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Abstract. Vectorial models of focused beams are important to a variety of fields including microscopy, lithog-
raphy, optical physics, and biomedical imaging. This has led to many models being developed, which calculate
how beams of various profiles are focused both in free space and in the presence of stratified media. The major-
ity of existing models begin with a vectorial diffraction formula, often referred to as the Debye–Wolf integral,
which must be evaluated partially analytically and partially numerically. The complexity of both the analytic
and numerical evaluations increases significantly when exotic beams are modeled, or, a stratified medium
is located in the focal region. However, modern-day computing resources permit this integral to be evaluated
entirely numerically for most applications. This allows for the development of a vectorial model of focusing in
which the focusing itself, interaction with a stratified medium, and incident beam specification are independent,
allowing for a model of unprecedented flexibility. We outline the theory upon which this model is developed and
show examples of how the model can be used in applications including optical coherence tomography, high
numerical aperture microscopy, and the properties of cylindrical vector beams. We have made the computer
code freely available. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.9.090801]
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1 Introduction
The calculation of electromagnetic fields in focal regions has
been the subject of an immense amount of work over, at mini-
mum, the last century. A formalism allowing the solution of this
problem has been developed by Ignatowsky,1 Luneburg,2 and
Richards and Wolf.3 This formalism has been applied to a vari-
ety of focusing problems, from studying the structure of tightly
focused fields obtained by focusing linearly polarized light3 to
more complex applications such as focusing Gauss–Laguerre4

and azimuthally and radially polarized5 beams, for example.
The formalism has also been applied to focusing through strati-
fied media (see, for example6–8). This is an important extension
to focusing theory due to the large number of applications where
this is relevant, such as image formation in high numerical aper-
ture confocal microscopes,9 optical coherence tomography
(OCT),10 and photoacoustic imaging,11 to name just a few.

Many contributions have been made to the problem of
focusing vector beams through stratified media (see, for
example7,8,12–15). A barrier to researchers in the field putting
these solutions to use is their implementation in computer soft-
ware. Although the integral equations are more detailed than
complex, their implementation may appear daunting to research-
ers from outside the field. Furthermore, even slight modifica-
tions to the beam type require a good understanding of the
underlying formalism to correctly modify the equations gov-
erning the form of the focused field. One of the reasons for
this is that the computational complexity of calculating the form
of focused fields has hitherto dictated that as much as possible of
the computation be performed analytically. The result of this is

that it can be difficult for nonspecialists to modify the theory
for their application and the final equations can lose connection
with the starting point of the focusing formalism, which can be
understood conceptually.

Calculating the field at each point in the focal region requires
independent evaluation of a two-dimensional (2-D) diffraction
integral. Early calculations of fields focused through a stratified
medium employed an Intel Pentium processor operating at
a frequency of 90 MHz.12 Numerical solution of the integrals
presented in that work took advantage of the rotational sym-
metry of the optical system. In particular, integration about
the axis of revolution of the optical system (i.e., the optical
axis) was performed analytically, leaving only one-dimensional
(1-D) integrals to be numerically evaluated. Aside from the
elegance of the analytic solution, this was also necessary to
keep the computational cost of evaluating the focused fields
feasible. The downside of using this semianalytic approach is
that the process of making the required coordinate system trans-
formations and manipulations results in a series of equations
that are not readily physically interpreted and are not easily
modifiable to treat different beam types or optical systems.

The results contained within this paper were calculated on an
Intel Xeon processor with 12 cores operating at a frequency of
2.3 GHz, thus reflecting a significant increase in processing
power over the past two decades. This increase in computational
power makes it feasible to solve the problem of tight focusing in
the presence of a stratified medium largely numerically. This
carries several advantages. First, it enables a more direct
mapping between the equations governing the solution and
the numerical implementation, making the solution easier to
extend to alternative beam types and optical systems. Second,
the focusing problem can be considered as a vectorial angular
spectrum of plane waves, thus allowing the focusing and*Address all correspondence to: Peter R. T. Munro, E-mail: p.munro@ucl.ac.uk

Journal of Biomedical Optics 090801-1 September 2018 • Vol. 23(9)

