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Abstract. Acute leukemias are oncohematological diseases that compromise the bone marrow and have
a complex diagnostic definition, leading to a high mortality when diagnosed late. This study proposed to deter-
mine the spectral differences between whole blood and plasma samples of healthy and leukemic subjects based
on Raman spectroscopy (RS), correlating these differences with their resulting biochemical alterations and per-
forming discriminant analysis of the samples (n ¼ 38 whole blood and n ¼ 40 plasma samples). Raman spectra
were obtained using a dispersive Raman spectrometer (830-nm wavelength, 280-mW laser power, 30-s expo-
sure time) with a Raman probe. The exploratory analysis based on principal component analysis (PCA) of
the blood and plasma sample’s spectra showed loading vectors with peaks related to amino acids, proteins,
carbohydrates, lipids, and carotenoids, being the spectral differences related to amino acids and proteins for
whole blood samples, and mainly carotenoids for plasma samples. Discriminant models based on partial least
squares (PLS) and PCA were developed and classified the spectra as healthy or leukemic, with sensitivity of
91.9% (PLS) and 83.9% (PCA), specificity of 100% (both PLS and PCA), and overall accuracy of 96.5% (PLS)
and 93.0% (PCA) for the whole blood spectra. In plasma, the sensitivity was 95.7% (PLS) and 11.6% (PCA),
specificity of 98% (PLS) and 100% (PCA), and overall accuracy of 97.1% (PLS) and 64.1% (PCA). The study
demonstrated that RS is a technique with potential to be applied in the diagnosis of acute leukemias in whole
blood samples. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.10.107002]
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1 Introduction
Acute leukemias are defined as disorders where primitive
hematopoietic cells (named blasts), especially white blood
cells, suffer malignant transformations whereby they are pro-
duced in a clonal, uncontrolled, and autonomous way, with
their functions, morphologies, and the maturation sequence
generally altered, keeping them immature and inefficient.1–3

Leukemias are oncological diseases of not fully known causes
and present high incidence in the population; they are among the
11 most common cancer diseases in the world, reaching the
mark of 257,000 new cases in 2017 in the world population;4

and the National Cancer Institute estimates 10,800 new cases
in Brazil in 2018.5

Leukemias are initially classified following the nomenclature
of the cell’s lineage, being the lymphoid and myeloid, depend-
ing on the type of blood cells involved (lymphoblasts or mye-
loblasts), and the time of development for each disorder, being
considered acute leukemias those of fast and more aggressive
development, and chronic leukemias those of slow and less
aggressive development.6

The diagnosis of leukemia is based on a set of tests, starting
with the blood count screening, which is able to evaluate (quali-
tatively and quantitatively) the blood cells, followed by a more

invasive myelogram examination, which analyzes the intramed-
ullary cells related to the alterations of the cell’s morphologies
and stages of maturation.6–9 However, these morphological tests
are not sufficient for an accurate diagnosis, and for this reason,
clinicians request more complex laboratory tests capable of
conclusive diagnosis. The cytogenetics and fluorescence in situ
hybridization are aimed to identify specific genes and chromo-
somal alterations (deletions, translocations, and cryptic rear-
rangements) implicated in the process of leukemogenesis.10

Immunophenotyping by flow cytometry and molecular biology
are also part of the range of exams currently available for the
elaboration of a definitive diagnosis.11 Only after confirmation
will the leukemia therapy be started and the prognosis known,
but the average time to release the results of these tests varies
from 3 to 5 days, impacting negatively the development and
control of the disease.12 The techniques based on myelogram
and immunophenotyping present high sensitivity and specificity
for the diagnosis of acute leukemia, and the accuracy to detect
abnormal myeloid cells using phenotyping is shown to be
around 94%,13 whereas the sensitivity and specificity for the
characterization of myeloid markers by immuniphenotyping
are dependent on the antigen detected, with minimum sensitivity
and specificity values of 97% and 88%, respectively.14
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The treatment occurs by administration of chemotherapy and
depends not only on some factors inherent to the disease itself,
but also on the clinical conditions of the patients. Despite
records of a decrease in mortality, it is estimated that one-
third of the patient present recurrence and the overall five-
year survival rate is ∼35%.15 These numbers motivate the search
for new methods and techniques that can reduce the time interval
between the hypothesis and the diagnostic conclusion in favor
of better prognoses for the patients.15

