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Abstract. Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in
the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to
assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-
regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized
in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard
manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22
microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average abso-
lute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential
to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intra-
operative time frame. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.126005]
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1 Introduction
Cardiovascular disease is the leading cause of death globally.1

Atherosclerosis of the coronary artery disease results in remod-
eling and narrowing of the arteries that supply oxygenated
blood to the heart, and thus may lead to myocardial infarction.
Common interventional approaches include percutaneous coro-
nary intervention and coronary artery bypass graft surgery.2 The
choice of treatment will vary depending on a range of clinical
factors, including morphology of the vessel wall, and degree of
stenosis as quantified by cross-sectional luminal area.

Imaging of the vasculature, specifically coronary arteries,
plays a critical role in assessment of these treatment options.
X-ray computed coronary angiography and cardiac magnetic
resonance imaging allow noninvasive imaging but are very
limited in their ability to assess the structure of the artery walls.3

Invasive techniques, such as intravascular ultrasound (IVUS),4

provide cross-sectional imaging of the artery walls, but with lim-
ited spatial resolution.5 Intravascular optical coherence tomog-
raphy (IVOCT) lacks the image penetration depth of IVUS but
provides far higher resolution imaging, allowing visualization
and quantification of critical structures such as the fibrous
cap of atherosclerotic plaques and delineation of the arterial
wall layers.6–8 In addition, IVOCT is finding application in im-
aging coronary stents to assess vascular healing and potential
restenosis.9,10

Delineation of the vessel lumen in IVOCT images enables
quantification of the luminal cross-sectional area. Such delinea-
tion has also been used as the first step toward plaque
segmentation11,12 and the assessment of stent apposition.13

However, manual delineation is impractical due to the high
number of cross-sectional scans acquired in a single IVOCT
pullback scan, typically >100 images. Automatic delineation
of the lumen wall is challenging due to various reasons.
Nonhomogenous intensity, blood residue, the presence and
absence of different types of stents, irregular lumen shapes,
image artifacts, and bifurcations are some of these challenges.14

Previous delineation approaches have employed edge detec-
tion filters15 and spline-fitting to segment the lumen boundary
and stent struts.16 Other approaches have included the use of
wavelet transforms and mathematical morphology,17 Otsu’s
automatic thresholding and intersection of radial lines with
lumen boundaries,11,12 Markov-random fields models,18 and
light back-scattering methods.19

Deep learning is a type of machine learning algorithm utiliz-
ing artificial neural networks (ANN), which in recent years has
been found to be useful for medical image processing. Input fea-
tures are processed through a multilayered network, defined by
a network of weights and biases, to produce a nonlinear output.
During training, these weight and bias values are optimized by
minimizing a loss function, mapping training input to known
target output values. Convolutional neural networks (CNNs)
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are a particular subset of ANN that operate on input with regular
structure: they apply convolutional filters to the input of each
layer, and have proven to be highly effective in image classifi-
cation tasks.20–22

Most neural network applications in image processing are
image-based classification models, where the network is trained
to classify each pixel in the input image into one of several
classes. The use of this technique has been extended into a vari-
ety of medical image segmentation applications. For example,
CNNs have been used to classify lung image patches in inter-
stitial lung disease23 as well as head and neck cancer in hyper-
spectral imaging.24 CNNs have also been applied in retinal layer
and microvasculature segmentation of retinal OCT images,25,26

and arterial layers segmentation in patients with Kawasaki
disease.27 These CNN methods employ the commonly used
feature classification approach.

An alternative approach is to train the network to perform
linear regression, in contrast to feature classification. Recently,
a linear-regression CNN model has been demonstrated to
outperform conventional CNN in cardiac left ventricle
segmentation.28 CNN regression was used to infer the radial dis-
tances between the left ventricle centerpoint and the endo- and
epicardial contours in polar space. This indicates the possibility
of an alternative application of CNNs for image segmentation in
comparable medical applications.