Journal of Biomedical Optics 23(9), 090801 (September 2018) TUTORIAL

https://doi.org/10.1117/1.JBO.23.9.090801
https://doi.org/10.1117/1.JBO.23.9.090801
https://doi.org/10.1117/1.JBO.23.9.090801
https://doi.org/10.1117/1.JBO.23.9.090801
https://doi.org/10.1117/1.JBO.23.9.090801
https://doi.org/10.1117/1.JBO.23.9.090801
mailto:p.munro@ucl.ac.uk
mailto:p.munro@ucl.ac.uk
mailto:p.munro@ucl.ac.uk
mailto:p.munro@ucl.ac.uk


stratified media problems to be naturally decoupled. This pro-
vides for a very convenient way of calculating the electromag-
netic field throughout a stratified medium, not just the
transmitted field as has previously been the case.6 The aim of
this work is to provide a formalism, along with freely available
computer software,16 which is able to be used, with little prior
knowledge, to calculate a range of focusing problems, possibly
involving a stratified medium. Furthermore, the formalism is
structured in a manner that prioritizes conceptual understanding
of the code rather than computational efficiency. This allows the
formalism to be extended by users with an understanding of the
underlying theory and not necessarily a detailed knowledge of
scientific computing, which is why we have presented this work
in the form of a tutorial. Furthermore, it is our intention that this
tutorial, along with the associated computer code, will enable
researchers from a broad range of fields to easily solve problems
related to high numerical aperture focusing.

In the rest of this paper, we introduce the mathematical basis
of our method for calculating the focused field in the vicinity of
a stratified medium that is adapted from that previously pro-
posed by van de Nes et al.7 We begin with the Debye–Wolf
integral before considering the matrix formalism for treating
the propagation of plane waves within a stratified medium. We
then show how these two formalisms can be combined before
considering the numerical implementation of the resulting
formalism. We illustrate the use of the model through three
examples: image formation in OCT, the focusing of cylindrical
vector beams through a dielectric interface, and a simulation of
aberrations typically experienced in confocal microscopy. We
note that the stratified media focusing code, along with code
to generate the results presented in this paper, is freely available
for download.16

2 Mathematical Foundation
Throughout this paper, we represent the electric field vector
at position r, as a time-harmonic quantity, EðrÞ, such that the
time-dependent field is given as

EQ-TARGET;temp:intralink-;e001;63;344Ẽðr; tÞ ¼ RfEðrÞ expð−iωtÞg; (1)

where ω is the angular frequency of time-harmonic oscillation
and R refers to the real part. We shall also use the convention
whereby a three-dimensional (3-D) vector, for example,
a ¼ ða1; a2; a3Þ can be written as a ¼ ða⊥; a3Þ, where
a⊥ ¼ ða1; a2Þ. This allows, for example, for the transverse
and axial components in Cartesian space to be conveniently
expressed independently. We shall denote unit vectors with a
hat, i.e., â, and where unit vectors are plotted (such as in
Fig. 1), it is understood that no attention is paid to scale.

2.1 Debye–Wolf Integral

The field at position ðr⊥; zÞ, in the vicinity of the focus of a lens
of arbitrary numerical aperture (NA) and focal length f, which
satisfies the sine condition, can be found by evaluating the
Debye–Wolf integral1–3 as
EQ-TARGET;temp:intralink-;e002;63;139

Eðr⊥; zÞ ¼ −
in0k0f
2π

ZZ
js⊥j<NA∕n0

εðs⊥Þ exp½in0k0ðs⊥ · r⊥

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

q
zÞ� d2s⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − js⊥j2
p : (2)

The axial position [i.e., z in Eq. (2) and Fig. 1] of the point of
observation is measured from the location of the nominal focus.
The lateral position of the point of observation [i.e., r⊥ in Eq. (2)
and Fig. 1] is measured from the optical axis. The point of
observation is assumed to be located within a homogeneous
region of refractive index n0. As shown in Fig. 1, upon multi-
plication by −f, the 2-D vector s⊥ uniquely defines the position
within the aperture from where a typical ray, assumed to propa-
gate parallel to the optical axis, originates before being refracted
by the lens. After refraction, the ray propagates parallel to

ðs⊥;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

p
Þ. The field on a Gaussian reference sphere

located in the exit pupil of the configuration shown in Fig. 1
is denoted as εðs⊥Þ. The Gaussian reference sphere is shown
in Fig. 1 and we note explicitly that εðs⊥Þ corresponds to the
field at the location on the reference sphere intersected by

a line parallel to ðs⊥;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

p
Þ and intersecting the nominal

focus. It is important to note that as the aperture is located in
the back focal plane of the lens, the exit pupil appears at infinity
as viewed from the space containing the focal region. It can be
shown17 that this means that εðs⊥Þ can, in fact, be found using
geometrical optics.

