the concentration or form of natural fluorophores
such as collagen would alter the emitted fluorescence. Thus,
by measuring the fluorescence signal from a tissue, which is
different for different epithelial thicknesses and cellular com-
positions, information concerning a disease condition can be
obtained.25 The spectroscopy technique has the added advan-
tage that it can be repeatedly applied in situ/in vivo without
the deleterious effects of repeated biopsy.

There are very few22,23,26–31 systematic studies on the ef-
fectiveness of discriminating between premalignant and ma-
lignant conditions in oral tissue by LIF. One aim of our stud-
ies was to see whether this could be done successfully. The
results discussed in the following show that LIF could suc-
cessfully discriminate among normal, premalignant �oral sub-
mucous fibrosis �OSMF��, and malignant situations.

OSMF is an insidious chronic disease affecting any parts
of the oral cavity and sometimes the pharynx. Although occa-
sionally preceded by and/or associated with vesicle formation,
it is always associated with a juxtaepithelial inflammatory re-
action followed by a fibroelastic change of the lamina propria,
with epithelial atrophy leading to stiffness of the oral mucousa
and causing trismus and inability to eat.32,33

To identify a better classifier technique for the classifica-
tion of oral data for optical pathology, comparative evaluation
of different classifier techniques using same set of spectral
data is necessary. Keeping this in mind, in the present analysis
using MATLAB principal component analysis �PCA�-based
k-means nearest neighbor �k-NN� classifier technique, we
used the same set of spectral data that have been used in
earlier analysis using PCA and artificial neural network
�ANN� classifier techniques27 for its comparative evaluation.
The main purpose of our studies is to address these aspects in
screening for early detection of oral malignancy by LIF.

In our laboratory, we studied the fluorescence spectra of
normal as well as different stages of malignant oral tissues
and developed fluorescence spectroscopy techniques for opti-
cal pathology.18,21,27 In this study, we have classified the fluo-
rescence spectra recorded at 325-nm excitation from patho-
logically certified normal, premalignant, and malignant oral
tissue using the PCA-based k-NN technique. These spectral
samples are the same as those used in Ref. 27. The input
feature space selection for k-NN classification is done using
the PCA technique and a cluster-space classification is devel-
oped, which implements the k-NN method efficiently and
makes it feasible for dimensional data classification.34–36 We
used the nearest neighbor �NN� classification technique,
which classifies an unknown sample to a class that has the
most “similar” or “nearest” sample point in the training set of
data. The results in this study show that the discrimination of
normal, premalignant, and malignant oral conditions can be
achieved quite successfully by LIF. The results obtained in
this study are presented and discussed in this paper.

2 Materials and Methods
2.1 Sample Collection and Handling
Biopsied normal, premalignant, and malignant oral tissue

samples were obtained from the college of Dental Surgery and
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Sai Baba Cancer Hospital, KMC Manipal Academy of Higher
Education �MAHE�, India. Tissues from uninvolved areas
from the same subjects were used as healthy controls. A mir-
ror image of each sample was fixed in 10% neutral buffered
formalin and was sent for histopathological certification. The
samples were kept moist with saline �pH=7.4�, and spectra
were recorded within half an hour of tissue removal. Samples
were mounted on a quartz plate and fluorescence measure-
ments were carried out with 325-nm laser excitation. When-
ever necessary, the tissue samples were snap frozen in liquid
nitrogen and stored at −80°C for later analysis. Trial runs
showed that the spectra remain unchanged at least for 2 h
after biopsy, if kept in saline.18 For each sample, spectra were
recorded from several points, separated by few hundred mi-
crometer to few millimeters, and were treated as independent
data because of the inhomogeneous nature of the tissue, and
in addition, to explore the feasibility in surgical boundary de-
marcation. Details of the sample preparation and spectral re-
cording are mentioned elsewhere.18–21 No particular care was
taken regarding the orientation of the tissue under study. Bi-
opsied oral tissue subjects used in this study were of different
sizes, having their surface area �approximately� in the range
of 15 to 25 mm2 and of thickness in the range 2 to 5 mm. The
sample details are given in Table 1.

