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ABSTRACT. Purpose: We developed a method to visualize the image distortion induced by non-
linear noise reduction algorithms in computed tomography (CT) systems.

Approach: Nonlinear distortion was defined as the induced residual when testing a
reconstruction algorithm by the criteria for a linear system. Two types of images were
developed: a nonlinear distortion of an object (NLDobject) image and a nonlinear dis-
tortion of noise (NLDnoise) image to visualize the nonlinear distortion induced by an
algorithm. Calculation of the images requires access to the sinogram data, which is
seldomly fully provided. Hence, an approximation of the NLDobject image was esti-
mated. Using simulated CT acquisitions, four noise levels were added onto forward
projected sinograms of a typical CT image; these were noise reduced using a
median filter with the simultaneous iterative reconstruction technique or a total varia-
tion filter with the conjugate gradient least-squares algorithm. The linear reconstruc-
tion technique filtered back-projection was also analyzed for comparison.

Results: Structures in the NLDobject image indicated contrast and resolution reduction
of the nonlinear denoising. Although the approximated NLDobject image represented the
original NLDobject image well, it had a higher random uncertainty. The NLDnoise image
for the median filter indicated both stochastic variations and structures reminding of
the object while for the total variation filter only stochastic variations were indicated.

Conclusions: The developed images visualize nonlinear distortions of denoising
algorithms. The object may be distorted by the noise and vice versa. Analyzing the
distortion correlated to the object is more critical than analyzing a distortion of sto-
chastic variations. The absence of nonlinear distortion may measure the robustness
of the denoising algorithm.
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1 Introduction
A major advantage of computed tomography (CT) compared with conventional planar radiog-
raphy is the possibility of delineating anatomical structures in three dimensions, allowing more
information to be gathered from a CT examination. Historically, CT examinations have required
much higher absorbed radiation doses to the patient to keep the quantum noise in the CT images
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reasonably low. However, recent advancements in CT technology have led to the possibility of
acquiring CT images at sub-mSv radiation doses1,2 and even at the same dose as in conventional
radiographic imaging.3 Improvements in noise reduction algorithms in the reconstruction of CT
images have been important in this development. Recently developed algorithms are mainly
based on iterative approaches and deep learning to reduce the noise in CT images.4,5

A clinical CT system will always exhibit nonlinear distortion due to its physical limitations
as the detector elements cannot be infinitely small, and data cannot be collected continuously
around the patient. In addition to leading to aliasing, these limitations, in combination with the
presence of scattered radiation and a diverging beam, may create a partial-volume effect and
streak artifacts.6 As filtered back-projection (FBP) has been the gold standard of reconstruction
techniques, convolution kernels have been the only reconstruction option to balance the distor-
tion suppression between for example, reducing streak artifacts and increasing the blurring of the
image and vice versa. Iterative reconstruction is often less sensitive to abrupt divergences
between adjacent projections than FBP, and the nonlinear distortion due to geometrical incon-
sistencies may thus be reduced.7 However, other distortion effects may arise from the often non-
linear behavior of the algorithms included in iterative reconstruction. For example,
overregularization in a nonlinear noise reduction algorithm may lead to an unfamiliar smoothing
often described as plastic.8 Also the regularization factors in the algorithm may adapt to the
composition of the patient using prior object information modeling.9 Consequently, the image
quality cannot be generalized as it will depend on the contrast of the imaged objects and the
noise level.

The image quality of images reconstructed using nonlinear noise reduction algorithms has
been evaluated by altered metrics from the theory of linear systems. For example, the concept of
the modulation transfer function has been adapted to apply for specific tasks by the task-specific
transfer function (TTF) as the spatial resolution may vary depending on the noise and the contrast
of the imaged object.10,11 The TTF has further been applied in the concept of model observers to
calculate a detectability index (d 0) for specific detection tasks.12 Recently, the method of TTF has
been applied to patient images.13,14 Other approaches, such as quantifying the overregularization,
have also been used to describe the performance of a nonlinear noise reduction algorithm.8 The
performance of nonlinear noise reduction algorithms may also be characterized by decoupling
the distortion from the system resolution as the distortion may masquerade as a degradation in
spatial resolution.15,16 However, a diagnosis will often depend on the radiologist’s interpretation
of the detected pathology and a nonlinear noise reduction algorithm may distort the image such
that the new image impression alters this interpretation.9 Hence, an overview of the distortion of a
reconstructed image would be useful to improve our understanding of the effects of the nonlinear
noise reduction algorithm. A comparison with an FBP image is often used to demonstrate the
robustness of nonlinear noise reduction algorithms.17 Although such a comparison may be inter-
esting, it does not analyze the nonlinear effect of the algorithm but instead the difference between
the algorithms. Furthermore, the difference will consist of both linear and nonlinear distortions
induced by the algorithms, in which the absence of nonlinear distortion is a measure of robust-
ness of the noise reduction algorithm. Thus the purpose of this study is to develop a method that
can isolate and visualize the location of the nonlinear distortion caused by a nonlinear noise
reduction algorithm in an arbitrary object, independently of other algorithms. Two new types
of images that estimate and visualize the behavior and noise dependence of a nonlinear algorithm
are proposed. The first type, denoted the NLDobject image, visualizes the systematic nonlinear
distortion of the object at a given noise level. The second type, denoted the NLDnoise series
(which consists of many images), visualizes the nonlinear distortion of the noise caused by the
object.

2 Materials and Methods
The method used in this study was inspired by the theory of the distortion power spectrum (DPS)
developed by Wells and Dobbins15 and later implemented in CT by Larsson et al.16 These studies
investigated the waveform distortion as the transfer of power from one spatial frequency to
another and used sinusoidal test objects to analyze the distortion at individual frequencies.
Further, the latter study was based on forward projecting these objects to a sinogram to test
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nonlinear reconstruction algorithms. Although the distortion at individual frequencies may char-
acterize a nonlinear algorithm, the distortion is dependent on the composition of the object, i.e.,
the distortion of an object is not equal to the sum of the distortion of the individual frequencies of
the object. Hence, the present method was developed for analysis of the distortion of an arbitrary
object. Further, the methods used in the mentioned studies and in the present one are basically
testing the criteria for a linear system. In contrast, the present method investigates the distortion
in the image domain and any changes to an object when reconstructed in low versus high noise.
Only a nonlinear reconstruction will be dependent on the noise level. Hence, the present study
defined the observed changes between noise levels as nonlinear distortions. The method was
applied to a typical CT image and tested using simulations of the CT acquisition and reconstruc-
tion algorithm as access to projection data was limited on the existing CT systems at our disposal.
Similar to Larsson et al.,16 the present method is based on manipulation of the sinogram.
However, the NLDobject was approximated to not require access to the sinogram but was inves-
tigated here using simulations.