In this paper, we propose a method of coronary lumen seg-
mentation for clinical assessment and treatment planning of
coronary artery stenosis using a linear-regression CNN. We
test the algorithm on in vivo clinical images and assess it against
gold-standard manual segmentations. This is the first use of a
linear-regression CNN approach to the automated delineation
of the vessel lumen in IVOCT images. This paper is structured
as follows: Sec. 2 provides experimental details and an explan-
ation of the CNN architecture and implementation; Sec. 3
provides accuracy results benchmarked against interobserver
variability of manual segmentation, and an assessment of the
impact of varying the amount of training data; and Secs. 4
and 5 conclude with a discussion of the potential clinical impact
and limitations of such an approach.

2 Materials and Method

2.1 IVOCT Data Acquisition and Preparation for
Training and Testing

The data used for this study comprise IVOCT-acquired images
of patients diagnosed with coronary artery disease. The IVOCT
images were acquired from the University of Malaya Medical
Center (UMMC) catheterization laboratory using two standard
clinical systems: Illumien and Illumien Optis IVOCT Systems
(St. Jude Medical). Both systems have an axial resolution of
15 μm and a scan diameter of 10 mm. The Ilumien system
and the Ilumien Optis system have maximum frame rates of
100 and 180 fps, respectively. The study was approved by
the University of Malaya Medical Ethics Committee (Ref:
20158-1554), and all patient data were anonymized.

In total 64 pullbacks were acquired from 28 patients [25%/
75% male/female, with mean age 59.71 (�9.61) years] using
Dragonfly™ Duo Imaging Catheter with 2.7 F crossing profile
when the artery was under contrast flushing (Iopamiro® 370).
The internal rotating fiber optic imaging core performed rota-
tional motorized pullback scans for a length of 54 or 75 mm
in 5 s. These scans include multiple pre- and poststented images

of the coronary artery at different locations. These pullbacks
were randomly assigned to one of two groups with a ratio of
7:3, i.e., 45 pullbacks were randomly designated as training
sets and the remaining 19 as test sets. Excluding images
depicting only the guide catheter, each pullback contains
between 155 and 375 polar images. These images contain
a heterogeneous mix of images with the absence or presence
of stent struts (metal stents or bioresorbable stents or both),
fibrous plaques, calcified plaques, lipid-rich plaques, ruptured
plaques, thrombus, dissections, motion artifacts, bifurcations,
and blood artifacts. The original size of each pullback frame
was 984 × 496 pixels (axial × angular dimension), and was
subsampled in both dimensions to 488 × 248 pixels to reduce
training and processing time. For each image, raw intensity
values were converted from linear scale to logarithmic scale
before normalizing by mean and standard deviation.

Gold-standard segmentations were generated on both train-
ing and test sets by manual frame-by-frame delineation using
ImageJ29 in Cartesian coordinates, according to the document
of consensus,14 whereby a contour was drawn between the
lumen and the leading edge of the intima. The contour was
also manually drawn across the guidewire shadow and bifurca-
tion at locations that best represent the underlying border of the
main lumen, gauged by the adjacent slices. The manual contour
of the lumen border for each image was subsequently converted
to polar coordinates, smoothed and interpolated to 100 points
using cubic B-spline interpolation method for CNN training
and testing.

2.2 Convolutional Neural Networks Regression
Architecture and Implementation Details

Using our linear-regression CNN model, in each polar image we
infer the radius parameter of the vessel wall at 100 equidistant
radial locations, rather than the more conventional approach of
classifying each pixel within the image. This has the advantage
of avoiding the physiologically unrealistic results that may arise
from segmentation of individual pixels. The lumen segmenta-
tion was parameterized in terms of radial distances from the
center of the catheter in polar space.

The general flow of the proposed CNN model is shown in
Fig. 1. Our network consists of a simple structure with four
convolutional layers and three fully connected layers, including
the final output layer. All polar images were padded circularly
left and right before being windowed for input. The window
dimension was 488 × 128 pixels centered on each individual
radial point, therefore yielding 100 inputs and 100 evaluated
radial distances per image.

