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Abstract. Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other
solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early
detection of CPB damage, more options are available for precision integrated pest management,
which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned
aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image
acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking
incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and
30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day.
Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified
as damaged (0.70 ≤ NDVI ≤ 0.80) were not correlated with visible CPB damage ranked from
least to most. Area of CPB damage estimated using object-based image analysis was highly
correlated to the visual ranking of damage. Furthermore, plant height calculated using struc-
ture-from-motion point clouds was related to CPB damage, but this method required extensive
operator intervention for success. Object-based image analysis has potential for early detection
based on high spatial resolution sUAS remote sensing. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11
.026013]
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1 Introduction

Potatoes (Solanum tuberosum L.) were the first crop for which insecticides were routinely used
and currently require more pesticides than other major crops.1,2 One of the most important insect
pests of potato is the Colorado potato beetle (CPB) Leptinotarsa decemlineata (Coleoptera:
Chrysomelidae); larvae and adults are voracious leaf eaters that can rapidly defoliate a field
of potatoes.3 CPB quickly develops resistance to insecticides leading to an unsustainable
cycle of crop failure and spread of resistant populations.4,5 Integrated pest management
(IPM) is a collection of control methods, including insecticides, that considers the whole system
to keep insect damage to acceptable levels.2,5–7 Early detection allows a larger range of IPM
options, reducing the amount of insecticides applied for control.

Insect defoliation of a crop canopy may be remotely sensed by the reduction of leaf area or
biomass as measured by spectral vegetation indices, such as the normalized difference vegetation
index (NDVI).8,9 Early detection of CPB damage using satellites depends on overpass frequency,
cloud cover, sensor pixel size, and the delivery speed of data to the user. Pixel size is an important
determinant for early detection because there has to be more visible foliar damage when using
larger pixels. Small unmanned aircraft systems (sUAS) acquire imagery at low altitudes for
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higher spatial resolution and may be ideal for early detection of damage from insects.10 Frequent
monitoring of crops during the growing season with unmanned aircraft was envisioned long
before the technology evolved to make it practical.11–13

Aerial photographs and remotely sensed imagery with very small pixel sizes have usually
been interpreted visually, but this becomes burdensome with large numbers of images. Scale-
invariant feature transform is used to mosaic a large number of images (stitching).14 Two
methods for analysis of the stitched images have gained attention over the past 15 years.
First is object-based image analysis (OBIA), which capitalizes on high-spatial resolution to
group adjacent pixels with similar spectral and textural properties for classification of land-
cover objects.15–18 Second is photogrammetric structure from motion (SfM), which is used
to generate image point clouds and digital surface elevations from large numbers of overlapping
images.19–21 The resulting digital elevation data are used to generate orthomosaic images.
Furthermore, the SfM point clouds can also be used to determine plant height for estimating
growth and biomass.22–25

In contrast to spatial variation in soils, which is the basis for precision agriculture, insect
emergence from the soil or immigration from other fields is essentially random. This increases
the dependence on early detection of insect damage with remote sensing and automated process-
ing. In order to evaluate possible algorithms for sUAS remote sensing, we set up an experiment
in which CPB were added to irrigated potatoes in order to vary the amount of infestation during
the tuber initiation and bulking growth stages. Ten flights were conducted over 15 days in June
2014 to acquire imagery just before and just after canopy damage from CPB became visible.
The objective was to compare traditional spectral indices, OBIA classification, and SfM plant
height at the time when CPB damage just becomes visible.

2 Methods

The study was conducted at Oregon State University’s Hermiston Agricultural Research and
Extension Center (HAREC) located in Hermiston, Oregon (45.82021°N and 119.28364°W,
180-m elevation). July is the hottest month with average high and low temperatures of 32°C
and 14°C, respectively. The average annual precipitation is 266 mm, with 51 mm during the
growing season. The soil type is an Adkins Sandy Loam (coarse-loamy, mixed, superactive,
mesic Xeric Haplocalcids).