Raman spectroscopy (RS) is an optical technique capable of
identifying biochemical changes in biological tissues and fluids
related to pathological conditions,16–18 diagnosing Alzheimer’s
disease in blood serum19,20 as well as quantifying human blood
and serum components in vitro.21 RS has been applied to iden-
tify spectral information referring to blood cells and biochemical
elements present in the blood, such as amino acids, proteins,
lipids, nucleic acids, and carotenoids,21 and the technique has
been gaining importance in the field of diagnostics of different
types of leukemia using cell lines,22 blood smears,23 and blood
serum samples.24 The Raman effect, which is the basis of RS, is
based on the inelastic scattering of an incident laser light by
polarizable molecules and has a great ability to provide detailed
information on the vibrational energy levels of different
materials.25,26 When applied to the diagnosis of blood diseases,
RS has advantages, such as potential for in vivo use, rapidness,
no need for reagents or dyes to reveal the tissue biochemical
information, and the possibility of obtaining the diagnosis
using small amount of sample nondestructively, thus preserving
its integrity.26–29

The objective of this study was to use the RS (830-nm exci-
tation) to identify the spectral differences in whole blood and
plasma samples from healthy and acute leukemia subjects
and use these differences to discriminate both statuses. The
spectral differences related to the biochemicals presented in
each sample type will be statistically evaluated by the student’s
t-test, and then these peaks will be assigned to their correspond-
ing chemical compositions already described in the scientific
literature.24,25,30 Then, the spectral dataset will be submitted
to a classification model by discriminant analysis (DA) employ-
ing partial least squares (PLS) and principal component analysis
(PCA) for the spectral differentiation of healthy from leukemic
samples, through their most significant peaks.

2 Materials and Methods

2.1 Whole Blood and Plasma Samples

The study was approved by the Research Ethics Committee
of Universidade Paulista—UNIP (Process CAAE No.
67895617.5.0000.5512). Human blood samples were obtained
from the laboratory of clinical analyses of a reference hospital
for oncohematological diseases in São José dos Campos.
The diagnosis of leukemia in the samples enrolled in the
study was done with qualitative and quantitative analysis of
the peripheral blood cells through hemogram, which results
in a suggestive hematological disease, progressing to detailed
exams, such as myelogram, immunophenotyping, cytogenetics,
and molecular biology31 when needed.

The blood samples were collected from peripheral veins of
each subject by vacuum-closed method in tubes containing
K3EDTA (7.2 mg) as anticoagulant (Sarstedt AG & Co.,
Nümbrecht, Germany). An aliquot of each blood sample was
transferred to a tube for mechanical centrifugation at 3500

RPM for 10 min to obtain the plasma (model Combate,
CELM Ltd., Barueri, SP, Brazil); the remnant blood was main-
tained in the original tube.

It was evaluated 25 samples of whole blood from healthy
subjects and 17 samples from whole blood from acute leukemic
subjects identified after conventional diagnostic techniques. The
samples of whole blood and plasma were properly conditioned
in thermal boxes (2°C to 8°C) in order to avoid changes in the
biochemical constitution due to temperature. At the time of
spectroscopy, these samples were separated into the two groups
named healthy group and leukemic group.

2.2 Raman Spectroscopy

Raman spectra were obtained in whole blood and plasma
samples without any preparation, by pipetting an amount of
80 μL in an aluminum sample holder with holes, using a sin-
gle-channel micropipette of variable volume (model P200,
Bio-Rad, Hercules, California). The spectra were obtained in
a near-infrared Raman spectrometer (model Dimension P1,
Lambda Solutions Inc., Massachusetts), which uses a diode
laser at 830 nm coupled to a Raman probe fiber optic cable
for sample’s excitation, obtaining 280 mW of laser power at
the excitation output of the probe. The scattering of the sample
was collected by the Raman probe and coupled to the spectrom-
eter for dispersion. The spectrometer disperses the scattered
light onto a back thinned, deep-depleted charge-coupled device
camera (1340 × 100 pixels, cooled to −75°C) in the spectral
range between 400 and 1800 cm−1, providing ∼2 cm−1 of spec-
tral resolution. The exposure time for obtaining each spectrum
was 3 s with 10 accumulations (30 s of total exposure time), and
each sample was analyzed between three and five replicates in
order to increase the number of spectra in the discrimination
model. Neither noticeable damage to the blood or serum nor
spectral change was observed during the spectrum acquisition.