The details of the network architecture are presented in
Table 1. In the network architecture, a filter kernel of size
5 × 5 × 24 with boundary zero-padding was applied for all
convolutional layers, yielding 24 feature maps at each layer.
In the first layer, a stride of 2 was also applied along the angular
dimension to reduce computational load. The first three layers
were also max-pooled by size 2 × 2. Each fully connected layer
contains 512 nodes. Exponential linear units30 were used as the
activation functions for all layers, including both convolutional
and fully connected layers, except the final layer. Dropout with
keep probability of 0.75 was applied to the fully connected
layers FC1 and FC2, to improve the robustness of the
network.31 The final layer outputs a single value representative
of the radial distance between the lumen border and the center
of the catheter for the radial position being evaluated.
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The objective function used for the network training is the
standard mean-squared error. Starting from a random initializa-
tion, the weight and bias parameters are iteratively minimized by
calculating the mean squared error between the gold-standard
radial distance and the output of the CNN training. The Adam
stochastic gradient algorithm was used to perform the optimiza-
tion, i.e., minimization, of the objective function.32 The network
was trained stochastically with a mini-batch size of 100 at
a base-learning rate of 0.005. The learning rate was halved
every 50,000 runs. The training was stopped at 400,000 runs
where convergence was observed (i.e., when the observed losses
had ceased to improve for at least 100,000 runs). The trained
weights and biases of the network, amounting to ∼6.3 million
parameters, are subsequently used to predict the lumen contour
on the test sets.

The neural network was designed in a Python (Python
Software Foundation, Delaware) environment using the
TensorFlow v1.0.1 machine learning framework (Google Inc.,
California). The execution of the network was performed on
a Linux-based Intel i5-6500 CPU workstation with NVIDIA
GeForce GTX1080 8GB GPU. The training time for 45 training
sets was 13.8 h and the complete inference time for each test
image was 40.6 ms.

2.3 Validation

The accuracy of our proposed linear-regression CNN lumen seg-
mentation was validated against the gold-standard segmentation
of the test data pullback acquisitions, which were the aforemen-
tioned 19 manually delineated pullbacks. These pullbacks con-
tain in total 5685 images. The accuracy was assessed in three
ways: (1) on a point-by-point basis via distance error measure,
(2) in the form of binary image overlaps, and (3) based on
luminal area.

The first assessment involves point-by-point analysis on the
100 equidistant radial contour points from all images, whereby

Fig. 2 Mean absolute error against different numbers of training data
sets.

Table 2 Accuracy of CNN segmentation with 45 training pullbacks
(n ¼ 13;342). The values are obtained based on the segmentation
on 19 test pullbacks (n ¼ 5685).

Measure Median (interquartile range)

Mean absolute error per image
(point-by-point analysis), μm

21.87 (16.28, 31.29)

Dice coefficient 0.985 (0.979, 0.988)

Jaccard similarity index 0.970 (0.958, 0.977)

Table 1 Linear-regression CNN architecture for lumen segmentation
at each windowed image. The output is the radial distance at the
lumen border from the center of the catheter. CN, convolutional
layer; FC, fully connected layer.

Layer In Weights Pooling Out

CN1a 488 × 128 × 1 1 × 5 × 5 × 24 2 × 2 244 × 32 × 24

CN2 244 × 32 × 24 24 × 5 × 5 × 24 2 × 2 122 × 16 × 24

CN3 122 × 16 × 24 24 × 5 × 5 × 24 2 × 2 61 × 8 × 24

CN4 61 × 8 × 24 24 × 5 × 5 × 24 — 61 × 8 × 24

FC1 11712 11712 × 512 —- 512

FC2 512 512 × 512 — 512

Out 512 512 × 1 1

aA stride of size 2 was applied on the angular dimension to reduce
computational load.