2.1 Description of the Method
The noise reduction algorithms used in CT image reconstruction may affect image quality non-
linearly, i.e., they may be dependent on the imaged object and the quantum noise. One of the
effects may be nonlinear distortion, i.e., instead of a reduction in the signal, part of the signal of
the object is transferred to other image structures. To identify the nonlinear distortion of a recon-
struction algorithm, two types of images are proposed: one containing the nonlinear distortion of
objects (NLDobject) and the other containing the nonlinear distortion of noise (NLDnoise). These
images reveal the nonlinearity of a system by visualizing the extent to which the change in the
output is not directly proportional to the change in the input.18 This is achieved by calculating and
comparing the left and right sides of the conditions of the superposition principle (additivity and
homogeneity). The NLDobject image is the residual of a comparison between the average of the
acquired image data before and after reconstruction. An NLDnoise image is the residual of a com-
parison between noise data reconstructed with and without an object being present. The
NLDobject image thus describes the systematic NLDobject, whereas the NLDnoise series represent
a series of images describing the NLDnoise. Both image types are presented in the image domain.
For a linear reconstruction system, the residual is close to zero. However, the residual may visu-
alize distortions originating from nonlinearities in the CT configuration, e.g., the detector
response.

2.1.1 Nonlinear distortion of objects

A nonlinear noise reduction algorithm may distort the reproduction of an object in an image
depending on the level of noise in the input data. For a CT system Ƥ, the input data are rep-
resented by a sinogram of an object s acquired with a background b and are written as

EQ-TARGET;temp:intralink-;sec2.1.1;117;264bnðp; qÞ ¼ Ƥðsþ bnÞðp; qÞ;
where the subscript n indicates the noise level of the background and p and q are the projection
angle and detector position, respectively. Noise reduction in a CT system may be implemented
during the reconstruction step. Hence, to isolate the nonlinear distortion introduced by a noise
reduction algorithm, two reconstructions may be performed on a sinogram of the same object at
different noise levels. One of the noise levels can be approximated to zero (noise-free) to obtain
as large a difference in the comparison of the distortion as possible (the distortion is assumed to
be smaller at lower noise levels). If manipulation of the sinogram is possible, the acquisition of a
sinogram at a background n (sbn) can be repeated N times and averaged before reconstruction to
estimate the noise-free sinogram s̃bn;N (provided N is sufficiently large). The reconstruction of
this sinogram represents the object with the least nonlinear distortion S̃Bn;N . In images recon-
structed at high noise levels, there is a risk that the distortion of the object may be obscured by the
distortion of the high noise level. It may therefore be more appropriate to consider the systematic
nonlinear distortion. Thus the acquired sinograms sbn should be reconstructed separately and
then averaged after reconstruction to represent both the reconstructed object and the systematic
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nonlinear distortion. Any difference between this averaged image (SBn;N) and the image recon-
structed from the approximate noise-free sinogram (S̃Bn;N) will result in a residual consisting of
the systematic nonlinear distortion of the object and is written as

EQ-TARGET;temp:intralink-;e001;114;697NLDobject ¼ SBn;Nðx; yÞ − S̃Bn;Nðx; yÞ; (1)

where x and y are the reconstructed pixel positions in Cartesian coordinates (Fig. 1, workflow of
the calculation of the NLDobject image, the top and middle rows of the images). When manipu-

lation of the sinograms is not possible, an approximate noise-free image of the object S̃B 0
nlow;Nlow

acquired separately may be compared with the average of the high-noise images (SBn;N) to esti-
mate an approximation of the NLDobject image, and this is written as

EQ-TARGET;temp:intralink-;e002;114;606NLD 0
object ¼ SBn;Nðx; yÞ − S̃B 0

nlow;Nlow
ðx; yÞ; (2)

where the subscripts nlow and Nlow indicate the noise level of the background and the number of
repeated acquisitions for the approximate noise-free estimation, respectively (Fig. 1 gives a com-
parison of the workflow for the calculation of the NLDobject image and NLD 0

object, the middle and

bottom rows of images, respectively). Each of these images (NLDobject and NLD 0
object) provides

a map of the nonlinear distortion that characterizes the systematic nonlinear distortion of the

Fig. 1 Workflow showing the calculation of the NLDobject and the NLD 0
object. The arrows and cog-

wheels indicate averaging (1N
PN

i¼1) and reconstruction (f ), respectively. The index i represents the
acquisition number, and ðx; yÞ and ðp; qÞ indicate that averaging was performed in the image
domain (middle and bottom rows of images) and the sinogram domain (top row of images), respec-
tively. A series of N acquired noisy sinograms of the object (sbn) was duplicated and averaged
after reconstruction (i.e., a pixelwise average of the reconstructed images at the Cartesian coor-
dinates x and y , middle row) and before reconstruction [i.e., a pixelwise average of the sinograms
at the projection angles (p) and detector position (q), top row] to provide the NLDobject image that is
the residual of these two calculations. The NLD 0

object was the residual of the reconstructed noisy
sinograms (middle row) and the reconstructed low-noise sinograms indicated by the subscript low
(bottom row). In the case of a linear reconstruction, the pixel values of the NLDobject image will be
close to zero (i.e., an overall gray image).
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reconstructed object. However, the noise in these images does not have the same origin, and the
random uncertainty in the resulting systematic nonlinear distortion will be higher than in the case
in which sinogram manipulation is possible.In the application of the proposed method, using
simulations of a CTacquisition of a typical abdominal image (see Sec. 2.2 for details), the acquis-
ition of sbn was repeated 16, 32, 64, 128, and 256 times (N ¼ 16, 32, 64, 128, and 256) to
illustrate how the difference in the uncertainty between the NLDobject and NLD 0

object changes
with the number of repetitions. For the case in which manipulation of the sinograms was pos-
sible, these sinograms were averaged to give an approximate noise-free sinogram:

EQ-TARGET;temp:intralink-;e003;117;639s̃bn;Nðp; qÞ ¼
1

N

XN

i¼1

sbn;iðp; qÞ; (3)

where index i is the acquisition number and N is the number of acquisitions at background noise
level bn (p and q are still the projection angle and the detector position, respectively, Fig. 1). The
reconstruction of s̃bn;N provides an estimate of the noise-free image of the object and was cal-
culated according to

EQ-TARGET;temp:intralink-;e004;117;547S̃Bn;Nðx; yÞ ¼ fðs̃bn;Nðp; qÞÞðx; yÞ; (4)

where f is the reconstruction algorithm and x and y are the reconstructed pixel positions in
Cartesian coordinates. The averaged image of the N acquired and reconstructed images at back-
ground noise level bn was calculated from

EQ-TARGET;temp:intralink-;e005;117;486SBn;Nðx; yÞ ¼
1

N

XN

i¼1

fðsbn;iðp; qÞÞðx; yÞ: (5)

The NLDobject image was calculated by inserting Eqs. (4) and (5) into Eq. (1) (Fig. 1) at

background noise level bn. The S̃B 0
nlow;Nlow

in the calculation of the NLD 0
object image in

Eq. (2) can, if the acquisition procedure change nonlinearly due to for example change in size
of the x-ray focal spot as the tube current is increased, be estimated by an average of many
reconstructed images of the object such as the SBn;N [Eq. (5)]. However, this study used sim-
ulations of CT acquisitions with fixed acquisition parameters to focus on the nonlinearities in the
reconstruction algorithm. Hence, the S̃B 0

nlow;Nlow
was estimated using only one separate acquired

image with a noise level corresponding to the average of the high-noise images (SBn;N). The
noise level was defined at a contrast-to-noise ratio (CNR) dependent on the simulated noise level
and the number of repeated acquisitions.

2.1.2 Nonlinear distortion of noise

When the noise reduction algorithms are nonlinear, the distortion may be different at each acquis-
ition as quantum noise is generated randomly. Further, the noise reduction algorithm may recon-
struct noise differently when an object is present. It is then possible to estimate the NLDnoise by
comparing the noise reconstructed with and without an object being present. However, the noise
must be isolated from the object in both cases. The noise in an image reconstructed with the
object being present can be isolated after reconstruction by subtracting an estimate of the recon-

structed object Ŝðx; yÞ from each noisy image of the object SBn;i. In the case in which the noise is
reconstructed without an object being present, the noise is isolated before reconstruction by sub-
tracting an estimate of the object sinogram ŝðp; qÞ from each noisy sinogram sbn;i. Thus the
NLDnoise for a series of images is the difference between each pair of isolated noise images,
which is written as

EQ-TARGET;temp:intralink-;e006;117;141NLDnoise ¼ Bn;iðx; yÞ − B̃n;iðx; yÞ; (6)

where Bn;i and B̃n;i are the noise images reconstructed with and without the object being present,
respectively; i has values from 1 to N and represents the acquisition number of the reconstructed
noise; and n denotes the level of noise at which the NLDnoise series is assessed (Fig. 2, workflow
of the calculation of the NLDnoise series). Each of the images in the NLDnoise series provides a
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map of the nonlinear distortion that characterizes the random nonlinear distortion of the reduced
noise. An assessment using a linear reconstruction algorithm will result in an NLDnoise series
with pixel values close to zero.

In the application of the proposed method (see Sec. 2.2), the average of the acquired noisy

images SBn;N [described in Eq. (5)] was used as the estimate of the reconstructed object (Ŝðx; yÞ),
and the calculation of Bn;i was expressed as

EQ-TARGET;temp:intralink-;sec2.1.2;114;265Bn;iðx; yÞ ¼ SBn;iðx; yÞ − SBn;Nðx; yÞ;

where SBn;i is the i’th reconstructed noisy image of the object at noise level n (Fig. 2). The
average of the acquired noisy sinograms s̃bn;N [described by Eq. (3)] was used as the estimate
of the object sinogram, and the calculation of B̃n;i was expressed as

EQ-TARGET;temp:intralink-;sec2.1.2;114;201B̃n;iðx; yÞ ¼ fðsbn;iðp; qÞ − s̃bn;Nðp; qÞÞðx; yÞ;

where f is the reconstruction algorithm and sbn;i is the i’th noisy sinogram of the object at noise
level n (Fig. 2). The NLDnoise series was calculated for the same number of repeated acquisitions
used for the NLDobject images (N ¼ 16, 32, 64, 128, and 256), using Eq. (6). However, for the
estimation of the NLDnoise series in this study, N was equal to 256 to show the NLDnoise series
with negligible uncertainties. Further, the NLDnoise series consisted of N separate estimates of
the NLDnoise.

Fig. 2 Workflow showing the calculation of the systematic NLDnoise. Arrows and cogwheels indi-
cate averaging (1N

P
N
i¼1) and reconstruction (f ), respectively. The index i is the acquisition number,