2.2 Experimental Setup
A block diagram of the experimental setup for recording the
fluorescence spectra is shown in the Fig. 1. The excitation
used in this study is 325 nm at a 10-Hz repetition rate
with energy per pulse of 100 to 200 �J from an
Nd-YAG/MOPO/FDO source �Spectra Physics, Quanta
Ray, Model: PRO 230 10, MOPO SL�. The fluorescence
emission from the tissue samples was collected by fiber optic
probe, details of which are given elsewhere.18 In brief, we
used a typical homemade seven-fiber probe with a central
fiber for excitation and the surrounding six fibers for collec-

Table 1 S

Spectrum No. Sample Type Mean Age

1–20 Normal,
standard set

60±8.5 U

21–40 Malignant,
standard set

65±5

41–60 Premalignant,
standard set

61±10.5

61–100 Normal,
test set

60±8.5

101–137 Malignant,
test set

65±5

138–143 Premalignant,
test set

61±10.5
tion of fluorescence. The individual fibers �Thorlabs FG 200-
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UEP Fiber type� were of 240 �m diameter with a numerical
aperture of 0.25. The excitation end of the fiber was held
perpendicular to the tissue surface under study and the dis-
tance between the tip of the fiber and the tissue surface was
maintained to 2 to 3 mm, as optimized for better fluorescence
intensity. To adjust the distance between the tissue surface and
the fiber tip and to position the excitation at different sites of
a tissue sample, the excitation end of the fiber was mounted
on an XYZ micrometer translational stage. The output of the
fiber was coupled into an imaging spectrograph �Spectra Pro
150 spectrograph 300 g/mm, 300-nm blazed grating�
equipped with an Andor intensified CCD �ICCD� system �An-
dor Technology, Northern Ireland, ICCDBH-501-25F-01� for
spectral recording. A time delay of 500 ns provided by a DG
535 delay and gate generator �Stanford Research Systems�
was used to compensate for the cable and other delay times.
The total fluorescence after the delay was recorded with an
optimized 75-ns gate.18 All spectra were recorded with a slit
width of 250 �m �5-nm bandpass� and with an average of
100 laser pulses �10 Hz�.

2.3 Data Analysis
In this study we used 143 fluorescence spectra �60 normal, 26
premalignant, and 57 malignant� from 19 normal, 5 premalig-
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Fig. 1 Schematic of the experimental setup for LIF measurement.
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nant, and 19 malignant oral tissue samples. These spectral
samples are the same samples, as are used in Ref. 27 for PCA
and ANN analysis. In this study, these 143 spectra are treated
as independent data for the following reasons. First, in epithe-
lial cancers �before it has penetrated the underlying tissue�,
often a tissue specimen can have normal and neoplastic re-
gions adjacent to each other.30,31,37,38 The pathologist, there-
fore, examines several sites on a biopsy sample and even if
only one site shows as abnormal, the sample is considered as
abnormal. Second, for in vivo applications in screening, sur-
gical boundary demarcation, and optically guided biopsy it is
necessary to identify the exact site where malignancy is sus-
pected. The variations in the spectra from site to site will be
the deciding factor in this case and they must be treated inde-
pendently. Third, in epithelial cancers, the abnormal prolifera-
tion begins near the basal lamina �dysplasia�, which then ad-
vances into the epithelial region �carcinoma in situ�, and later,
in the invasive stage, penetrates into the connective tissue
region. We have shown38 by Raman spectroscopy that in bi-
opsied tissue samples of oral cancer, the subepithelial region
showed very similar spectra for normal and malignant
samples, and only the epithelial spectra discriminated between
the two very well for many samples. This means that unless
one is sure of the region �epithelial, subepithelial, or connec-
tive tissue� one is looking at in a biopsy sample, there can be
both normal and malignant types of spectra from adjacent
sections of the same sample. This possibility is further sup-
ported by the result that in none of the spectra of normal
samples �oral, breast, cervix, and ovary systems that we have
studied� recorded from different sites of the same specimen,
did we observe any anomaly, since normal samples are nor-
mal at all sites. Only malignant samples have shown this
anomalous behavior,39 with some sites giving typical normal
spectra and other sites of the same sample showing typical
malignant spectra, since these samples have the possibility for
both types of sites existing together. In view of these points,
when there is no a priori information available for a sample it
is necessary to examine many sites on the sample and treat
each site as independent. This is necessary even when one is
guided by a visual examination by the clinician for biopsy
because of possible errors such as past pointing.37–44 In this
study, we used MATLAB@R6-based PCA and �k-NN� analy-
sis to discriminate among normal, premalignant, and malig-
nant samples.