Fig. 1 Overview of the linear-regression CNN segmentation system (refer to text for details).
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the mean absolute Euclidean distance error between the gold
standard and predicted contours was computed for each image.

The second assessment was performed to evaluate the
regions delineated as lumen. The amount of overlap between
the binary masks as generated from the predicted contours
and the corresponding gold standards was computed using
the Dice coefficient and Jaccard similarity index.

The third assessment targeted at the luminal area, which is
one of the clinical indices to locate and grade the extent of
coronary stenosis for treatment planning. Luminal area was
computed from the binary mask produced from the predicted
contours and compared against the corresponding gold standard.
We also performed a one-tailed Wilcoxon signed ranks test on
the errors of the estimated luminal areas at the significance level

Fig. 3 Representative results from the test sets, (a) showing good segmentation from linear-regression
CNN on images with good lumen border contrast, (b) inhomogenous lumen intensity, (c) severe stenosis,
(d)–(f) blood swirl due to inadequate flushing, (g) multiple reflections (indicated by yellow arrow), (h) and
(i) embedded metallic and bioresorbable stent struts due to restenosis, respectively, (j) malapposed
metallic stent struts, (k) malapposed bioresorbable stent strut, and (l) minor side branch. Blue and
red contours represent CNN segmentation and gold standard, respectively. Scale bar (a) represents
500 microns.

Journal of Biomedical Optics 126005-4 December 2017 • Vol. 22(12)

Yong et al.: Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular. . .



of 0.001. Three-dimensional (3-D) surface models of the lumen
wall were also generated for all pullbacks to facilitate visual
comparison of the segmentation by manual contouring and auto-
mated contouring using the proposed CNN regression model.

2.4 Dependency of Network Performance on
Training Data Quantity

To understand the dependency of the network performance to
the amount of training data required, we assessed the variation
in accuracy of the 19 test pullbacks against different numbers of
training datasets. Tests were performed with 10, 15, 20, 25, 30,
35, 40, and 45 pullbacks. The training pullbacks for each group
were selected randomly. The number of training runs with
different training sets was kept constant at 400,000 runs, with
a similar base learning rate and learning rate decay protocol.

2.5 Interobserver Variability Against Convolutional
Neural Networks Accuracy

To quantify the allowable variation in segmentation, we
performed an experiment to assess variation in the manual
gold standard that would be generated by three independent
observers.

One hundred images were selected randomly from five pull-
backs of the test sets and the lumen manually delineated by
three independent observers. The interobserver variability was
assessed through Bland–Altman analysis, consistent with Celi
and Berti in their study on the segmentation of coronary
lesions.11 Specifically, the signed differences among all possible
corresponding pairs of luminal areas from all three observers
were plotted against their mean area differences. Bland–
Altman analyses were also performed on luminal areas evalu-
ated by the CNN against the corresponding evaluation by all
observers. These analyses provide an understanding of the total
bias and limits of agreement (i.e., 95% confidence interval or
1.96× standard deviation of the signed differences from the
mean) among all observers themselves as well as between
the CNN and the observers.

3 Results

3.1 Dependency of Network Performance on
Training Data Quantity

The results assessing the impact of training data quantity on
CNN accuracy are shown in Fig. 2. The value reported here
is the mean positional accuracy of each point along the vessel
wall. There was notable improvement in CNN accuracy with an
increase in the training data quantity up until 25 training data
sets. Beyond that, the mean absolute error per image varied little
with increased data. However, the optimal CNN segmentation
was obtained from training with the highest sample size, i.e.,
45 pullbacks consisting of 13,342 training images, as summa-
rized in Table 2. At 45 training pullbacks, the median of the
mean absolute error per image as quantified using point-by-
point analysis was 21.87 microns, whereas Dice coefficient
and Jaccard similarity index were calculated as 0.985 and
0.970, respectively.