Small plots of potatoes (Solanum tuberosum L. “Ranger Russet”) were established on April
22, 2014, using a randomized block design with four treatments and four replications [Fig. 1(a)].
Plot size was 9.2 m × 2.6 m (three rows wide). No insecticides were applied onto the plants;
one application of acetamiprid (Assail 30SG, United Phosphorus, Inc., King of Prussia,
Pennsylvania) was made on the soil around the experiment to control CPB migrating from

Fig. 1 (a) Plot layout for additional CPB on “Ranger Russet” potatoes. Treatments consisted of
placing additional CPB per plant: control, 0; low, 1.5; medium, 4.5; and high, 7.5. (b) Color-infrared
orthomosaic image from flights on June 23, 2014, at 60-m altitude above ground level. (c) Color-
infrared orthomosaic from flights on June 24, 2014, at 60-m altitude.
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surrounding areas. Irrigation, herbicide application, and fungicide application followed commer-
cial practices.26 Fertilization was about 450 kg∕ha nitrogen, 310 kg∕ha phosphorus, 220 kg∕ha
potassium, and 80 kg∕ha sulfur.

CPB were collected early in the season and maintained on potato plants in bug dorms
(Bioquip, Inc., Rancho Dominguez, California). Before introduction into the colony, beetles
were checked for the presence of parasitoids. The colony was maintained at a temperature
of 20� 5°C and 50% to 60% relative humidity. Potato plants were changed twice a week
and bug dorms were changed weekly.

On June 9, 2014, different numbers of CPB were placed in each plot: low, 1.5 CPB/plant;
medium, 4.5 CPB/plant; and high, 7.5 CPB/plant [Fig. 1(a)]. The control treatment had no
additional CPB; any larvae or adults found in the control plots either emerged from the soil or
migrated from other plots. There was no apparent plant damage on June 23, 2014 [Fig. 1(b)].
However, on the next day, June 24, 2014, visual plant damage was obvious [Fig. 1(c)]. The first
CPB population survey was conducted on July 2, 2014; 10 plants per plot were randomly
selected and inspected for eggs, larvae, and adults.

All sUAS flights were conducted under a Certificate of Authorization from the United States
Federal Aviation Administration. Ten flights of a “Spreading Wings” S800 hexacopter (DJI,
Shenzhen, Guangdong, China) were made over the plots between 15:00 and 16:00 hours
from June 10, 2014 to June 24, 2014. The sUAS was flown using an autopilot, first at
60 m and then at 30-m altitude above ground level. The sensor was a six-channel Mini
Multi Camera Array (mini-MCA, Tetracam, Inc., Chatworth, California). Five channels were
narrow bands (center wavelength �10 nm) in the blue (470 nm), green (550 nm), red
(660 nm), red-edge (710 nm), and near-infrared (NIR, 810 nm). The sixth channel was used
for an upward-looking incident light sensor.27 The focal length of the mini-MCA was 9.6 mm,
so ground sample distances (pixel sizes on the ground) were about 30 and 15 mm for 60- and
30-m altitude, respectively.

Because the objective was to compare imagery before and after detection of CPB damage,
only the flights on June 23, 2014 and June 24, 2014 were analyzed. If there were any previsual-
damage symptoms, it was assumed that the symptoms would be most detectable in the June 23,
2014 images. The images acquired on both days were initially processed using Tetracam’s
PixelWrench-2 software to reformat the 10-bit raw imagery to 16-bit Tagged Interchange
File Format (*.tif) images. Then, PixelWrench-2 was used to ratio the digital numbers from
the first five channels with digital numbers from the incident light sensor channel to calculate
apparent surface reflectance from 0% to 100%, scaled from 0 to 65535, respectively. Agisoft
Photoscan Pro (version 1.2.6, Agisoft LLC, St. Petersburg, Russia) was used to create five-band
orthomosaic images and three-dimensional digital surface elevation models from photogrammet-
ric point clouds. Unfortunately, ground control points were not established, so the orthomosaic
images were created using only the sUAS log files. Furthermore, because mini-MCA lenses were
not well calibrated, the result was a pronounced curvature of the surface elevation model gen-
erated from the point cloud after optimization of camera parameters.28

The Environment for Visualizing Images (ENVI) version 5.3 (Harris Geospatial Solutions,
Boulder, Colorado) was used to calculate various spectral vegetation indices. Results from the
different indices were highly correlated. Therefore, only NDVI was used:

EQ-TARGET;temp:intralink-;e001;116;220NDVI ¼ ðRNIR − RRÞ∕ðRNIR − RRÞ; (1)

where RNIR ¼ NIR reflectance and RR ¼ red reflectance.8 NDVI was calculated by two ways.
First, each plot was outlined as a separate region of interest. Areas with low RNIR inside the plot
boundaries were included in the regions of interest, whereas those along the plot boundaries
(mostly shadows) were avoided. Mean reflectances of each band were calculated inside the
region of interest boundaries. Second, NDVI was calculated pixel-by-pixel using the orthomo-
saic, which then was used for determining CPB damage either by NDVI thresholds or OBIA
classification.

The ENVI 5.3 Feature Extraction module was used for OBIA classification.29 First, the
NDVI image was segmented into objects by determining gradients of NDVI within a kernel
of 9 × 9 pixels.30 The Watershed transform31 was used for initial segmentation of the image.
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Based on the cumulative frequency distribution of NDVI gradients (potential object boundaries),
the scale parameter was used to define the steepness of the NDVI gradient for selecting object
boundaries.32 Based on the cumulative frequency distribution of object mean NDVI, the merge
parameter was used to determine if adjacent objects are sufficiently similar to be combined.32

Both the scale and merge parameters were set to 70, in order to define fewer objects and to
aggressively merge adjacent objects. Then, a series of spectral, spatial, and textural variables
was calculated for each image object, including: mean NDVI, maximum NDVI, minimum
NDVI, texture range, texture mean, texture variance, and texture entropy. Using two plots
for training areas (102 and 302), we developed simple classification rules using object mean
NDVI to classify the orthomosaics into three classes: healthy plants, CPB damage, and soil.
Classification rules using object maximum NDVI, minimum NDVI, texture range, or texture
variance produced similar classifications; creating rules with several variables did not improve
the classifications.

The 16 plots were visually ranked from the least damaged to the most damaged. Side-by-side
comparisons of both the color infrared and true-color images were made for all plots individually
to determine if one plot had more canopy damage than the next plot. Ties were assigned the
average ranking of the two plots. Spearman rank correlation coefficients (rs) were calculated
and t-tests were used to determine significance.33

3 Results and Discussion

There was no indication of potato leaf loss or plant damage from the images acquired on June 23,
2014 [Fig. 1(b)]. There were visibly damaged areas in all plots on the very next day, June 24,
2014 [Fig. 1(c)]. From the visual ranking, the least impacted plots were 201 and 401, and the plot
with the most damage was 102 [Fig. 1(c)]. The number of CPB found during the census and the
visual ranking of damage was not related to the treatments of artificially applied CPB, based on a
Kruskal–Wallace one-way analysis of variance test33 (data not shown). Furthermore, the CPB
population was not related to the rank of visual damage [Fig. 2(a)] with rs ¼ 0.046. Whole-plot
average NDVI was not related (rs ¼ 0.23) to the visual ranking of damage [Fig. 2(b)]. Plot NDVI
was high for all plots, at both 30- and 60-m altitudes, with NDVI occurring within a narrow range
of 0.84 to 0.89 [Fig. 2(b)]. High NDVI was expected because on June 22, 2013, the measured
canopy leaf area index was ≥3.0 m2 m−2 and remotely sensed NDVI was ≥0.85 with the same
potato variety.34

For undamaged areas, pixel-based NDVI showed a much larger range from 0.78 to 0.93
(Fig. 3), which was not apparent in the whole-plot averages [Fig. 2(b)]. Canopy damage in
the color-infrared images [Fig. 1(c)] corresponded to areas of low NDVI [Fig. 3(b)]. The cumu-
lative frequency distribution of pixel NDVI from both altitudes, 30 and 60 m, was used to
determine that a threshold of NDVI ≤ 0.8 was a good criterion for distinguishing between dam-
aged and undamaged plants within a plot. An NDVI of ≤0.7 was a good criterion for separating
vegetation from cultivated bare soil.