The first task in evaluating Eq. (2) is thus to find, using geo-
metrical optics, εðs⊥Þ for an arbitrary field in the back focal
plane, which we denote by εfpð−fs⊥Þ, where the superscript
εfp stands for the focal plane. It is assumed that εfpð−fs⊥Þ
has no axial component. We consider a ray propagating in

the sample space, parallel to unit vector ðs⊥;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

p
Þ. We

define θ as the angle that this ray makes with the optical
axis, as shown in Fig. 1(a). This ray propagates in a particular
meridional plane that makes an angle ϕ to the x axis in the
sample space as shown in Fig. 1(c). Suppose εfpð−fs⊥Þ ¼
εfpx ð−fs⊥Þîþ εfpy ð−fs⊥Þĵ, where î and ĵ are the unit vectors in
the x- and y-directions, respectively. The generalized Jones
matrix formalism18 provides a systematic way to find εðs⊥Þ
from εfpð−fs⊥Þ. We start by defining a coordinate system trans-
formation matrix R, which transforms from a global Cartesian
coordinate system to one where the x and y axes have been
rotated by an angle ϕ around the z axis. We also define
a lens rotation matrix L that rotates a vector by an angle of θ
about the y axis of the coordinate system. These matrix trans-
formations are defined as18

EQ-TARGET;temp:intralink-;e003;326;290

R ¼
2
4

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

3
5 L ¼

2
4

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

3
5:

(3)

It is then straightforward to show that

EQ-TARGET;temp:intralink-;e004;326;199

R−1ðϕþ πÞLð−θÞRðϕþ πÞ

2
64
0

0

1

3
75 ¼

2
64
cos ϕ sin θ

sin ϕ sin θ

cos θ

3
75

¼
�

s⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

p
�
; (4)

and furthermore that18
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EQ-TARGET;temp:intralink-;e005;63;277

εðs⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
cos θ

p
R−1ðϕþ πÞLð−θÞRðϕþ πÞ

2
664
εfpx ð−fs⊥Þ
εfpy ð−fs⊥Þ

0

3
775

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
cos θ

p
2
664
1þ cos θ þ cos 2ϕðcos θ − 1Þ sin 2ϕ ðcos θ − 1Þ

sin 2ϕðcos θ − 1Þ 1þ cos θ − cos 2ϕðcos θ − 1Þ
−2 cos ϕ sin θ −2 sin ϕ sin θ

3
775
� εfpx ð−fs⊥Þ
εfpy ð−fs⊥Þ

�
: (5)

We emphasize that when we write an equation involving one or
more of ϕ, θ, and s⊥, it is implied that the values θ and ϕ are
determined by s⊥ such that Eq. (4) is satisfied.

2.2 Stratified Medium Matrix Formalism for
Plane Waves

As will be explained in further detail in this section, the Debye–
Wolf integral expresses the electromagnetic focusing problem as
a superposition of plane waves. In this section, we thus consider
the interaction of plane waves with stratified media.

2.2.1 Preliminary considerations

We follow a stratified medium matrix formalism as proposed by
Azzam and Bashara.19 We consider a stratified medium as
shown in Fig. 2 with interfaces located at z ¼ h1; h2; : : : ; hN ,
therefore possessing up to N þ 1 different media having
refractive indices n0; n1; : : : ; nN , the first and last layers being
infinite half-spaces. We allow each refractive index potentially
to be complex valued as n ¼ n 0 þ in 0 0 and assume that both n 0

and n 0 0 are positive. We assume that the first medium is lossless
and so n0 is purely real valued. We decompose the electric field

(a) (c)

(b) (d)

Fig. 1 Diagrams illustrating the coordinate systems used in the evaluation of the final form of the Debye–
Wolf integral [Eq. (21)], upon which this paper is based. In particular: (a) illustrates the coordinate system
used within the lens aperture and the focal region, (b) is a cross-sectional diagram corresponding to
the shaded meridional plane in (a), (c) shows the coordinate system within the lens aperture, and
(d) is the coordinate system in the focal region.
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vector of waves propagating in the positive z-directions onto
transverse electric (TE) and transverse magnetic (TM) compo-
nents with unit vectors âþTE and âþTM, respectively. We follow
a similar convention for waves propagating in the negative
z-direction, except we interchange the superscript + with −.