The collected Raman spectra were subjected to preprocess-
ing to remove the Raman background (mainly fluorescence
from blood components and cells) by fitting and subtracting
a seventh-order polynomial over the entire spectral range of
400 to 1800 cm−1. Spikes from cosmic rays were removed man-
ually and then the spectra were normalized by the “area under
the curve” (one-norm).32 The mean spectra of each group were
calculated for visual comparison and statistics. Table 1 presents
an overview of the number of spectra collected in each of the
groups. Four blood samples from the healthy group and two
plasma samples from the leukemic group were excluded from
the study due to the presence of hemolysis and low Raman
signal-to-noise ratio identified after preprocessing.

Table 1 Number of samples and number of spectra in each group.

Sample Type
Number of
samples

Total collected
spectra

Whole blood Healthy 21 80

Leukemic 17 62

Plasma Healthy 25 101

Leukemic 15 69
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The mean spectra were plotted in order to identify visual
differences in the intensities of the Raman peaks between the
healthy and leukemic groups. The most intense peaks in both
spectra were labeled and the Raman band positions were tabu-
lated to determine the composition of whole blood and plasma
based on the Raman features. Student’s t-test with significance
level of 5% (p < 0.05) was applied to the intensities of the peaks
between healthy and leukemic groups to determine the peaks
with significant differences, in a way to determine the
differences in the biochemical composition between healthy
and leukemic blood and plasma and to identify the differences
in the biochemical profile of both groups. The t-test is used to
compare the means when the samples follow normal distribution
but with unknown variance, and the p-value is used to accept
(p-value >0.05) or reject (p-value <0.05) the null hypothesis
(equality in the mean between the two populations), being
accepted the alternative hypothesis that the means come from
different populations. In this particular study using the inten-
sities of the Raman peaks, as the Raman peaks may present
intensities higher or lower when comparing healthy and leu-
kemic groups, the two-tailed t-test was used. Thus, the t-test
can be used to make decisions based on statistical calculations
with a high degree of confidence.33

2.3 Exploratory Analysis and Discrimination

2.3.1 Exploratory analysis by principal component
analysis

The PCA is used to analyze data of a multivariate nature. It is
a statistical tool that allows transforming a set of variables of
a database (the Raman spectra) into its principal components
(PCs) based on the variance of the data in the group. The
PCA extracts the most significant information (based on the
variance) from an original dataset, generating two new variables,
called principal components loading vectors (PCs) and scores
(SCs), where each PC loading vector, which resemble Raman
spectra, presents a “weight,” the SC, which indicates the inten-
sity of each loading that is present in the original data.29,32,34,35

From these two variables, the similarities and differences in
the groups can be identified. The largest spectral variation is
stored in PC1, and the extraction of the variations follows
successively (PC2, PC3, etc.) until the lowest variance compo-
nent, being the loadings extracted in a way that each PC is
orthogonal to each other (no redundant variation is represented
in each PC).

In the exploratory analysis, the aim is to identify which spec-
tral variables (PC loadings) present significant differences
between the groups, evaluated by the t-test applied to their
scores, and to correlate these loadings (spectral differences or
variances) with the biochemical differences between the healthy
and leukemic groups. Then the loadings with significant
differences were compared to the vibrational peaks assigned
to the known biochemical components of the blood obtained
from the published literature. The t-test was applied to the scores
of both healthy and leukemic groups in order to identify which
loading has statistically significant differences between the two
groups (p < 0.05).

The MATLAB software (version 2007a, The MathWorks
Inc., Natick, Massachusetts) was used to perform exploratory
analysis based on PCA.

2.3.2 Discriminant analysis by partial least squares and
PCA

Multivariate regression based on PLS is an important statistical
tool applied to establish linear relationship models between
multivariate measures.36 Authors have applied PLS to classify
and categorize some types of cancers by using the unique bio-
chemical information present in the Raman spectra.37 Since it is
known that PLS is related to canonical correlation analysis
(CCA) and that CCA is, in turn, related to linear discriminant
analysis (LDA), PLS has similarities to LDA38,39 and thus
can be used to discriminate samples in groups based on a
training dataset. By using PLS regression, the model finds
the “Fisher’s among-groups sum-of-squares and cross-product
matrix,” which means that any correlation between the predicted
and predictor variables in the training set are estimated and
maximized, and therefore used to model the output. This
means that the “within-groups” variations are distinguished
from the “among-groups” variations, and the discrimination is
achieved by focusing on the “among groups” variations,38–40

resulting in the identification of the most relevant differences in
whole blood and plasma samples and using these differences to
discriminate the spectra of leukemic from the healthy samples.