and ðx; yÞ and ðp; qÞ indicate that averaging was performed in the image domain and the sinogram
domain, respectively. A series of N sinograms of an object s acquired at noise level n (sbn) was
duplicated. The first series was used to obtain the isolated noise images (with noise level n) recon-
structed in the presence of the object (Bn;i , top row), i.e., the mean of the reconstructed noisy
sinograms (SBn;N ) was reconstructed and subtracted from each reconstructed noisy image of the
object (SBn;i ). The second series was used to obtain the isolated noise images (with noise level n)
reconstructed in the absence of the object (B̃n;i , bottom row), i.e., the mean of the acquired noisy
sinograms (s̃bn;N ) was subtracted from each acquired noisy sinogram of the object (sbn;i ) and then
reconstructed. Finally, the series of NLDnoise images was obtained by subtracting each of the iso-
lated noise images reconstructed in the absence of the object (B̃n;i ) from each of the isolated noise
images reconstructed in the presence of the object (Bn;i ). In the case of a linear reconstruction, the
pixel values of the NLDnoise image would be close to zero.
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2.2 Application of the Method
As described above, the method was evaluated using simulations. The open-source Compute
Unified Device Architecture-integrated CT simulation toolbox [ASTRA© (version
1.9.9.dev1)19–21 for MATLAB™ (R2020b)] was used to perform reconstructions of the test
object. In the toolbox, the projection geometry was set to fan-beam using a flat array of the
detector. The 1474 detector elements with a detector element width of 1 mm (defined at the
isocenter) were used to reconstruct images with a volume of 1 × 768 × 768 voxels with equi-
lateral voxel size of 1 mm3. However, the distortion was assessed in the trans-axial image plane
using a 512 × 512 pixel region of interest (ROI) to represent the most common field of view used
clinically. The 1152 projection angles were evenly spaced around a whole rotation. The source-
to-detector distance was set to 1085.6 mm, and the isocenter was placed 696.7 mm from the
source. A function incorporated in the toolbox was used to compute forward projections of the
test object (in this case representing a sinogram map of linear attenuation) with respect to the
volume and projection geometry.

Poisson noise was used to simulate noise originating from the simulated CT acquisition of
the test object. The CT simulation generated a sinogram mapping the linear attenuation that was
first transformed by Beer–Lambert’s law into the detector signal, where the noise was added and
then transformed back into linear attenuation data. The final sinograms used in the calculation of
the NLDobject and NLDnoise images may be averaged both at the level of detector signal or at the
attenuation data. The averaging in this study was done on the attenuation data as the noise reduc-
tion algorithms investigated were only working on the attenuation data and did not involve trans-
formation from the detector signal. A CNR was defined in an FBP-reconstructed image as the
difference between the CT number of liver and muscle tissue divided by the standard deviation of
the CT number for the muscle tissue. The estimation of the CT number of the tissues was deter-
mined using ROIs sufficiently large to generate stable standard deviations [In Fig. 3(a), the loca-
tion of the ROIs is indicated in the FBP image of CNR ¼ 2.4]. The expected value in the Poisson
noise calculation was varied so that the linear attenuation coefficient ranged between that for dry
air (at near sea level) and cortical bone at 60 keV, taken from the NIST database.22 CNR values of
0.4, 0.7, 1.4, and 2.4 were used to determine the nonlinear performance of the noise reduction
algorithms at different noise levels.

Two combinations of the nonlinear noise reduction algorithm and reconstruction algorithm
were tested: a median filter (using a kernel of 3 × 3) in combination with the simultaneous iter-
ative reconstruction technique (SIRT, SIRTmed) and a total variation algorithm23 (TV-L1,24,25

henceforth denoted TV) in combination with the conjugate gradient least-squares algorithm
(CGLS, CGLSTV). Each nonlinear noise reduction algorithm was applied to the sinograms before
reconstruction. Both iterative reconstruction algorithms were stopped after 100 iterations, and an
image reconstructed with FBP in combination with each respective nonlinear noise reduction
algorithm (using a Hamming filter) was used as the initial estimate in the iteration sequence.
An image with high noise has high total variation, which is the integral of the absolute image
gradient. A TV denoising algorithm can reduce noise by minimizing the total variation while
preserving the edges of objects in an image as noise contributes more to the total variation
of the image than edges. The amount of denoising of the algorithm was adjusted by the regu-
larization parameter λ, where a too high λ could lead to blurring of edges as the parameter allows
the image to be less consistent with the noisy image. The denoised image was estimated iter-
atively, and the number of iterations Niter and the amount of denoising λ were set to 50 and 1.9,
respectively, to match the noise reduction (the reduction of standard deviation) of a median filter.
Further, to obtain equal contrast after processing with the TValgorithm, the mean ratio between
unprocessed and processed sinograms was calculated to allow for correction of the contrast level
due to the normalization process in the TV algorithm.

The visualization of the average nonlinear distortion could not show the distribution of the
distortion. However, each repeated acquisition was an estimation of the nonlinear distortion.
Hence, for each investigated algorithm, a pixelwise distribution of the distortion was estimated
as an NLDobject image at the 5th, 50th, and 95th percentiles together with a plot of the correspond-
ing horizontal profile [In Fig. 3(a), the location of the horizontal profile plots is indicated in the
FBP image of CNR ¼ 2.4]. The distribution of the nonlinear distortion was analyzed in more
detail by depicting the sharp edge of the dexter costa against the lung (the more peripherally
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located costa, left in the image) using 20 pixels at the same horizontal profile as described before.
Plots of both the NLDobject, the 5th, 50th, and 95th percentiles together with the profiles of the

S̃Bn;N and the SBn;N were viewed to illustrate the correlation between the object and nonlinear
distortion.

3 Results
The noise reduction, in terms of the standard deviation (σ), was similar for both combinations of
the reconstruction algorithm and noise reduction algorithm (SIRTmed and CGLSTV) at the three
lowest CNRs (Table 1 and Fig. 3). At these CNRs, each combination reduced the standard
deviation by ∼40% in the ROI in the longissimus muscle (Table 1, indicated by the white square
in the muscle Fig. 3(a) at CNR ¼ 2.4) and had a smoothing effect on the noise texture (Fig. 3).
The noise reduction of SIRTmed was slightly stronger than the other combination (Table 1). The
nonlinear distortion of FBP [Figs. 4(a) and 6(a)] was negligible, and the maximum deviation
from zero in any of the images of the nonlinear distortion (NLDobject and NLDnoise) was in the
range of �10−3 HU.