Fig. 2 CPB damage per plot was ranked from least to most. (a) The number of CPB counted on
ten plants on July 2, 2014. (b) Whole-plot-mean NDVI on June 24, 2014, from an altitude of 30 m.
The Spearman rank correlation coefficients were not significant.
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The number of pixels classified as damaged from the NDVI threshold was not related
(rs ¼ 0.27) to the visual ranking of CPB damage [Fig. 4(a)]. The ranking of visual damage
was highly correlated (rs ¼ 0.85, t ¼ 6.08 with 14 degrees of freedom) to the plot area classified
as CPB damaged by feature extraction [Fig. 4(b)]. However, for most plots, the total plot area
classified as damaged was less for feature extraction than for the NDVI threshold, because some
pixels with low NDVI were included in image objects that had higher mean NDVI. The differ-
ence between pixel classifications using an NDVI threshold [Fig. 4(a)] and using objects from
NDVI feature extraction [Fig. 4(b)] may not be important depending on the overall goals. If the
goal was to detect any plant damage and its approximate location, then a NDVI threshold would
have been sufficient. However, if the area of damage was used to trigger different options based
on severity, then the feature extraction method would have to be considered because of its higher
correlation with the visual damage rating.

For the most impacted plot [plot 102, Fig. 1(a)], the area classified as damaged was less
than 10%, which was too small to have a strong effect on whole-plot mean NDVI
(10% area × 0.75þ 90% area × 0.85 ¼ 0.84). Based on the plot area of 24 m2, an equivalent
satellite pixel size would be about 5 m, which is close to the 6-m multispectral resolution of
the SPOT 7 satellite. These calculations suggest that a multispectral satellite with a 5-m pixel
size would not detect the changes that occurred over just the 1 day. The WorldView-2 and
WorldView-3 multispectral sensors have 1.84-m pixel resolution for an area of 3.4 m2.
Assuming the same area damaged occurred in just one WorldView-2 pixel [ð2.4 m2 ×
0.75þ 1.0 m2 × 0.85Þ∕3.4 m2 ¼ 0.78], canopy damage would be visible. However, if the can-
opy damage was divided by 8 WorldView-2 pixels (the maximum number possible based on plot
dimensions), then the amount of damage would not be detectable. Based on these calculations,
it is likely that high-resolution commercial satellites would not be able to detect CPB damage
just after it occurred. As the 2014 growing season progressed, CPB damage accumulated to
over 75% of the area in each plot, so at some point later in the growing season, CPB damage
would become detectable by satellites with larger pixel sizes. Therefore, remote sensing by

Fig. 4 Analysis of the June 24, 2014, images acquired from an altitude of 30 m. (a) Area (% of plot)
classified with CPB damage using 0.7 ≤ NDVI ≤ 0.80. (b) Relative plot area classified with CPB
damage using feature extraction of the NDVI image.

Fig. 3 NDVI on (a) June 23, 2014 and (b) June 24, 2014, from orthomosaic images acquired at
30-m above ground level. Plots are aligned the same as in Fig. 1(a).
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aircraft, manned or unmanned, remains the best option for early detection of CPB damage.
However, studies have not been conducted that show whether manned or unmanned aircraft
are more cost effective.

Is there a means of acquiring more accurate information about the amount of CPB damage to
a potato canopy? SFM point clouds are intermediate photogrammetric products during the cre-
ation of orthomosaic images from numerous overlapping images. With higher spatial resolution
available from low-altitude sUAS, digital surface models show spatial variations in plant
height.22–25 We constructed digital surface models from NDVI, true-color data, color-infrared
data, and single bands. On June 23, 2014, the canopy surface was uniform except for the
areas between rows [Fig. 5(a)]. Areas of the canopy that were visibly lower on June 24, 2014
[Fig. 5(b)] corresponded with areas of CPB damage [Figs. 1(c) and 3(b)]. The digital surface
models had overall curvature; there was an overall convex shape in Fig. 5(a) and an overall
concave shape in Fig. 5(b). The digital surface curvatures were least in the center of the image,
so plots 102 (the most damaged) and 302 (ranked 7th) were selected for comparisons.