PCA was also applied to perform discrimination between
healthy and leukemic spectra using the statistically significant
scores (p < 0.05), meaning that these components bring the
most significant differences between the healthy and leukemic
groups for both whole blood and plasma, and that can be used as
diagnostic or discrimination (classification) parameters.

The Chemoface software by Nunes et al.41 was used to model
the discrimination problem based on the Raman spectra by
applying the cross-validation methodology of “leave-one-out”
(withdrawing a sample, modeling with n − 1 samples, and val-
idating the withdrawn sample), for both PLS-DA and PCA-DA,
respectively. With the results obtained from the discrimination
of whole blood and plasma, a confusion matrix and its plot
was created, comparing the rate of discrimination of whole
blood and plasma samples using the Raman spectral models
(PLS-DA and PCA-DA) compared to the correct diagnostics
of the conventional tests.

3 Results and Discussion

3.1 Whole Blood and Plasma Spectra

In this study, 312 spectra were collected from 42 individuals
(25 healthy and 17 leukemic), being 142 spectra originated
from whole blood (being 80 classified as healthy and 62 as
leukemic) and 170 spectra originated from plasma (being 101
classified as healthy and 69 as leukemic), as shown in Table 1.

Figure 1 presents the mean Raman spectra of whole blood
from healthy and leukemic groups. The spectrum from whole
blood of the healthy group shows peaks in the positions of
the blood constituents: cellular components (mainly leukocytes,
erythrocytes, and platelets) and noncellular components (mainly
plasma). Table 2 presents the positions of the main peaks of
whole blood accompanied by their respective assignments as
described in the literature24,25,30,42,43 and organized by biochemi-
cal groups. By visual inspection, some peaks showed small but
perceptible differences in intensity and bandwidth between
healthy and leukemic, suggesting some relevant variation in
these tissue components among the samples. The t-test
(p < 0.05) applied to identify peaks with statistically significant
differences in the healthy versus leukemic groups is presented in
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Table 2. The higher differences were observed in the peaks at the
positions of 570, 678, 755 cm−1, peaks in the range between
820 and 920 � cm−1, and peaks at 1004, 1130, 1160, 1212,
1225, 1344, 1378, 1401, 1452*, 1552, 1567, 1586, 1623, 1640,
and 1658 � cm−1 (the symbol * denotes peaks in which the leu-
kemic group shows greater intensity than the healthy group).
Peaks at 1212, 1401, and 1640 cm−1 did not present statistically
significant differences between the two groups (p > 0.05),
suggesting that they do not aid in the differentiation between
healthy and leukemic. As noted in Fig. 1, all the peaks in the
spectrum of the healthy group are more intense when compared
to the leukemic group, with the exception of the peaks at 820 to
920, 1452, and 1658 cm−1, which present greater intensity in
the leukemic group.

Figure 2 presents the mean Raman spectra of blood plasma
from healthy and leukemic groups. The spectrum from plasma
of the healthy group shows peaks in the positions of plasma con-
stituents, mainly proteins (albumin, globulins, and amino acids),
lipid fractions, carbohydrates (glucose), carotenoids, and metab-
olites. Table 2 presents the positions of the main peaks of
plasma peaks accompanied by their respective assignments,
as described in the literature24,25,30,42,43 and organized by bio-
chemical groups. By visual inspection, there were no relevant
differences in the intensities of the peaks of the healthy
versus leukemic groups; however, significant differences were
observed in the peaks at 510, 721, 760, 837, 947, 1004, 1132,
1160, 1210, 1269, 1334, 1344, 1407, 1448, 1455, 1525, 1630,
1659, and 1666 cm−1 (p < 0.05). Due to the lower composition
complexity of the plasma compared to the whole blood, the
amount of peaks with statistically significant differences is
lower in plasma than in whole blood, since in this specimen,
the peaks referring to leukocytes, erythrocytes, and platelets
are absent.

3.2 Exploratory Analysis

In the exploratory analysis, the PCA technique has been used to
identify the spectral features that presented differences between
the groups, through the PCs and SCs. Interpretation consists of
identifying the peaks present in the first PCs, and correlating
these peaks with the biochemical compounds present in each
group according to the literature. The scores are then used to

“quantify” these compounds in each of the healthy and leukemic
groups. Positive peaks with positive scores, as well as negative
peaks with negative scores, show that the specific biochemical is
at a high concentration in that particular group, while positive
peaks with negative scores and vice-versa show that the bio-
chemical components attributed to that PC are presented in
lower concentrations.