Fig. 3 Reconstructed image of a typical abdominal CT image at CNRs of 2.4 (top row), 1.4, 0.7,
and 0.4 (bottom row) for (a) FBP alone and the two combinations of reconstruction algorithms and
noise reduction algorithms described in the text. (b) SIRTmed and (c) CGLSTV. Horizontal profile
plots positioned in each image [as shown by the horizontal white line in the FBP image for a CNR of
2.4, in (a)] are shown below the images to better illustrate the changes in the magnitude of the
noise. The profile plots are arranged by CNR from the highest (2.4: top) to the lowest (0.4: bottom)
for each image (a)–(c).
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Fig. 4 Nonlinear distortion images of objects (NLDobject, window −10 to 10 HU) at CNRs of 2.4 (top
row), 1.4, 0.7, and 0.4 (bottom row) estimated using 256 repeated acquisitions for (a) FBP alone
and the two combinations of reconstruction algorithms and noise reduction algorithms described in
the text. (b) SIRTmed and (c) CGLSTV. Horizontal profile plots positioned in each NLDobject image
[as shown by the horizontal white line in the FBP image for a CNR of 2.4, in Fig. 3(a)] are shown
below the images to better illustrate the changes in the magnitude of the distortion (amplitude
range: −70 to 70 HU). The profile plots are arranged by CNR from the highest (2.4: top) to the
lowest (0.4: bottom) for each image (a)–(c).

Table 1 Noise at four CNRs, in terms of standard deviation (σ) in a 60 × 20 pixel ROI in the long-
issimus muscle [the location of the ROI is shown in the FBP image of CNR ¼ 2.4, in Fig. 3(a)] for
FBP alone and two combinations of reconstruction algorithms and noise reduction algorithms
described in the text (SIRTmed and CGLSTV).

CNR σ FBPa σ SIRTmed
b σ CGLSTV

c

2.4 23 15 19

1.4 41 24 27

0.7 79 43 48

0.4 157 87 85

aσ FBP, standard deviation of the filtered back-projection.
bσ SIRTmed, standard deviation of the simultaneous iterative reconstruction technique with a median filter.
cσ CGLSTV, standard deviation of the conjugate gradient least-squares algorithmwith a total variation algorithm.
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3.1 Nonlinear Distortion of Objects
The NLDobject image was used to identify the nonlinear properties of an algorithm by visualizing
the systematic nonlinear distortion in the reconstruction of objects at a given CNR. As expected,
FBP did not show any nonlinear distortion [Fig. 4(a)]. For the two combinations investigated, the
NLDobject images showed distortions at most edges of the anatomical structures in the CT image
used to test the method (Figs. 4(b) and 4(c)]. These structures of distortion in the NLDobject image
indicate smoothing of the reconstructed object caused by the nonlinear algorithm as the noise
increases. The NLDobject image of SIRTmed was indicated to cause less systematic distortion than
the CGLSTV algorithm [Figs. 4(b) and 4(c)]. One indication was the more prominent distortion at
the contrast filled vessels in the NLDobject image of CGLSTV [Fig. 4(c)]. A dark region in the
NLDobject images indicates a nonlinear contrast reduction at the CNR tested. Compared with
using the SIRTmed algorithm, the contrast reduction was higher using the CGLSTV algorithm,
especially for the contrast filled vessels [Fig. 4(c)]. Both algorithm combinations exhibited a
CNR dependence such that the edge distortions were more pronounced at lower CNRs

Fig. 5 Approximation of the nonlinear distortion images of objects (NLD 0
object, window −10 to 10

HU) at CNRs of 2.4 estimated using 128 (top row), 64, 32, and 16 (bottom row) repeated acquis-
itions for (a) FBP alone and the combination of the reconstruction algorithm and noise reduction
algorithm and (b) CGLSTV, described in the text. (c) The NLDobject for CGLSTV is estimated using
the same number of repetitions as for the NLD 0

object for comparison. Horizontal profile plots posi-
tioned in each NLD 0

object image [as shown by the horizontal white line in the FBP image for a CNR of
2.4, in Fig. 3(a)] are shown below the images to better illustrate the changes in the magnitude of the
distortion (amplitude range: −30 to 30 HU). The profile plots are arranged by the number of
repeated acquisitions from the highest (128: top) to the lowest (16: bottom) for each image (a)–(c).
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[Figs. 4(b) and 4(c)]. Between the two combinations investigated, CGLSTV showed the strongest
CNR dependence in both edge distortion and contrast reduction [Fig. 4(c)]. The random uncer-
tainty in the NLDobject image was higher at lower CNRs due to the higher noise (Fig. 4). A
comparison between the NLDobject image and its approximation, the NLD 0

object image, indicated

good correspondence other than additional noise (higher random uncertainty) in the NLD 0
object

image (Fig. 5). The uncertainty in both NLDobject and NLD 0
object was increased as the number of

repeated acquisitions was decreased (Fig. 5). However, the estimation of the NLDobject by the
NLD 0

object was shown to be comparable at 128 repetitions, where most of the distorted structures

could be detected [Fig. 5(b) and 5(c)]. The estimation of the NLDobject itself was almost
unchanged down to between 32 and 64 repetitions [Fig. 5(c)].

The distribution of the distortion visualized by the percentile images (5th and 95th) showed
the distribution of NLDobject of the investigated algorithm to have a maximum range between
about −40 to 40 HU (Fig. 6). Further, the variation of the distortion across space was small
between the percentile images (Fig. 6). A comparison between the distribution estimation at the
5th- and 95th-percentile plots showed the nonlinear distortion to have a smaller amplitude in
general for the noise reduction algorithms (SIRTmed and CGLSTV) than the noise for FBP (not
affected by nonlinear distortion, Fig. 6). The general amplitude level of the 5th and 95th per-
centiles for the SIRTmed,CGLSTV, and FBP was about −20 and 20 HU, −30 and 30 HU, and −40
and 40 HU, respectively (Fig. 6). However, the nonlinear distortion had amplitude peaks in the
profile higher than the noise distribution of FBP. The distribution in space at the 50th-percentile

Fig. 6 The 95th (top row), 50th (middle row), and 5th (bottom row) percentile representations of the
nonlinear distortion images of objects (NLDobject, window −50 to 50 HU) at a CNR of 2.4 estimated
using 256 repeated acquisitions for (a) FBP alone and the two combinations of reconstruction
algorithms and noise reduction algorithms described in the text. (b) SIRTmed and (c) CGLSTV.
Horizontal profile plots positioned in each percentile image [as shown by the horizontal white line
in the FBP image for a CNR of 2.4, in Fig. 3(a)] are shown below the images to better illustrate the
changes in the magnitude of the distortion (amplitude range: −50 to 50 HU). The profile plots are
arranged by the percentile level from the highest (95th: top) to the lowest (5th: bottom) for each
image (a)–(c).
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plot for FBP was shown to be noisier than the NLDobject for the same algorithm [compare the
profile plots in Figs. 4(a) and 6(a)].