2.2.2 Incident, reflected, and transmitted fields

We describe a plane wave, incident from the objective lens,
propagating in the first medium as

EQ-TARGET;temp:intralink-;e006;63;496Eþðs⊥;r⊥;zÞ¼ εðs⊥Þ
expðin0k0s⊥ · r⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− js⊥j2
p expðin0k0zÞ; (6)

EQ-TARGET;temp:intralink-;e007;63;456 ¼ ½aþTEðzÞâþTEþaþTMðzÞâþTM� expðin0k0s⊥ · r⊥Þ;
(7)

where we decompose εðs⊥Þ expðin0k0zÞ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥j2

p
into TE

and TM components denoted by aþTEðzÞâþTE and aþTMðzÞâþTM,
respectively. Following the convention of Azzam and Bashara,19

we define these vectors as

EQ-TARGET;temp:intralink-;e008;63;375

âþTE ¼ k̂× ðs⊥;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− js⊥j2

p
Þ âþTM ¼ âþTE × ðs⊥;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− js⊥j2

p
Þ

â−TE ¼ âþTE â−TM ¼ â−TE × ðs⊥;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− js⊥j2

p
Þ;
(8)

where k̂ is the unit vector parallel with the optical axis. Without
loss of generality, we henceforth assume that each plane wave
component is either TE or TM polarized, thus allowing us to
drop the TE and TM subscripts from Eq. (7). Consider such a
plane wave incident upon the stratified medium shown in Fig. 2.
The wave incident upon the first interface, at the first interface,
takes the form Eþðs⊥; r⊥; h−1 Þ ¼ aþðh−1 Þâþ expðin0k0s⊥ · r⊥Þ,
where we have added the superscript − to h1 to indicate that
this is the limiting value of the field as z approaches h1 from
the negative z-direction (see Fig. 2). Note that the z-dependence
of Eþðs⊥; r⊥; h−1 Þ is expressed entirely by the scalar aþðh−1 Þ.
Following the matrix formalism presented by Azzam and
Bashara,19 we start by defining E−ðs⊥; r⊥; h−1 Þ, Eþðs⊥; r⊥; hþ1 Þ,
and E−ðs⊥; r⊥; hþ1 Þ as shown in Fig. 2, meaning that we have
defined plane waves propagating in the positive and negative
z-directions, evaluated on both sides of the interface at z ¼ h1.
We can then define a matrix relationship between aþðh−1 Þ,
a−ðh−1 Þ, aþðhþ1 Þ, and a−ðhþ1 Þ as19

EQ-TARGET;temp:intralink-;e009;63;111

�
aþðh−1 Þ
a−ðh−1 Þ

�
¼ F01

�
aþðhþ1 Þ
a−ðhþ1 Þ

�
¼ 1

t01

�
1 r01
r01 1

��
aþðhþ1 Þ
a−ðhþ1 Þ

�
;

(9)

where F01 is implicitly defined and t01 and r01 are the Fresnel
transmission and reflection coefficients, respectively, for the
interface at z ¼ h1. Next, we consider relating the fields within
the second medium using a similar matrix formalism. To do this,
consider plane wave components at the beginning and
end of the second medium, i.e., Eþðs⊥; r⊥; hþ1 Þ, E−ðs⊥; r⊥; hþ1 Þ,
Eþðs⊥; r⊥; h−2 Þ, and E−ðs⊥; r⊥; h−2 Þ. We can then define a rela-
tionship between their plane wave amplitudes, aþðhþ1 Þ, a−ðhþ1 Þ,
aþðh−2 Þ, and a−ðh−2 Þ as19
EQ-TARGET;temp:intralink-;e010;326;502�
aþðhþ1 Þ
a−ðhþ1 Þ

�
¼ P1

�
aþðh−2 Þ
a−ðh−2 Þ

�

¼
�
expðiβ1Þ 0

0 expð−iβ1Þ

��
aþðh−2 Þ
a−ðh−2 Þ

�
; (10)

where β1 ¼ k0ðh2 − h1Þn1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jðn0∕n1Þs⊥j2

p
and P1 is implic-

itly defined. It is then possible to construct a matrix that relates
the fields at z ¼ h1 and z ¼ hN as

EQ-TARGET;temp:intralink-;e011;326;387

�
aþðh−1 Þ
a−ðh−1 Þ

�
¼ Sðh−1 ; hþNÞ

�
aþðhþNÞ
a−ðhþNÞ

�
; (11)

where Sðh−1 ; hþNÞ is obtained by successive application of
Eqs. (9) and (10) as
EQ-TARGET;temp:intralink-;e012;326;320