Figure 3 shows the plot of the PCs and SCs of the whole
blood samples. The PC1 has characteristic peaks of whole
blood, but the leukemic group presents a lower score of this
loading (SC1) (p < 0.001), suggesting that despite the same
constitution in terms of Raman features, the leukemic group
presents these constituents in lower concentrations. PC2 shows
peaks with negative intensities in the leukemic group and pos-
itive peaks in the healthy group, with a statistically significant
difference in the SC2 (p < 0.01). This loading has positive
peaks at 752, 1213, 1524, 1547, and 1619 cm−1 and neg-
ative peaks at 1007, 1381, 1403, and 1643 cm−1, being the pos-
itive peaks assigned to proteins, amino acids and carotenoids,
and the negative peaks related to amino acids, carbohydrates,
and lipids. The positive features suggest the highest protein/
amino acid concentration for the healthy group, mainly by
observing peaks at 752, 1213, and 1547 cm−1, which coincide
with the peaks of the whole blood, especially erythrocytes.27

Also, the presence of highest carotenoid concentration in the
healthy has been evidenced. Still, PC3 presents peaks with neg-
ative intensities in the leukemic group and positive peaks in the
healthy group, with significant difference for SC3 (p < 0.001).
This component has positive peaks at 570, 678, 756, 1142,
1226, 1381, 1404, 1501, 1569, 1624, and 1643 cm−1 and neg-
ative peaks at 1003, 1212, 1451, 1544, and 1664 cm−1, being
the positive peaks assigned to proteins, amino acids, and carbo-
hydrates, and negative peaks referred to amino acids and lipids.
The SC3 indicates that the healthy group has higher concentra-
tions of proteins (amide bands I and III and glutathione), amino
acids (Trp and Tyr), and glucosamine, assigned to the biochemi-
cal components of whole blood. The leukemic group, with neg-
ative SC3, shows negative peaks related to amino acids (Phe and
Trp) and lipids (cellular phospholipids), which indicates the
presence of these compounds in higher concentrations in leu-
kemia and suggests hypercellularity caused by blasts (white
cells, particularly granulocytes).30 Although PC4 presented

Fig. 1 Mean Raman spectra of whole blood from subjects in the healthy and leukemic groups and the
spectrum of the difference between leukemic and healthy. The symbol * represents the peaks that are
more intense in the spectra of leukemic than in the spectra of healthy.
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Table 2 Grouping of the main Raman peaks of whole blood and plasma according to the biochemical constitution, assignments according to
the published literature,24,25,30,42,43 and statistically significance (p-value) of the peak’s intensities between healthy and leukemic.

Biochemical group Peak position (cm−1) Assignments p-value (respective to peak position) Reference

Proteins and
amino acids

510 (P) Trp <0.01 24

755 (WB) Protein, Trp <0.0001 24, 25, 30

760 (P) Trp Not significant 24

820 to 920 (WB) Tyr, Trp, glutathione <0.0001 24, 30

831 (P) Tyr, Trp, glutathione Not significant 24

897 (P) Tyr, Trp, glutathione Not significant 24

1004 (WB; P) Phe <0.001 (WB); <0.0001 (P) 24, 25, 30

1130 (WB); 1132 (P) Protein <0.01 (WB); not significant (P) 24

1210 (P); 1212 (WB) Trp, Phe, Tyr, amide III <0.01 (P); not significant (WB) 24, 30

1225 (WB) Protein, amide III <0.0001 24

1269 (P) Protein, amide III <0.01 24, 30

1334 (P) Trp <0.001 24

1344 (P) Protein, Trp <0.001 24, 25

1401 (WB); 1407 (P) Glutathione Not significant (WB, P) 24

1448 (P); 1452 (WB); 1455 (P) Protein <0.01 (P); not significant (WB); <0.0001 (P) 24, 25

1552 (WB) Trp, amide II <0.01 24, 25, 30

1586 (WB) Protein, Tyr <0.01 24, 25

1606 (WB) Protein, Tyr, Phe <0.001 24, 25, 30

1623 (WB) Tyr, Trp <0.0001 24

1658 (WB); 1659 (P); 1666 (P) Protein, amide I <0.0001 (WB); not significant (P); not significant (P) 24, 25, 30, 43

Lipids 1130 (WB); 1132 (P) Lipids, phospholipids <0.01 (WB); not significant (P) 24, 30