After the overall curvature was taken into consideration, the maximum height of the potato
canopy above the soil surface was constant for the 16 plots on both days (3D Multimedia 1).
With a single image, variation in height could be attributed to nonuniform increases in plant
growth instead of CPB damage. Furthermore, areas of increased growth are expected to
have increased NDVI, so similar correlations between the canopy surface elevation and
NDVI would result.22–25 Comparison of the two images showed that the lower areas of the can-
opy on June 24 were clearly the result of leaf removal, and also showed that frequent monitoring
is required for distinguishing CPB damage, but daily flights as done in this study would be costly
and burdensome. However, estimates of plant height could be made by crop simulation models,
incorporating weather and phenotypic differences, so differences between expected height and
the digital surface elevation models would provide similar information compared to more fre-
quent UAS flights.

The canopy areas assessed visually as damaged were either soil or shadows created by gaps
in the canopy [Fig. 6(a)]. Within a plot, CPB damage was defined when the image object’s mean
NDVI was ≥0.7 and ≤0.80 [Fig. 6(c)]. There was more area classified as damaged from the
threshold criteria applied to pixel-based NDVI [Fig. 6(b)] compared to the criteria for the
image objects [Fig. 6(c)].

Fig. 5 Three-dimensional perspectives looking east on (a) June 23, 2014 and (b) June 24, 2014.
Damage from CPB created depressions in the canopy surface elevation model visible after 1 day.
The images were mosaics of 59 and 55 near-infrared images for (a) and (b), respectively. Altitude
of sUAS was 30-m above ground level, which resulted in a 15-mm ground sample distance.
The full point cloud models can be viewed as a multimedia 3-D PDF file (3D Multimedia 1, PDF,
45 MB) [URL: http://dx.doi.org/10.1117/1.JARS.11.2.026013.1].
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Canopy surface elevation generated from the SfM point clouds showed depressions at the
same locations, where damage was indicated by NDVI. However, the area classified as damaged
was larger [Fig. 6(d)]. Comparing the three methods [Figs. 6(b)–6(d)] with the true-color image
[Fig. 6(a)], the amount of area classified as CPB damaged is subjective, whether by visual
interpretation or by the choice of algorithm for detection.35,36

There are many options in workflows for acquiring and analyzing sUAS imagery.37–40 For
determining in-season nitrogen fertilizer requirements, transects of single images over large
fields would be most cost effective, because variation of fertilizer requirements is largely caused
by variation in soil properties.41 Each image should have very-high spatial resolution to deter-
mine plant cover and chlorophyll content of single leaves. With insect pests, the pattern of
damage is unpredictable, so frequent coverage of the whole field may be required. However,
if the spatial distribution of damage is clumped (as in Fig. 2), then pixel sizes could be somewhat
larger and would still be effective.

4 Conclusions

Leaf and plant damage caused by CPBs was spatially unpredictable and appeared just over 1 day,
so frequent sUAS flights with extensive coverage were needed for early detection. We compared
three methods for supervised classification of early CPB damage: pixel-based NDVI thresholds,
object-based image analysis, and plant height. Using an orthomosaic image, all three methods
found small areas of CPB damage on the day that the damage was first visually detectable. Based
on calculations and ignoring problems with cloud cover, satellite data with 5-m pixels would not
have been effective for monitoring CPB damage. We are intrigued by the potential for using plant
height from SfM point clouds, because undamaged plants could serve as field-by-field references
making the overall assessment somewhat more objective. When compared to a visual damage

Fig. 6 (a) True color subset of plots 302 (top) and 102 (bottom) from the June 24, 2014, ortho-
mosaic acquired at 30-m altitude. These two plots were near the center of the point cloud, which
had the least overall curvature. Plot 102 was visually ranked 16th (the most visual damage),
whereas plot 302 was ranked 7th. Edge pixels were not included in the analyses. (b) NDVI
with color ranges selected to show damage. (c) Rule-based classification of damage (red) and
no damage (green). (d) Relative elevation above ground level determined from the point cloud.
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ranking, feature extraction based on object-based image analysis was the most accurate method
for detecting the relative amount of plant damage. However, both the feature extraction and plant
heights required extensive operator intervention for success. Because the different methods for
classification of CPB damage did not result in similar areas of damage, it is necessary for pre-
cision IPM to ascertain whether early detection is sufficient or accurate estimates of the amount
of damage are required.
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