Sðh−1 ; hþNÞ ¼
2
4 s

ðh−
1
;hþN Þ

11 s
ðh−

1
;hþNÞ

12

s
ðh−

1
;hþN Þ

21 s
ðh−

1
;hþNÞ

22

3
5

¼ F01P1F12: : : PðN−2ÞFðN−2ÞðN−1ÞPðN−1ÞFðN−1ÞN:

(12)

We will assume in this work that a−ðhþNÞ ¼ 0, meaning that all
light reaches the stratified medium after transmission through
the objective lens, thus giving

EQ-TARGET;temp:intralink-;e013;326;195aþðhþNÞ ¼
1

s
ðh−

1
;hþN Þ

11

aþðh−1 Þ a−ðh−1 Þ ¼
s
ðh−

1
;hþN Þ

21

s
ðh−

1
;hþN Þ

11

aþðh−1 Þ:

(13)

The only thing remaining is to find the vectors â−0 and âþN ,
the polarization vectors in media 0 and N, respectively. This
is trivial in the TE case as they remain fixed in all media.
In the TM case, the transverse component of the wave propa-
gation vector in each medium (i.e., s⊥;0 and s⊥;N) is first calcu-
lated using the Snell’s law (see Sec. 2.2.5). The polarization

Fig. 2 The assumed structure of the stratified medium and associated notation as used in the evaluation
of the final form of the Debye–Wolf integral [Eq. (21)] and its constituent terms.
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vectors may then be found according to Eq. (8). The reflected
field at the first interface and transmitted field at the last
interface can thus be found as a−ðh−1 Þâ−0 expðin0k0s⊥ · r⊥Þ
and aþðhþNÞâþN expðin0k0s⊥ · r⊥Þ, respectively. Note that the
dependence upon z is entirely embedded within the matrix for-
malism. In general, this step must be performed for the TE and
TM cases independently and the results superimposed to obtain
the total field. We have thus shown how to calculate the reflected
and transmitted fields at the first and last interfaces, respectively,
for an arbitrary stratified medium and an incident plane wave.

2.2.3 Internal fields at internal interfaces

Suppose it is desired to know the field at an interface in the
interior of the stratified medium, say, for example, the field
at h−q , for some positive integer q. As in Sec. 2.2.2, we can
construct matrix relationships relating the field components at
h−q to the incident, reflected, and transmitted fields as

EQ-TARGET;temp:intralink-;e014;63;556

�
aþðh−q Þ
a−ðh−q Þ

�
¼ Sðh−q ; hþNÞ

�
aþðhþNÞ
a−ðhþNÞ

�
; (14)

EQ-TARGET;temp:intralink-;e015;63;512

�
aþðh−1 Þ
a−ðh−1 Þ

�
¼ Sðh−1 ; h−q Þ

�
aþðh−q Þ
a−ðh−q Þ

�
; (15)

where
EQ-TARGET;temp:intralink-;e016;63;462

Sðh−q ; hþNÞ
¼ Fðq−1ÞqPqFqðqþ1Þ: : : PN−2FðN−2ÞðN−1ÞPN−1FðN−1ÞN

(16)

and

EQ-TARGET;temp:intralink-;e017;63;388Sðh−1 ; h−q Þ ¼ F01P1F12: : : Pðq−2ÞFðq−2Þðq−1ÞPðq−1Þ: (17)

This means that Eq. (14) can be used in conjunction with
Eq. (13) to yield

EQ-TARGET;temp:intralink-;e018;63;339aþðh−q Þ ¼
s
ðh−q ;hþN Þ
11

s
ðh−

1
;hþN Þ

11

aþðh−1 Þ a−ðh−q Þ ¼
s
ðh−q ;hþNÞ
21

s
ðh−

1
;hþNÞ

11

aþðh−1 Þ; (18)

or Eq. (15) can be used in conjunction with Eq. (13) to yield

EQ-TARGET;temp:intralink-;e019;63;275

�
aþðh−q Þ
a−ðh−q Þ

�
¼ S−1ðh−1 ; h−q Þ

2
4 1

s
ðh−
1
;hþ
N
Þ

21

s
ðh−
1
;hþ
N
Þ

11

3
5aþðh−1 Þ: (19)