The more detailed analysis of the sharp edge of a costa against the lung illustrated the cor-
relation in space between the NLDobject and the variations of S̃B2.4;256 and SB2.4;256 for the inves-
tigated algorithms (Fig. 7). The FBP algorithm did not show any distortion, which was shown by
the flat line of the NLDobject and the overlapping lines of S̃B2.4;256 and SB2.4;256 [Fig. 7(a)].
Further, the noise reduction algorithms (SIRTmed and CGLSTV) showed specific characteristics
of the nonlinear distortion; for example, the distortion at the lung had different signs for the two
algorithms (pixel 15 to 20, Figs. 7(b) and 7(c)]. The distortion at the edge (pixel 10 to 15) for the
noise reduction algorithms was visualized by the NLDobject even though the difference between

S̃B2.4;256 and SB2.4;256 was difficult to see. As expected, the estimation of the distortion distri-
bution by the percentile profiles was shown to be affected by noise. Further, the profile of the
50th percentile and the NLDobject for each algorithm were shown to be equal. However, the
amplitude of the distortion described by these profiles was shown to have a variation as large
as the difference between the 5th and 95th percentiles.

3.2 Nonlinear Distortion of Noise
The NLDnoise series (Fig. 8) shows the difference in nonlinear distortion between two images
when reconstructing the same noise with and without an object being present. This allows the
consistency in noise reduction and the dependence on the object to be visualized. The linear
reconstruction algorithm FBP did not show any nonlinear distortion of the noise [Fig. 8(a)].
Among the two combinations investigated, SIRTmed was the only one to show the structure
of the distortion at contours of the anatomy in the abdominal CT image in the NLDnoise series
[Fig. 8(b)]. However, the pixel values in the NLDnoise series obtained with SIRTmed was about
two orders of magnitude lower than for the CGLSTV combination [Figs. 8(b) and 8(c)]. The

Fig. 7 Detailed analysis of the sharp edge of a costa against the lung [using a profile of 20 pixels,
as shown by the horizontal white line in the FBP image for a CNR of 2.4, in Fig. 3(a)] illustrating the
correlation in space between the position of the edge (edge reconstructed in noise-free, S̃B2.4;256,
dashed line, versus high noise, SB2.4;256, thin dotted line) and the nonlinear distortion (NLDobject,
thick dotted line). The distortion distribution was illustrated using the 95th (top solid line), 50th
(middle solid line), and 5th percentile (bottom solid line). The analysis was performed at a
CNR of 2.4 using 256 repeated acquisitions for (a) FBP alone and the two combinations of recon-
struction algorithms and noise reduction algorithms described in the text. (b) SIRTmed and
(c) CGLSTV.
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structures seemed to have a mean of zero as no structures were observed when the series of
NLDnoise images was averaged (data not shown). The NLDnoise series showed a correlated noisy
texture that varied depending on the combination. The magnitude of the pixel values in the
NLDnoise series using the SIRTmed combination was shown to increase as the CNR decreased
such that the distorted structures became more distinct [Fig. 8(b)]. This is in contrast to the
CGLSTV combination, which did not show any dependence on CNR [Fig. 8(c)].

4 Discussion
An ideal noise reduction algorithm decreases the noise power, preserves the object signal power,
and does not cause any distortion. This paper presents two new types of images that were used to
visualize the performance of a nonlinear noise reduction algorithm in terms of nonlinear distor-
tion. The distortion of an image can be described in the frequency domain as the transfer
of frequencies of an object to other frequencies, especially to harmonics of the object

Fig. 8 Nonlinear distortion images of noise (NLDnoise, one image of the series of images is shown,
window −50 to 50 HU) at CNRs of 2.4 (top row), 1.4, 0.7, and 0.4 (bottom row) estimated using 256
repeated acquisitions for (a) FBP alone and the two combinations of reconstruction algorithms and
noise reduction algorithms described in the text. (b) SIRTmed and (c) CGLSTV. Horizontal profile
plots positioned in each NLDnoise image [as shown by the horizontal white line in the FBP image for
a CNR of 2.4, in Fig. 3(a)] are shown below the images to better illustrate the changes in the mag-
nitude of the distortion (amplitude range for FBP and SIRTmed, −50 to 50 HU and for CGLSTV,
−5000 to 5000 HU). Note: the amplitude range has been increased by a factor 100 for CGLSTV

to better visualize the differences in magnitude between the CNRs. The profile plots are arranged
by CNR from the highest (2.4: top) to the lowest (0.4: bottom) for each image (a)–(c).
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frequencies.15 However, in this study, the distortion is defined in the spatial domain as morphing
of the image content, hence, including both object and noise. This is a broad definition of the
distortion as it is more common to only estimate distortion when a severe morphing of the object
has occurred. However, using the present definition, many of the effects of a nonlinear algorithm
on the image quality can be understood to originate from distortion. One of the new types of
images, the NLDobject image, visualized the systematic distortion by the difference between
reconstructing an arbitrary object in high versus low noise; then it could indicate which structures
were affected by the algorithm as the noise was increased. The noise power may also be distorted;
hence, noise is also a part of the image content. Further, in the image domain, the noise may be
distorted systematically such that noise mimics the object, as nonlinear noise reduction algo-
rithms often depend on the object. The other type of image, the NLDnoise series, visualizes this
distortion of noise by estimating the difference in reconstructing the noise with and without the
object being present. Thus the NLD images did not test the algorithm against the ground truth,
but to what extent the algorithm met the criteria for linear systems. Further, the test was based on
comparing the average of many acquisition data before and after reconstruction, which should be
equal for a linear system. Hence, the robustness of the algorithm was tested rather than the image
quality. This concept of analyzing distortion was tested using a median filter in combination with
the SIRT algorithm and a TV algorithm in combination with the CGLS algorithm.