Representative segmentation results are shown in Fig. 3.
Apart from performing well on images with clear lumen border
contrast Fig. 3(a), linear-regression CNN segmentation has
shown robustness in segmenting images with inhomogenous
lumen intensity (b), severe stenosis (c), blood residue due to

suboptimal flushing (d)–(f), multiple reflections (g), embedded
stent struts (h) and (i), malapposed metallic stent struts (j), mal-
apposed bioresorbable stent struts (k), and minor side branches
[(c), (i), and (l)]. Acceptable lumen segmentation was found at
the shadow behind the guide wire and metallic stent struts across
all images. Errors were observed to occur most frequently
at major bifurcations (angle spanning > ∼ 90 deg), where
the appropriate boundary for segmenting the main vessel was
ambiguous [Figs. 4(c)–4(d)]. Seventy-two percent of the 100
worst performing segmentations were found to contain major
bifurcations and, at these locations, overestimation of the area
of the main vessels was noted.

Based on the results obtained with the optimal training quan-
tity (45 pullback data sets), we calculated luminal area estimates
in all 19 test pullbacks, as tabulated in Table 3. CNN

Fig. 4 Representative cases from the test sets, (a) and (b) showing
reasonable lumen segmentation from linear-regression CNN on
images with medium-sized bifurcations. (c) and (d) Poorer results
were seen at major bifurcations, where the appropriate boundary
for segmenting the main vessel was ambiguous. Blue and red con-
tours represent CNN segmentation and gold standard, respectively.
Scale bar (a) represents 500 microns.

Table 3 Luminal area in 19 test pullbacks with optimal training.

Method Median (interquartile range)

Luminal area (mm2)

Manual segmentation area 5.28 (3.88, 7.45)

CNN segmentation area 5.26 (3.93, 7.45)

Percentage errora (%)

Signed percentage error 0.06 (−1.24, 1.53)

Absolute percentage errorb 1.38 (0.63, 2.62)

aNormalized by manual segmentation area.
bSignificantly below 2%, p < 0.001
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segmentation yields median (interquartile range) luminal area of
5.28 (3.88, 7.45) mm2 matching well with the results of manual
segmentation of 5.26 (3.93, 7.45)mm2 (i.e., gold standard). The
median (interquartile range) absolute error of luminal area was
1.38%, which is statistically significantly below 2% (p < 0.001)

as tested by the one-tailed Wilcoxon signed rank test. Figure 5
shows two representative examples of the 3-D reconstructed
vessel wall from two different pullbacks for visual comparison
of CNN regression (middle column) against gold-standard
manual (left column) segmentation. The vessel wall was

Fig. 5 Reconstruction of vessel wall from two different pullbacks [(a) and (b)] for visual comparison of
CNN regression segmentation against the gold-standard manual segmentation. Vessel walls (left and
middle columns) are color-coded with cross-sectional luminal area. Difference in luminal area is dis-
played on the right. The axis is in mm and color bar indicates luminal area in mm2.
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color-coded with the cross-sectional luminal area. Difference in
luminal area between CNN regression and gold-standard seg-
mentation is color-coded on the vessel wall on the right column.

3.2 Interobserver Variability Against Convolutional
Neural Networks Accuracy

The Bland–Altman analysis among all three observers showed
a bias (mean signed difference) of 0.0 mm2 and limits of
agreement of �0.599 mm2 in terms of luminal area estimation
[Fig. 6(a)]. Comparing the CNN with all observers, the bias was
0.057 mm2 and the variability in terms of limits of agreement
was comparable at �0.665 mm2 [Fig. 6(b)]. These results
suggest that automated segmentation had sub-100 micron bias
to over-estimate luminal area, and that the variation between
automated and manual estimates of luminal area was only
slightly greater than the interobserver variability among human
observers.