2.2.4 Calculating fields between interfaces

There are many instances where it is necessary to evaluate the
field away from an interface, either internal or external. One
approach to this would be to first calculate the field due to
the plane wave in question at an interface adjacent to the
plane of constant z in which the field must be evaluated. The
field at the desired location can then be propagated from the
adjacent interface using the plane wave’s propagation vector
obtained using Snell’s law. There is a certain numerical effi-
ciency to this approach, however, it requires keeping track of
propagation vectors and plane wave phase terms. An alternative
approach that is consistent with the matrix formalism discussed

above is to introduce a “phantom” interface, which is an
interface between two layers with identical refractive indices.
In particular, suppose we wish to evaluate the field at some loca-
tion z ¼ hobs that lies in the layer having refractive index nq. The
field at z ¼ hobs can be found by following a similar procedure
to that outlined in Sec. 2.2.3, except that we introduce an
additional interface at hobs. Then, we evaluate Sðh−obs; hþNÞ
and Sðh−1 ; h−obsÞ instead of Sðh−q ; hþNÞ and Sðh−1 ; h−q Þ, respec-
tively, and apply either Eq. (18) or Eq. (19) to evaluate
aþðh−obsÞ and a−ðh−obsÞ.

2.2.5 Conducting media and total internal reflection

In the case where media have a complex-valued refractive index,
or when total internal reflection occurs, the wave vector of a
plane wave becomes complex valued. This does not pose any
difficulties as Snell’s law and the Fresnel reflection and trans-
mission equations remain formally valid (see, for example19–21).
Snell’s law can be generalized in the notation of this work by
defining s⊥;i as the transverse component of a plane wave’s
propagation vector in the i’th medium. The propagation vector

in this medium will thus be given by ðs⊥;i;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js⊥;ij2

q
Þ. We can

then write Snell’s law as

EQ-TARGET;temp:intralink-;e020;326;494n0s⊥ ¼ nis⊥;i; (20)

where it is assumed that, as in Sec. 2.2.2, s⊥ is the transverse
component of the incident plane wave in a homogeneous
medium of refractive index n0. The axial component of
the plane wave in the i’th medium may then be found asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − js⊥;ij2
q

.

2.3 Stratified Medium Matrix Formalism for
Focused Illumination

We have shown in Sec. 2.1 how focusing of electromagnetic
waves can be described as a superposition of plane waves
using the Debye–Wolf integral. We have also shown in Sec. 2.2
how the field at any location within or outside a stratified
medium can be evaluated for an arbitrary incident plane wave.
Thus, by virtue of the linearity of the system, the forward
or back propagating field anywhere within, or outside, the
stratified medium may be found according to
EQ-TARGET;temp:intralink-;e021;326;271

E�ðr⊥; zÞ ¼ −
in0k0f
2π

ZZ
js⊥j<NA∕n0

½a�TEðzÞâ�TE þ a�TMðzÞâ�TM�

× expðin0k0s⊥ · r⊥Þd2s⊥; (21)

where a�TEðzÞ and a�TMðzÞ are evaluated using Eqs. (13), (18),
or (19) as appropriate, depending on the value of z. We find
â�TE and â�TM using Eq. (8) combined with knowledge of s⊥
in the appropriate medium as obtained from Eq. (20).

2.4 Numerical Implementation

Equation (21) must be evaluated numerically. This is done by
changing the variables of integration from s⊥ to ðθ;ϕÞ as defined
by Eq. (4). Evaluation of the Jacobian of this transformation
results in d2s⊥ ¼ sinθcosθdθdϕ. The resulting integral is then
evaluated using Gauss–Legendre numerical integration. The
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Gauss–Legendre technique allows for a definite integral to be
evaluated as22

EQ-TARGET;temp:intralink-;e022;63;730

Z
b

a
fðxÞdx ≈

XN
i¼1

wifðxiÞ; (22)

where xi are the zeros of the N’th-order Legendre polynomial,
wi are the associated weights, and N is the number of points
used to evaluate the integration. A detailed explanation regard-
ing the calculation of both the xi and wi is given by Davis et al.

22

The 2-D integration of Eq. (21) is evaluated by integrating into θ
and ϕ separately.