The PCA method is a linear feature transformation tech-
nique that preserves the variance of the feature space. This is
a classical method, usually employed for the dimensionality
reduction of a feature space.43 When many of the variables in
a multidimensional data set have a significant correlation,
PCA successfully captures nearly all the information of the
original data set in the first few principal components �PCs�.
PCA mainly has three effects. First, it transforms the data by
defining new variables, termed PCs, which are statistically
uncorrelated. Second, it orders the resulting PCs in such a
way that those possessing larger variances are arranged first.
And third, in many problems, the first few components cap-
ture most of the discrimination capability. In such cases, only
the first few components must be considered.

PCA is applicable for data analysis problems in several
domains where the data elements are significantly correlated.

In PCA, the PCs are arranged in the order of their contribution
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to the variance of the entire spectral data set. The first PC
accounts for as much of the variability in the data set as pos-
sible, and each succeeding component accounts for the next
largest amount of variation and is independent of the previous
PC. Each new PC is orthogonal to the previous PC and con-
tains the maximum information unexplained by the previous
one. Thus, PCA processing can dimensionally reduce the vari-
ables of the original spectral data into a small number of
informative PCs that fully describe the variations in the spec-
tral data within the limitations of noise. For doing PCA, the
six features mean, median, standard deviation, energy, maxi-
mum intensity, and the spectral residuals are extracted from
each spectrum and MATLAB@R6 �Refs. 45 and 46� based
PCA is performed on the reference database. Applying PCA to
the feature space matrix, the original data are transformed into
a set of PC scores. Since most of PCs account mainly for
noise and do not provide diagnostic information, it is neces-
sary to identify a small group of informative PCs to build the
algorithms for classification of oral spectra of different condi-
tions �normal, malignant, and premalignant�. Including a
minimal number of PCs reduces the complexity of a diagnos-
tic algorithm. The contribution of each PC to the total vari-
ance of spectral data is proportional to its eigenvalue. High-
order PCs often account for less than 1% of the total variation
and represent mostly noise44 only. In this paper, PCs that have
a variation of more than 1% variance in the spectral data are
considered to be informative PCs.

In PCA, first the calibration standards for each class of the
samples �normal, premalignant, and malignant� are prepared
using pathologically certified normal, premalignant, and ma-
lignant, samples. In this case, we randomly chose 20 spectra
each from the normal, premalignant, and malignant groups of
spectra and the calibration sets were prepared. Once the cali-
bration standards were established, any new sample could be
classified as normal, premalignant, or malignant by compar-
ing it with the standard models for normal, premalignant, and
malignant obtained from pathologically certified samples.

The standard calibration sets were optimized by removing
outliers from the model set using cluster analysis and select-
ing an optimum number of factors �PCs� required for the di-
mensional data analysis.47,48 Including outlier samples in the
training set introduces a bias to the final model.47,48 The clus-
ter plot for detecting outliers in the calibration model is gen-
erally plotted between the PC scores of the first two PCs
because the first two PCs represent the plane of best fit
through the data.

After the PCs with diagnostic information were identified,
a k-NN method was used to build the algorithm for classifi-
cation of the oral tissue spectra of different pathological con-
ditions �normal, malignant, and premalignant�. To construct
algorithms for k-NN classification, only those PCs that have
significantly different projection scores for normal, malignant,
and premalignant tissues were selected. The spectral samples
used in k-NN analysis are the same set of normal, pre-
malignant and malignant samples as used in PCA.