An approximation of NLDobject, NLD 0
object, was also introduced based on assuming the dis-

tortion to be high compared with an averaged noise. By comparing one CT image acquired using
a high dose and an average of many images acquired using a low dose, NLD 0

object demonstrates
the systematic nonlinear distortion difference between these dose levels. Noise may interfere with
the nonlinear distortion analysis if the high-dose image is not high enough. However, the acquis-
ition of the high-dose image may also be repeated and averaged similar to the low-dose images to
represent a CT acquisition of a higher dose and lower the random uncertainty of the distortion
estimation. Further, the NLD 0

object image can be applied directly in an existing CT system to

analyze the integrated noise reduction algorithms without the need to perform any mathematical
operations on the raw data. However, it must be remembered that the nonlinear differences of an
existing CT system acquisition configuration (e.g., size of the focal spot and number of acquired
projections) between these dose levels could be visualized. Further, an NLD 0

object image may also
visualize ring artifacts as the detector response between detector elements at a low dose may vary.
This was not seen in this study as it was assumed in the simulations that the detectors had a
perfect response. A more complex noise model including detector noise could perhaps have
shown the effect of ring artifacts when simulating noise from CT examinations acquired at a
low dose.26 Thus the degree of noise reduction by an algorithm would have showed to be limited
by the quality and performance of the hardware components in the CT system. Further, these
hardware effects may be isolated by analyzing a linear reconstruction algorithm, for example
FBP, which will not exhibit nonlinear distortion effects due to the reconstruction algorithm.

In a dose optimization of CT examinations, an NLD 0
object image might be more useful than

the NLDobject image as the NLD 0
object image accounts for all changes in the image quality between

two dose levels. In contrast, NLDobject is more suited in an optimization procedure of a nonlinear
noise reduction algorithm itself as it isolates the distortion of the nonlinear noise reduction algo-
rithm. Further, a reasonable uncertainty in the NLD 0

object image was obtained at 128 repetitions of
the noise levels used in this study. The same number of acquisitions acquired on an existing CT
system using the lowest tube current at about 10 mA and a rotation time of 1 s will result in an
averaged image representing 1280 mAs, which should well be approximated as noise-free. The
size of the x-ray focal spot would have changed between acquisitions using 10 and 1280 mA,
where the latter tube output is about max for such a CT system. A change from a small to a large
focal spot will cause degradation in the spatial resolution and will be analyzed as a nonlinear
distortion in an NLD 0

object image. Hence, an analysis of the nonlinear distortion using NLD 0
object

image may best be performed with the same size of the focal spot. The available tube current
range for a small size of the x-ray focal spot can be about between 10 and 400 mA. Thus if the
NLD 0

object image was acquired using these limits of the tube current and repeated to achieve an

averaged image representing 1600 mAs using a rotation time of 1 s, the theoretic acquisition time
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of all images required for the calculation would have been <3 min (160 sþ 4 s ¼ 2 min 44 s)
plus perhaps some tube cooling time.

It may not be possible to estimate an approximation for the NLDnoise series as noise is ran-
domly generated and cannot be easily approximated without the object being present. In the
estimation of NLDnoise, the noise is isolated before and after reconstruction, i.e., reconstructed
without and with the object being present. Further, the noise sinograms are estimated by sub-
tracting the average of the noisy sinograms. Hence, the estimation of the object will not be perfect
but also consists of the noise variations originating from the sampled acquisitions. In practice, the
test object will further be affected by a range of other types of variations, such as electronic noise,
scatter, vibrations of the CT, and a polychromatic x-ray spectrum. However, as the systematic
part (the estimation of the test object) is subtracted, only the random fluctuations (the estimation
of the noise) are left, both before and after the reconstruction. Hence, the NLDnoise will indicate
the difference in how the reconstruction algorithm handles these fluctuations when an object is
present or not. For a linear CT system, the variations will be reconstructed equally and NLDnoise

will be close to zero, which was indicated by the FBP algorithm in this study.
It may not be obvious how the content of the NLDobject or NLDnoise images should be inter-

preted. However, noise-dependent smoothing of the reconstructed object can be indicated by the
structures of distortion in the NLDobject or NLDnoise image. Further, dark areas corresponding to
the reconstructed object can indicate degradation of the contrast of these objects. Improved spa-
tial resolution or contrast enhancement cannot be indicated as this type of image shows the differ-
ence when reconstructing an object in low versus high noise. Hence, it is unlikely that a noise
reduction algorithm will increase the image quality as the noise is increased. Thus bright or dark
regions in the NLDobject or NLDnoise images that do not correspond to the reconstructed object
could indicate that an additional object or texture has been added to the image by the nonlinear
noise reduction algorithm due to the noise or the reconstructed object. Accordingly, the NLDobject

and NLDnoise images visualize undesirable effects of the algorithm. An ideal noise reduction
algorithm would have generated distortion images without structures or unwanted alterations
in the noise texture. However, it could be possible to approximate the CT system as linear if
the NLDobject and NLDnoise only indicated stochastic variations. Further, such approximation
may only be valid for the object used in the analysis. Although four CNRs were considered
in this study, the NLDobject and NLDnoise images can be used to visualize the nonlinear properties
of a noise reduction algorithm at any noise level, to indicate the noise dependence of the algo-
rithm. A deep learning algorithm can train a neural network to reduce noise in high-noise images
by comparing them to a low-noise image of the same object. The NLD image would probably
show less distortion for the noise levels at which the algorithm was trained, and the distortion
may be increased for the noise levels far from the trained levels. However, other types of noise
reduction algorithms, such as model-based iterative reconstruction techniques, would have prob-
ably induced distortions similar to the algorithms tested in this study.

The distribution image of the nonlinear distortion was contaminated by noise as each esti-
mation of the distortion contained both distortion and noise. The systematic nonlinear distortion
described by the NLDobject was not varied a lot across space between the 5th- and 95th-percentile
images. Hence, the difference between these images reflected the noise distribution more than the
nonlinear distortion as the Hamming filter for the FBP algorithm did not reduce noise to the same
extent as the nonlinear noise reduction algorithms. However, the distortion variation across space
could be related to the noise distribution and could indicate if the amplitude of the nonlinear
distortion would have been larger than the noise. Further, the more detailed analysis of the costa
edge against the lung indicated that the systematic nonlinear distortion was comparable to the
noise level. However, the nonlinear distortion and noise in a single image could be higher or
lower at specific positions in space depending on the object and noise variations. Hence, the
risk of a nonlinear noise reduction algorithm obscuring the pathology due to distortion may still
be difficult to assess. However, the NLD methodology might help with understanding many
properties of various nonlinear algorithms in the future.