3 Examples

3.1 A-Scan Formation in Optical Coherence
Tomography

The inverse scattering problem for OCT has been addressed pre-
viously in a 1-D setting using the theory of stratified media for
plane waves.23 Although we do not consider the inverse scatter-
ing problem here, rather the forward problem, we demonstrate
how selected problems with practical significance can be
addressed using the model developed in this paper. We consider
two stratified media as shown in Fig. 3. The stratified medium in
Fig. 3(a) is used to demonstrate how the so-called confocal func-
tion of an OCT system can be calculated and that of Fig. 3(b)
shows how dispersion of water changes the axial resolution of
an OCT system. The simulation presented here is idealized and
valid for both spectral domain and swept source OCT systems in
the sense that a range of wavenumbers spanning λ ¼ 1180 nm
to λ ¼ 1420 nm is uniformly sampled. We consider a fiber-
based system with an objective having NA ¼ 0.097. The result-
ing spot size of the beam is determined by the combination
of collimator, objective lens and mode field diameter of the
single-mode fiber. This is integrated into our model by specify-
ing the functions Efp

x ð−fs⊥Þ and Efp
y ð−fs⊥Þ as

EQ-TARGET;temp:intralink-;e023;63;345εfpx ð−fs⊥Þ ¼ exp½−ðFjs⊥j∕NAÞ2� εfpy ð−fs⊥Þ ¼ 0; (23)

where F ¼ 1.556 is derived to be consistent with a previously
characterized OCT system.24 The A-scan formation model is
based upon a recently published full-wave model of OCT
image formation.24 In brief, for both stratified media in Fig. 3,
the incident beam that would be observed in the absence of
a stratified medium is calculated just in front of the first refrac-
tive index discontinuity yielding Eþðr⊥; 0−Þ. The field scattered
back by the stratified medium is also calculated yielding

E−ðr⊥; 0−Þ. The modal coefficient describing the scattered
field coupled back in to the fiber is given as25

EQ-TARGET;temp:intralink-;e024;326;730αsc ¼
ZZ

½Eþðr⊥; 0−Þ · î�½E−ðr⊥; 0−Þ · î�d2r⊥; (24)

a similar quantity, αref representing the field coupled back into
the fiber from the reference arm is evaluated by repeating
the above calculation for a single refractive index interface
between air and a nonphysical material having refractive index
104. The OCT A-scan is then evaluated as
EQ-TARGET;temp:intralink-;e025;326;631

Iðz − zrefÞ ¼
Z

∞

0

SðkÞjαscðkÞ þ αrefðkÞj2

× exp½ik2ðz − zrefÞ�dð1∕λÞ; (25)

where SðkÞ represents the effective shape of the OCT system’s
spectrum. As already mentioned, full details of this model are
available in a previous publication.24

The first stratified medium considered shows how the con-
focal function of an OCT system can be calculated using a single
A-scan. A refractive index distribution was modeled as shown in
Fig. 3(a), where slabs, 100-nm wide, of material with refractive
index of n1 ¼ 1.01 are spaced every 25 μm in air. The narrow
slabs act as weak reflectors that do not significantly perturb the
illumination beam. The magnitude of the A-scan is plotted in
Fig. 4(a), which shows a peak (plotted in blue) for each refrac-
tive index discontinuity in the stratified medium. These peaks lie
on an envelope, plotted in red, which is evaluated as

EQ-TARGET;temp:intralink-;e026;326;428IconfðzÞ ¼
ZZ

½Eþ
fsðr⊥; zÞ · î�2d2r⊥; (26)

where the subscript fs denotes that Eþ
fsðr⊥; zÞ is evaluated in

free space. This example does not produce significant multiple
reflections due to the low refractive index contrast between the
reflecting slabs ðn1 ¼ 1.01Þ and the background refractive
index ðn0 ¼ 1Þ.

The second example of A-scan simulation involves a 500-μm
layer of water sandwiched between layers of glass as shown in
Fig. 3(b). For this example, we assume that the glass layers are
infinitely thick. The refractive index of the glass was assumed to
be 1.525 at all wavelengths within the spectrum of the OCT sys-
tem. The refractive index of water was found by interpolating
the data published by Segelstein.26 An A-scan is plotted in
Fig. 4(b) on a logarithmic vertical axis. The horizontal axis
is scaled by the group refractive index of water obtained by

(a) (b)