1225 (WB) Lipids <0.0001 30

1269 (P) Lipids, phospholipids <0.01 30, 43

1334 (WB) Phospholipids <0.01 24, 30, 43

1344 (WB; P) Phospholipids <0.001 (WB; P) 24, 30, 43

1448 (P); 1452 (WB); 1455 (P) Lipids, phospholipids <0.01 (P); <0.0001 (WB; P) 24, 25, 30, 43

1658 (WB); 1659 (P) Phospholipids <0.0001 (WB); not significant (P) 24, 30, 42

1666 (P) Phospholipids Not significant 30

Carbohydrates 721 (P) Polysaccharides <0.0001 24

1378 (WB) Glucosamine <0.05 24, 30

Carotenoids 1004 (WB; P) β-carotene <0.001 (WB); <0.0001 (P) 30

1160 (WB); 1160 (P) β-carotene <0.01 (WB); <0.001 (P) 24

1525 (WB) β-carotene Not significant 24, 30

Note: Abbreviations: Phe: phenylalanine; Tyr: tyrosine; Trp: tryptophan. (WB): peaks referred only to whole blood and (P): peaks referred only to plasma.
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peaks in positions related to proteins and amino acids, SC4 did
not present significant difference of healthy versus leukemic
groups (p > 0.05). Therefore, PC2 and PC3 indicated the
major differences, mainly higher concentration of red blood

cells in healthy group and higher concentration of white cells
in the leukemic group.

The hypercellularity due to the presence of blasts in the leu-
kemias causes an increase in the metabolic rate of the cells,

Fig. 2 Mean Raman spectra of plasma from subjects in the healthy and leukemic groups and the spec-
trum of the difference between leukemic and healthy.

Fig. 3 Plots of the PCs and SCs calculated for the whole blood samples for exploratory analysis. The
peaks marked with “*” represent peaks found in this study which do not present known assignment.
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resulting in greater consumption of amino acids and proteins
that participate in specific enzymatic actions, such as the tyro-
sine kinase. This enzyme has the function of phosphorylation of
protein substrates, such as the myeloperoxidase, an enzyme
present in some types of acute myeloid leukemias.44–46 This
may explain the fact that PC2 and PC3 exhibit some peaks
related to amino acids with higher intensities in the healthy com-
pared to leukemic groups, especially Tyr and Trp. The peaks of
proteins and glutathione (linked to erythrocytes) are also found
in lower intensities in the leukemic group, which was also
observed by Sanches et al.,47 who carried out a study comparing
the biochemical profile between leukemic patients and healthy
individuals. The peak assigned to the amino acid Phe was high-
lighted in the first three loadings. Although in low amounts, the
literature describes that this amino acid is one of the activators of
the BCR-ABL gene, which present in a class of chronic myeloid
leukemia and other myeloproliferative disorders.44 Its presence
in the first loadings would suggest that Phe may play an impor-
tant role in acute leukemias.

Figure 4 shows the plot of the PCs and SCs of plasma sam-
ples. The PC1 has characteristic peaks of plasma, but there was
no statistically significant difference in SC1 for healthy versus
leukemic groups (p > 0.05); therefore, such peaks are not

relevant for the differentiation of the groups studied. PC2
shows negative peaks at 1630 cm−1 in the leukemic group
and positive peaks at 947, 1004, 1159, 1348, 1407, 1453 and
1520 cm−1 in the healthy group, with a significant difference
for SC2 (p < 0.01). These peaks have assignments related to
proteins, amino acids, lipids, and carotenoids. The low intensity
of SC2 suggests that the difference in the concentration of these
constituents is small, but significant in the groups (p < 0.01),
being that the healthy group has higher concentrations of
proteins, Trp, Phe, glutathione, phospholipids (free), and
carotenoids than the leukemic group. PC3 shows peaks with
negative intensities in the leukemic group and positive in the
healthy group, with a significant difference for SC3 (p < 0.05).
This component has positive peaks at 1003 and 1433 cm−1 and
negative at 1007, 1159, 1344, and 1527 cm−1, assigned to pro-
teins, amino acids, and carotenoids. The low intensity of SC3
suggests that the biochemical elements of these peaks are not
useful for the differentiation between the healthy group and leu-
kemic group. PC4 showed a statistically significant difference in
the intensities of SC4 (p < 0.001), with intense negative peaks
at 897, 959, 1004, 1160, 1447, and 1525 cm−1, referring to the
group of proteins, amino acids, and carotenoids, suggesting
a higher concentration of these components in the healthy

Fig. 4 Plots of the PCs and SCs calculated for the plasma samples for exploratory analysis.
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group, and a positive peak at 1375 cm−1 attributed to glucosam-
ine, which presents in a low concentration in the healthy group
compared to the leukemic group.