Nearest neighbor methods provide an important data clas-
sification tool for recognizing object classes in pattern recog-
nition domains.34–36,49,50 This method classifies an unknown
sample to that class having most “similar” or “nearest”
sample point in the training set of data. The nearest sample

was found by using concept of distances or metrics known as
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Euclidean distance. Euclidean distance is the square root of
sum of the square of the x distance plus the square of the y
distance for a given pair of cases x and y. Once the Euclidean
distance is identified, the k-NN classifies an unknown sample
to that class having most similar or nearest sample point in the
training set of data. Nearest neighbor methods can detect a
single or multiple numbers of nearest neighbors.36,49–51 In this
study, the single nearest neighbor method was used to classify
oral lesions including different pathological conditions �nor-
mal, malignant, and premalignant�.

3 Results and Discussion
A typical plot of normal and malignant oral tissue fluores-
cence spectra recorded at a 325-nm excitation is shown in Fig.
2. As mentioned in the data analysis section, in this study 143
fluorescence spectra �60 normal, 26 premalignant, and 57 ma-
lignant� from 19 normal, 5 premalignant, and 19 malignant
oral tissue samples were used and discrimination analysis was
performed using the MATLAB@R6 algorithm-based PCA
and k-NN analysis.

3.1 PCA
In this classification problem, to reduce the dimensionality,
we used six features, each from 143 sample spectra �60 cali-
bration � 83 test� on which PCA was performed. Twenty
spectra each, randomly chosen from certified normal, prema-
lignant, and malignant tissue samples were combined to dis-
cern the best approach to prepare calibration sets in the three
classes. Six features of 60 training samples belonging to the
normal, premalignant, and malignant groups were first pooled

Fig. 2 Typical background subtracted, smoothened, and normalized
fluorescence spectra of �a� normal and �b� malignant oral tissue.

Fig. 3 Plots of calculated �a� eigenvalues and �b� total percent variance

20 premalignant� spectral data.
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together and PCA was performed on this reference database.
Since only a few PCs are required to express the large amount
of spectral data, the eigenvalues drop to significant quantities
after the first few. The spectra of a given set of samples may
have contributions only from a limited number of factors, and
except for the first few factors, many of the eigenvalues may
be close to zero with no practical contribution to the spectra.
A simple plot of eigenvalues can also be used to informally
indicate the number of significant components. In our analy-
sis, the eigenvalues, the contribution to total variance, the
eigenvectors, and other parameters were used to determine the
significant number of factors required for a correct analysis.

Figures 3�a� and 3�b�, respectively, show the eigenvalues
for the factors and total percentage variance �i.e., total per-
centage contribution to the variation spectra with increasing
number of factors� of 60 standard oral samples �20 normal, 20
malignant, and 20 premalignant�. The plots indicate that three
factors are sufficient to explain 99.94% of the variance in the
total data set. And thus the feature vector of length 6 could be
reduced to three components. With many types of data sets, it
is common for the first few PCs to possess most of the vari-
ance of the original data. Table 2 shows the variance associ-
ated with first three PCs. We notice that first PC itself covers
over 95.79% of variance. From Table 2, we can see that the
eigenvalues decrease very rapidly and are almost zero after
three factors. Therefore, in the present analysis, the first three
PCA components, which show difference in total percent vari-
ance values among normal, premalignant, and malignant
cases, were retained for further analysis and remaining higher
order PCs were discarded. Thus, the feature space, a 6
�143 matrix, was reduced dramatically to a 3�143 matrix,

CA decomposition of the 60 oral tissue �20 normal, 20 malignant, and

Table 2 Eigenvalues and percent variance values of a standard set of
60 �20 normal, 20 malignant, and 20 premalignant�.

Factor No. Eigenvalues
Total Percent

Variance
Commulative
Variance �%�

1 6.5524 95.79 95.79

2 0.1913 2.79 98.58

3 0.0934 1.36 99.94
of a P
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and hence classification became computationally more effi-
cient.

Figure 4 shows a cluster/scatter plot obtained by plotting
the scores of the first two PCs of 143 samples ��20+40� nor-
mal, �20+37� malignant, and �20+06� premalignant�. We
clearly see from the plot that all samples diagnosed as normal,
malignant, and premalignant by pathological examination in
the calibration set clustered in three distinct regions. This
shows that the calibration set of samples used in this study are
almost free of outliers. Also, when all test normal, premalig-
nant, and malignant samples are used, almost all normal and
premalignant samples are clustered around their respective
calibration set centroid vectors. Though some of the malig-
nant and normal test samples are overlapped, malignant
samples are scattered more compared to normal and prema-
lignant samples. Only three test malignant samples over-
lapped with the normal and premalignant regions. The speci-
ficity and sensitivity of this technique is thus found to be quite
good.