4 Discussion
Lumen dimension is an important factor in the optimization of
percutaneous coronary intervention. This measure allows the
clinician to localize and measure the length of lesions along
the vessel wall before making an optimum selection of stent
for deployment. It also allows one to indirectly assess the quality
of stenting (i.e., based on total expansion of the narrowed artery)
and is the first step toward quantifying the amount of stent
malapposition. Misinterpretation of lesion location and length
results in both clinical and financial consequences as additional
stents are required for redeployment, and overlapping of
multiple stents is often associated with increased incidences of
restenosis, thrombosis, and adverse clinical outcomes.33

Manually quantifying coronary lumen dimension from
IVOCT images over the entire extent of the imaged segment
is currently not clinically feasible in view of the number of
sample images available per pullback (i.e., >100 images).
Automatic segmentation is desirable but challenging due to
the significant variety of image features and artifacts obtained
in routine scanning, restricting the operation of most image
processing algorithms to a specific subset of good quality
images. Deep learning techniques have been shown to be more
robust in a pool of heterogeneous input images, and this has also
been demonstrated in our results.28 Our study represents the first
to employ such a technique, combined with a linear regression

approach, to the automatic segmentation of lumen from IVOCT
images.

Our results showed a notable increase in CNN accuracy up to
25 training pullbacks, and incremental improvements thereafter.
The median accuracy in luminal radius at each radial location,
against a manual gold standard, was 21.87 μm at optimal train-
ing with 45 training pullbacks, which is comparable with the
OCT system’s axial resolution (15 μm). The median luminal
area was marginally greater by manual segmentation in com-
parison with CNN segmentation (i.e., 5.28 versus 5.26 mm2),
yielding a median error of 1.38% (i.e., significantly <2% at
p ¼ 0.001). The CNN also has good limits of agreement against
all observers (�0.665 mm2), which is comparable with the limit
of agreement among all observers (�0.599 mm2).

Published algorithms have required the prior removal of
guide-wires or blood artifacts in the images as well as inter-
polation of output contours across guidewire shadow and
bifurcation11,12,27,34 to complete an accurate segmentation.
Our linear-regression CNN algorithm did not require additional
pre- and postprocessing of the data, with the behavior across
these features arising implicitly from the training data. In addi-
tion, the proposed method works on a wide spectrum of IVOCT
images whether in the presence or absence of stent struts. We
found this approach to be of utility in assessing patients both
pre- and poststenting. Furthermore, the CNN segmentation was
able to segment images regardless of stent types and no prior
information on implanted type is needed, as can be required
by some other segmentation techniques,35 making it applicable
in a wider range of clinical settings.

We note that while training time was significant (13.8 h
for 45 training pullbacks), this is all precomputed prior to
clinical usage. The subsequent time to process a test image was
extremely small (40.6 ms). Thus, the use of linear-regression
CNNs offers the potential of intra-operative assessment of the
vessel lumen during an intervention.

Limitations of the algorithm occur at areas with highly
irregular lumen shapes, and at major bifurcations, where vessel
lumen of the main branch is ambiguous even for manual seg-
mentation. We note that this implementation of the algorithm
has adopted a two-dimensional processing approach where each
image is processed independently. Extending this to a volumet-
ric approach, where adjacent slices influence the segmentation
of each image, may result in more stable results in these
situations. Alternatively, some form of energy minimization

Fig. 6 Bland–Altman plot analysis of luminal area for all possible (a) pair-comparisons among different
observers and (b) between CNN and observers for the 100 randomly selected images from the test set.
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approach may be incorporated into the CNN cost function to
enforce additional regularization of the lumen shape.

5 Conclusion
This paper has demonstrated a linear-regression CNN for the
segmentation of vessel lumen in IVOCT images. The algorithm
was tested on clinical data and compared against a manual gold
standard. Results suggested that the CNN provided accurate
estimates of the lumen boundary, with errors only slightly
greater than the interobserver variability among multiple
human observers. In addition, the algorithm was fast, processing
test images at a rate of 40.6 ms per image. Our results suggest
that the linear-regression CNN-based approach has the potential
to be incorporated into a clinical workflow and provide quanti-
tative assessment of vessel lumen in an intraoperative time
frame.
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