The method presented here, using NLDobject andNLDnoise images, was inspired by the meth-
odology of DPS, which relates the distorted signal to the original signal, i.e., the object before
reconstruction.15,16 Such an analysis will handle all of the distortion effects of a CT system,

Larsson, Båth, and Thilander-Klang: Visualization of the distortion induced. . .

Journal of Medical Imaging 033504-15 May∕Jun 2023 • Vol. 10(3)



including aliasing and other nonlinear distortions due to geometrical inconsistency. However,
when analyzing nonlinear noise reduction algorithms, it may be better to exclude distortion
effects that do not originate from the noise reduction algorithm. This was achieved in this study
by relating the nonlinear distortion effect to that between two different noise levels after recon-
struction. Hence, both reconstructed images have been affected by the same geometrical distor-
tion. The DPS can also be estimated without geometrical distortion using a method similar to the
present method, but that has yet to be tested. Further, this study showed how to separate the
distortion of the signal from the distortion of the noise. Hence, the general theory of the
DPS estimation applied in the image domain and on a typical CT image with anatomical struc-
tures will result in an image containing the sum of the NLDobject and an average of the NLDnoise

series.
Solomon et al.27 proposed a method that can assess noise properties using anthropomorphic

phantoms and compared nonlinear noise reduced images with images reconstructed using FBP.
Their method clearly visualized the noise reduction of a nonlinear algorithm to be dependent on
the object by isolating the noise from the object after the reconstruction. Further, the subtraction
of the noise magnitude of one image from another reconstructed with a different algorithm may
show the location of the noise difference between the algorithms. However, the effects of non-
linear distortion may be altered or completely concealed by the difference in resolution or noise
properties of the reconstruction algorithms being compared. Hence, even if the method is similar
to the present method, the focus of the studies was not the same because, in such a method, the
nonlinear effects are not isolated even if the compared algorithm is FBP, i.e., is linear. In contrast,
the method described in this study isolates the nonlinear distortion using the same nonlinear
algorithm. Thus the analysis is not influenced by or dependent on the performance of a second
algorithm. Hence, the properties of the nonlinear algorithm may be analyzed independently.
Further, the focus of the NLDobject and NLDnoise images is not to estimate noise reduction but
the distortion effect caused by the nonlinear noise reduction algorithm.

The observed degradation of the resolution and contrast in nonlinear reconstructions as the
noise increases is supported by previous findings using lesion simulation in patient images and
with findings in studies using the task transfer function (TTF).10,28 The lesion simulation study
described how a nonlinear noise reduction algorithm of an existing CT system affected the recon-
struction of a single simulated lesion at different noise levels.28 The present method was devel-
oped to trace the same nonlinear effect but for the whole patient content. Further, the method
applied on an existing CT system would not need to simulate objects or noise. In the case of the
TTF method, it has recently been modified to be analyzed in clinical images and, in combination
with the noise power spectrum, has been used to estimate the detectability index (d 0) of specific
tasks.13,14 The d 0 is useful for predicting the correlation between the image quality and dose
reduction in optimization of CT examinations. However, the appearance of the NLDobject and
NLDnoise images may be a complement to the d 0 estimation by reflecting the overall nonlinear
effect visually. Thus it would indicate whether there is a risk that the diagnostic task has been
affected by the noise reduction algorithm and needs further investigation. The numerical figure of
merit could be developed from the NLDobject and NLDnoise images as a measure of the effect in
diagnostic tasks. For example, such a figure of merit could analyze the correlation of the dis-
tortion to the object and may further be used to indicate if the nonlinear noise reduction algorithm
may be generally handled as a linear algorithm.

There are obvious limitations with this study. In addition to the lack of a specific figure of
merit in this study, the simulation of an ideal CT system was another limitation as noise reduction
algorithms on existing CT systems were not analyzed with the proposed method. Further, the
investigated nonlinear noise reduction algorithms were only applied on the sinogram data and
were not integrated in the updating procedure of the pixel values. However, the focus of this
study was not to develop a nonlinear noise reduction algorithm but a method to visualize the
effect of it. Furthermore, assessment on a patient should theoretically be possible although not
convenient or suitable with conventional CT systems. However, the first photon-counting CT
systems have been installed at radiological departments around the world. The generation of
NLDobject and NLDnoise images without the need for repeating the acquisition should be possible
on these systems if equipped with a feature to time integrate the acquisition at various intervals
(similar to modern single photon energy CT systems) as a new noise will randomly be obtained at
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each time interval. Subtraction in the projection domain would still be needed to generate
NLDnoise images. Nevertheless, the use of anthropomorphic phantoms may be sufficient to gain
a better understanding of how the anatomy of a patient and/or pathology is affected by nonlinear
noise reduction algorithms in conventional CT systems. Furthermore, the present method may be
applied to any imaging modality involving nonlinear denoising algorithms, such as compressed
sensing in magnetic resonance imaging or deep learning reconstruction in positron emission
tomography.

5 Conclusions
We have described a method of analyzing nonlinear noise reduction algorithms in CT imaging
independently of other algorithms by estimating and visualizing the NLDobject and NLDnoise. The
NLDobject image describes how objects are distorted due to noise by visualizing the degradation
of resolution and contrast of an arbitrary object, whereas the NLDnoise series indicates how the
noise is affected by the noise reduction of a nonlinear reconstruction algorithm in the presence of
an object. The induced distortion may be both stochastic and correlated to the object, and ana-
lyzing the latter may be more critical. The absence of nonlinear distortion may be used as a
measure of robustness of the denoising algorithm. Further analysis using the proposed method
may improve our understanding of the effects of noise reduction algorithms on image quality and
their dependence on anatomical structures and noise.
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