3.2 k-NN Classification
NN methods can detect a single or multiple numbers of NNs.
A single NN method is primarily suited for recognizing data
where we have sufficient confidence in the fact that class dis-
tributions are nonoverlapping and the features used are dis-
criminatory. In most practical applications, however, the data
distributions for various classes are overlapping and more
than one NNs are used for majority voting.36,49–52 The NN
method works well with data where features are statistically
independent. From the score plot �Fig. 4�, it is evident that the
data points of training set of 60 spectra �20 normal, 20 malig-
nant, and 20 premalignant� are clustered in three distinct
groups without overlapping. Thus, in this study, we used the
single NN method to classify the oral lesions with different
pathological conditions �normal, malignant, and premalig-
nant�.

3.2.1 k-NN classifier
This is a classification scheme used to determine the class of
a given sample by its feature space. This is a variant of the
NN technique in which a prototype sample is computed from

Fig. 4 Cluster/scatter plot in log mode between the scores of first two
PCs of 143 spectra of oral normal, malignant, and premalignant
samples: NC, normal calibration; NT, normal test; MC, malignant cali-
bration; MT, malignant test; PMC, premalignant calibration; PMT, pre-
malignant test.
the reference set and a given test sample is classified as be-
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longing to the class of the closest prototype. Here, the proto-
type sample is computed as the mean of feature vector of the
reference set belonging to a particular class. This prototype
vector is known as the centroid vector.

In cluster analysis, clusters are generated that maximize
the distance between the centers of clusters; a centroid is the
value for all the objects in the cluster.34–36,49–52 The centroid
method requires a full set of coordinates to be presented for
all of the objects to be classified. It calculates the centroid
coordinates of each cluster, then the Euclidean distances be-
tween each pair of centroids. The pair with the least distance
is merged before proceeding to the next iteration.

3.2.2 Feature selection for k-NN classification
As already explained, the NN method works better with data
where features are statistically independent. Feature selection
involves determining which subset of features best distin-
guishes among the various object types. For an improvement
in the data analysis, in this study we proposed a k-NN model
that is a slight modification of the standard k-NN rule. Usu-
ally, in traditional k-NN classification, k NNs of a test docu-
ment are computed first. Then the similarities of this docu-
ment are assigned to the most similar class �as measured by
the aggregate similarity�. A major drawback in k-NN is that it
uses all features equally in computing similarities. This can
lead to poor similarity measures and classification errors,
when only a small subset of the data is useful for classifica-
tion. By keeping these points in mind, we slightly modified
the proposed k-NN classification technique and achieved a
higher degree of accuracy in classification by using only the
independent features in the classification process. The steps
involved in the modified k-NN classification model are as
follows:

1. The six features extracted from each oral tissue spec-
trum were mean, median, standard deviation, spectral re-
sidual, energy, and maximum intensity.

2. Thus, from 143 oral tissue samples �60 training � 83
test�, we had a feature space matrix of dimensions 6�143.
On this data set, we performed PCA to reduce the dimension-
ality. Using PCA, the feature vector of length 6 was reduced
to three components. Outliers were detected and removed, and
a number of factor selection techniques �explained in the PCA
section� were performed on this PCA-transformed data set for
further data analysis.

3. Out of six PCs, only the first three PCs accounted for
over 99.94% of the total data variance, which demonstrates
that the significant data variation can be described by a few
informative PCs. Thus, these three PCs were retained and the
higher order PCs that mainly accounted for random noise, and
did not contain diagnostic information were discarded.

4. The PC scores of the first three PCs have had the maxi-
mum variance in the data set were used as the input feature
space for the k-NN classification.