Regarding the carotenoid peaks in plasma, the exploratory
analysis by PCA showed that both PC2 and PC4 presented peaks
of this component (1004, 1159/1160, and 1520∕1525 cm−1),24,30

and SC2 and SC4 indicated significant differences, indicating
the presence of these components in high concentrations in
the healthy group, as demonstrated by González-Solís et al.,24

when analyzing Raman spectra of blood in leukemic subjects.
The literature has shown that healthy individuals have a high
plasma carotenoid concentration and that carotenoids act as
protectors against neoplasms (antioncogenic), such as acute
leukemias.48,49 Another study showed that carotenoid concentra-
tion increased in leukemic individuals in remission.24

3.3 Discriminant Analysis (PLS-DA and PCA-DA)

Discrimination techniques based on PLS and PCA (PLS-DA
and PCA-DA, respectively) applied to spectral data have
been used with relative success as predictors of discrimination
or differentiation between healthy and diseased tissues, espe-
cially in oncology.37,50,51 The DA using PLS and PCA was
applied to the normalized spectra of the healthy and leukemic
groups using the entire spectral range (400 to 1800 cm−1) for
both whole blood and plasma samples. The “leave-one-out”
cross-validation method defined an initial condition of 10 latent
variables (PLS-DA) and 10 PCs (PCA-DA) to be modeled.39

The results of the discrimination models using the spectra of
whole blood and plasma from each sample group were tabulated
(confusion table, Table 3), presenting sensitivity, specificity, and
overall accuracy values.52 For the whole blood, using the PLS-
DA, the maximum accuracy occurred by using the first three

latent variables, with a value of 96.5% success classification
and 91.9% sensitivity, while the maximum accuracy using
PCA-DA occurred by using the first four PCs, with a 93.0%
success classification and 83.9% sensitivity. Both discriminant
models reached 100% specificity, showing that healthy individ-
uals presented a spectral profile capable of allocating them to the
healthy group independently on the model used. For the plasma,
using the PLS-DA, the maximum accuracy occurred using the
first four latent variables, with a 97.1% of success classification,
95.7% sensitivity, and 98.0% specificity, while the accuracy
using PCA-DA occurred using the first PC, with 64.1% of suc-
cess classification, 11.6% sensitivity, and 100% specificity.

Figure 5 shows the confusion plot with the resulting PLS-DA
and PCA-DA discrimination for whole blood and plasma,
respectively, as shown in Table 3. The sensitivity, specificity,
and accuracy values for the PLS-DA were effective in both
types of samples, being the results for the correct classification
for both whole blood and plasma samples close to each other
(around 97%). In general, the results for both PLS-DA and
PCA-DA models were more favorable to the whole blood sam-
ples (96.5% and 93.0%, respectively), defining this sample as
a good option for the differentiation of the leukemic from the
healthy group, with spectral variables related to the red blood
cells and white cells which allowed to obtain a reduced
set of predictors with greater potential for success in the
discrimination.

In the PCA-DA, the results obtained in the whole blood were
high, demonstrating that the presence of blood cells had rel-
evance in the description of the differences in the groups by
the PCs, while the lower biochemical constituents of the plasma
reduced the sensitivity of the PCA model, resulting in an accu-
racy of 64.1%. Gonzáles-Solís et al.24 used RS in the serum to
monitor patients with acute leukemia under chemotherapeutic

Table 3 Confusion matrix with the results of sensitivity, specificity, and correct classification for the discrimination model using the Raman spectra
of whole blood and plasma samples.

Diagnosis by conventional methods

Raman diagnostics/PLS-DA Raman diagnostics/PCA-DA

Healthy Leukemic Healthy Leukemic

Whole blood

Whole blood healthy (n ¼ 21) 80 0 80 00

Whole blood leukemic (n ¼ 17) 5 57 10 52

Sensitivity 91.9% 83.9%

Specificity 100% 100%

Correct classification (accuracy) 96.5% 93.0%

Plasma

Healthy plasma (n ¼ 25) 99 02 101 00

Leukemic plasma (n ¼ 15) 03 66 61 08

Sensitivity 95.7% 11.6%

Specificity 98.0% 100%

Correct classification (accuracy) 97.1% 64.1%
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treatment, and through PCA and LDA, successfully identified
sample groups belonging to healthy and leukemic individuals,
with significant differences between biochemical components,
such as proteins, amino acids, and carotenoids, which resemble
the results of the research presented here.