5. The PC scores of the calibration �which were used as
the standard set in PCA� set of 60 oral tissues �20 normal, 20
malignant, and 20 premalignant� were used as the calibration
feature space for the k-NN model and the PC scores of the
remaining 83 samples �40 normal, 37 malignant, and 6 pre-
malignant� were used as test samples, and classification was

achieved.
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6. For any test sample, the three spectral distances �i.e.,
Euclidean distances�, corresponding to “normal centroid,”
“malignant centroid,” and “premalignant centroid” were esti-
mated according to the relations

SDn = �
i=1��EBi

t − EBi
nc�2, �1�

SDm = �
i=1��EBi

t − EBi
mc�2, �2�

SDpm = �
i=1��EBi

t − EBi
pmc�2, �3�

where EBi
t denotes ith feature value of the test sample; EBi

nc,
EBi

mc, and EBi
pmc, respectively, denote centroid vectors for the

normal, malignant, and premalignant groups; and SDn, SDm,
and SDpm, respectively, represent the spectral distances of the
normal, malignant, and premalignant samples.

3.2.3 Steps involved in k-means NN classification
The input is a test sample vector and centroid vectors for
normal, malignant, and premalignant samples. The output is
the classified sample �normal, malignant, and premalignant�.
The method is as follows

Step 1. Compute the distance between test sample and
normal centroid vector �SDn� according to Eq. �1�.
Similarly, compute the distances between test
sample and the malignant centroid vector �SDm�
and the premalignant centroid vector �SDpm� using
Eqs. �2� and �3�, respectively.

Step 2. Classify the test sample as “normal” if SDn
�SDm and SDn�SDpm. Similarly, classify the
sample as “malignant” if SDm�SDn and SDm
�SDpm. If SDpm�SDn and SDpm�SDm, classify
it as premalignant. This means that the class with
the smallest distance from test data is declared the
winner, and the test pattern is allocated to this
class.

Step 3. Repeat the preceding steps for all given samples to
obtain the classified groups.

Step 4. Classification ends.

3.2.4 Classification results using k-means NN
technique

Once the k-NN was trained with input feature values of 20
normal, 20 malignant, and 20 premalignant samples, the tech-
nique was ready to predict any unknown new data. A
MATLAB-based program was executed to predict any new
data. The classification of test samples was made based on the
algorithm already mentioned. In this study, we have features
from the same 40 normal, 37 malignant, and 6 premalignant
oral tissue spectra as used in PCA. When this classification
technique was used on calibration model, all 60 calibration
samples �20 normal, 20 malignant, and 20 premalignant� were
classified to their respective groups �as clustered in three dis-
tinct regions of cluster plot of PC scores�. In our analysis
using the k-NN technique, all 40 normal test spectra were
classified as normal, 34 out of 37 malignant spectra were

classified as malignant, and all 6 test premalignant spectra
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were classified as premalignant. The specificity, sensitivity,
and accuracy obtained in this classification technique were
100, 94.5, and 96.17%, respectively.

Figure 5 shows the plot of the Euclidean distance against
sample number for the 143 samples �20+40 normal, 20+37
malignant, and 20+06 premalignant�. In Fig. 5, the “normal
centroid” is taken as the reference point for plotting Euclidean
distances of all samples. From the plot, it is clear that the
Euclidean distances of premalignant samples lie in between
the Euclidean distances of normal and malignant samples. The
calibration set of samples �normal, premalignant, and malig-
nant� cluster in three distinct groups without any overlap. The
test normal and premalignant samples also cluster along with
the corresponding calibration set samples, showing 100% dis-
crimination of these samples. Three of the malignant test
samples were overlapped with the normal calibration set clus-
ter, and this may be due to from the normal sites of the ma-
lignant samples. A closer observation of Fig. 5 shows that
only a very small number of malignant samples fall outside
the general range of malignant species, indicating the prob-
ability of malignant samples being in the respective cluster is
about 97% and finding them out of the cluster is only 3%.
Thus, the plot clearly shows discrimination of the different
classes of oral spectral samples used in this study.

The k-NN performance parameters are shown in Table 3
and are compared with the performance parameters of other
analyses done on the same set of spectral data using the PCA
and ANN analysis.27 The performance parameters, specificity,

Fig. 5 Plot of the Euclidean distance against sample number for the
143 samples �20+40 normal, 20+37 malignant, and 20+06 prema-
lignant�: NC, normal calibration; MC, malignant calibration; PC, pre-
malignant calibration; NT, normal test; MT, malignant test; and PT,
premalignant test.

Table 3 Performance evaluation of k-NN classification and compari-
son with performance of other conventional techniques PCA and
ANN.

Classifier
Specificity

�%�
Sensitivity

�%�
Accuracy

�%� Reference

k-NN 100 94.5 96.17 Current study

PCA 100 92.9 96.5 Biopolymers
�Ref. 27�

ANN 100 96.5 98.3 Biopolymers
�Ref. 27�
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sensitivity, and accuracy in PCA match/no match analysis
were 100, 92.9, 96.5%, respectively, whereas in case of ANN
analysis, these parameters were 100, 96.5, 98.3%,
respectively.27 In this study, with the MATLAB PCA-based
k-NN analysis, the specificity, sensitivity, and accuracy are
found to be 100, 94.5, and 96.17%, respectively. When com-
pared in terms of sensitivity, ANN and MATLAB-based k-NN
techniques are found slightly better than the conventional
PCA �match/mismatch� technique. And when compared in
terms of accuracy, PCA and k-NN analyses were similar in
nature, whereas ANN analysis is found to be better than PCA
and k-NN analyses.

As already noted, we showed that by forming standard
calibration sets of pathologically certified samples of normal,
premalignant, and malignant tissue samples one can match a
new sample with these standard sets. This leads to a more
reliable diagnosis and makes it possible to do periodic screen-
ing, monitoring of effectiveness of therapy, surgical boundary
check, and early detection of recurrence, if any, without the
necessity of repeated biopsy. The preparation of the standard
sets requires only a central well-equipped hospital facility.
Once the standard sets are ready, they can be made available
to any clinical setup even in small hospitals. With a relatively
inexpensive instrument, the screening process can thus be car-
ried out across large cross sections of the rural population, for
whom such screening will not be easily available otherwise.
To the best of our knowledge, none of the earlier workers
have done this k-NN analysis on oral tissue fluorescence spec-
tra.

The great advantage of the optical method combined with
statistical data analysis is that cases that show anomalous be-
havior can be reevaluated with a second scan with more sam-
pling points. Furthermore, because optical methods do not
require tissue removal, they may provide better tools for ex-
perts to direct diagnostic biopsies, screen for early detection,
and determine tumor margins.

4 Conclusions
The characterization of native fluorescence spectroscopic
properties of oral tissue spectra in different pathological con-
ditions such as normal, malignant, and premalignant were
studied using the PCA-based k-NN technique. The detailed
statistical analysis �MATLAB PCA-based k-NN technique� of
the fluorescence recorded data at 325 nm excitation enabled
us to extract the diagnostic information from the measured
native fluorescence spectra of both normal and diseased sub-
jects. To be more precise, in this technique, an unknown
sample is classified into a diagnostic category �group� by the
computer program, which minimizes the rate of misclassifica-
tion. Our results suggest that the presented classification tech-
nique achieves objective discrimination among normal, pre-
malignant, and malignant oral tissues with high specificity
and sensitivity. On the basis of these observations, it is obvi-
ous that the presented technique discriminates oral malig-
nancy effectively and hence it can be used as an alternative or
complementary technique to the other existing conventional
methods of disease diagnosis. The small time required to ac-
quire and analyze the fluorescence spectra together with the
high rates of success prove that the method is very attractive

for real-time applications.

Journal of Biomedical Optics 014028-
As a preliminary investigation, we studied a few cases in
each group. In this regard, more detailed investigations on a
large population consisting of normal, malignant, and prema-
lignant subjects are essential to improve specificity and sensi-
tivity of the presented technique for the characterization of
various pathological conditions. Furthermore, such investiga-
tions with large groups of experimental subjects will also be
useful for the development of a statistical database and user-
friendly diagnostic algorithm that could facilitate fast screen-
ing of patients for early detection of malignant and nonmalig-
nant subjects. Overall, our results indicate great promise for
fluorescence-spectroscopy-based detection of carcinoma in
oral tissues, which would be a great improvement in guiding
biopsies and diagnosing and classifying tissues in different
pathological conditions.
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