The use of multivariate analysis with the objective of iden-
tifying and classifying sample groups in the most diverse areas
of knowledge is well known.24,34,35,37,42,51 The PCA aims to
perform the segregation of groups based on the variances that,
maximized, support the classification of samples according to
the differences between the groups, and has shown to be an
important tool when the main information capable of differen-
tiating the sample groups is just the variability between groups,
which needs to be greater than the intragroup variability.38,39

However, the PLS-DA stands out from the PCA-DA because,
in addition to the information of the differences between the
groups, the variances obtained within each group are also
recognized, and these variances are associated to the groups
when modeling the regression curve;38–40 therefore, the PLS-DA
leads to better performance in the classification of samples
when compared to PCA-DA.38,39

Compared to the techniques currently available for the diag-
nosis of acute leukemias based on cytomorphology and immu-
nophenotyping,9–11,13,14 RS model presented accuracy (97.1%)
close to phenotyping (94%13) and sensitivity and specificity
(95.7% and 98.0%) close or overmatch the flow cytometry tech-
nique (97% and 88%14), despite the difficulty in obtaining
the sensitivity and specificity reference values for the standard
diagnostic techniques of myelogram and phenotyping. Thus,
Raman-based analysis could significantly differentiate between
healthy and leukemic individuals based on differences in the

spectral pattern related to the chemical composition (amino
acids and carotenoids) of the blood plasma, and cellularity
(red and white cells) and chemical composition (proteins) in
the whole blood using a small volume of peripheral blood.
This infers a minimally invasive character when obtaining the
samples to be diagnosed.

RS does not require the use of reagents or special preparation
of the sample, spectral analysis can be done in reduced time and
mathematical and statistical algorithms can lead to a simplifica-
tion in the analysis and interpretation of the results. The RS tech-
nique can be included in the list of diagnostic screening tests,
since its high specificity makes it possible to exclude the sus-
picion of acute leukemia, allowing physicians to extend the
diagnostic investigation to other diseases, defining the therapeu-
tic conduction on their patients early, since the time between
diagnosis and treatment is crucial for a good prognosis. The
technique can benefit from compact Raman systems that resem-
ble bedside instrumentation for the point-of-care use,53,54 where
blood and serum samples recently withdrawn can be evaluated
rapidly and nondestructively, with advantages when compared
to established screening techniques, such as blood count and
myelogram. The Raman technique may establish a new technol-
ogy for rapid and accurate diagnosis of complex diseases related
to human blood including leukemias.

4 Conclusion
In this study, RS has been applied to samples of whole blood and
plasma to identify spectral differences among healthy subjects
and acute leukemic patients based on their biochemical compo-
nents (proteins, amino acids, carbohydrates, lipids, and carote-
noids). Exploratory analysis by PCA applied to the spectra of

Fig. 5 Confusion plot with the classifications by healthy group and leukemic group, through the DA, being
(a) PLS-DA (whole blood); (b) PCA-DA (whole blood); (c) PLS-DA (plasma); and (d) PCA-DA (plasma).
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whole blood revealed that the PC loadings 2 and 3 presented
peaks attributed to proteins, amino acids, and carbohydrates,
showing higher intensity in the healthy group, while in the leu-
kemic group, particularly the loading 3, presented higher inten-
sity of phospholipids constituents of the cell’s membrane due to
the characteristic hypercellularity of acute leukemias. In plasma,
PCA identified major differences in PC loadings 2 and 4, where
the healthy group showed peaks that indicate higher amount of
proteins, amino acids, free phospholipids, and carotenoids com-
pared to the leukemic group. The discrimination model based on
PLS applied to whole blood spectra showed superiority in the
discrimination of healthy from leukemic group in relation to
plasma, with sensitivity of 91.9%, specificity of 100%, and
accuracy of 96.5%; PLS also presented better results in the clas-
sification of the groups using plasma when compared to the dis-
crimination by PCA, with sensitivity of 95.7%, specificity of
98%, and accuracy of 97.1%. RS has shown potential as a diag-
nostic tool for acute leukemia to increase the range of techniques
currently available for screening and confirming the acute leu-
kemia, quickly and minimally invasive with high sensitivity and
specificity using both whole blood and plasma.
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