Fig. 3 Two stratified media used for calculating example A-scans.
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numerically evaluating ng ¼ np − λdnp∕dλ at the central wave-
length of the OCT system’s spectrum, where np is the phase
refractive index. The A-scan of Fig. 4(b) shows three peaks
separated by a physical distance of 500 μm. The peak at
z ¼ 0 corresponds to the reflection from the interface between
glass and water at z ¼ 0 in Fig. 3(b). Similarly, the peak at
z ¼ 500 μm is from the interface between water and glass at
z ¼ 500 μm in Fig. 3(b). The third peak is due to light that
has been multiply reflected and has undergone two complete
round-trips of the water layer. The impact of dispersion due
to water on the axial response of an OCT system can be studied
by aligning each of these three peaks upon the same axial loca-
tion as is shown in Fig. 4(c). These plots demonstrate that the
peak corresponding to the first reflection does not exhibit
dispersion as the A-scan is symmetric about z ¼ 0. The two sub-
sequent peaks that correspond to light propagating greater dis-
tances in water show how dispersion broadens axial response of
an OCT system.

3.2 Cylindrical Vector Beams Focusing Through
a Dielectric Interface

There are many examples in the literature of where the properties
of unconventional beams focused through dielectric interfaces are
studied (e.g., Refs. 4,7, and 27–29). In these, and many other
related papers, much effort is devoted to evaluating Eq. (2) par-
tially analytically, for a nonstandard form of εðs⊥Þ such as may
result when focusing, for example, a Bessel–Gauss beam. In such
papers, εðs⊥Þ is evaluated for a specific beam in the aperture of
the focusing lens, εfpð−fs⊥Þ, using the generalized Jones matrix
formalism18 outlined in Sec. 2.1. In the absence of a stratified
medium, the resulting value of εðs⊥Þ is substituted into
Eq. (2) before changing the variables of integration from s⊥
to ðθ;ϕÞ. The integration over ϕ is performed analytically
using the identities ∫ 2π

0 ½sin j cos�ðnϕÞ exp½ix cosðϕ − φÞ�dϕ ¼
2πðinÞJnðxÞ½sin j cos�ðnφÞ for some integer n, where Jn is the
n’th order Bessel function of the first kind. This results in an
expression for the complex amplitude of the electric field in
the vicinity of the focus in terms of the so-called “I”-functions,
which are functions of ðr⊥; zÞ that are evaluated by performing
a numerical integration for each unique combination of jr⊥j and
z. The significance of this procedure is that when a new beam
type is to be modeled, it is generally necessary to derive the
equations that determine the field from scratch. This process
is made more difficult when a stratified medium is considered.

In this example, we demonstrate first how a previously pub-
lished result can be obtained, using the formalism presented in

this paper, without the need to perform any analytic derivations.
In particular, we consider the focusing of a radially polarized
Bessel–Gauss beam originally considered by Biss and Brown27

who calculated how a beam of the form

EQ-TARGET;temp:intralink-;e027;326;534εfpðfs⊥Þ ¼ E0

�
ŝ⊥
0

�
exp

�
−

js⊥j2
maxðjs⊥j2Þ

�
J1

�
2

js⊥j
maxðjs⊥jÞ

�
;

(27)

incident upon the aperture of a focusing lens, interacts with an
air interface located at the focus. The lens was assumed to have
a numerical aperture of 1.4 when focused into a medium of
refractive index n0 ¼ 1.518.

We consider three different scenarios: focusing into a homo-
geneous medium with refractive index n0, through an interface
at the focus between refractive indices n0 and n1 ¼ 1 and,
finally, through a λ∕4 wide layer of refractive index n1
embedded in a refractive index n0. Scenario 1, depicted in
Figs. 5(a) and 5(d), shows the profile of the beam in a homo-
geneous medium. The second scenario [Figs. 5(b) and 5(e)]
replicates what was published by van de Nes et al.30 The final
result [Figs. 5(c) and 5(f)] that we show as an example is where,
instead of having an interface between n0 and n1, there is a λ∕4
wide layer of refractive index n1. The subwavelength width of
the layer allows for the evanescent waves to couple into the
n0 region causing the field after the final interface to more
closely resemble that of the homogeneous case. This example
is intended to demonstrate how complex focusing problems
can be studied using this formalism in a much simpler way
than was previously possible.

3.3 Simulation of Aberrations Arising in Confocal
Microscopy

For the final demonstration of how this formalism can be used,
we consider an example from the literature of where a similar
model has been applied.12 In particular, we study the illumina-
tion point spread function (PSF) that arises when performing
confocal microscopy with a dry objective, with a sample
embedded in water, covered by a glass cover slip as shown in
Fig. 6. This particular example, considered previously by Török
and Varga,12 employs a dry objective of numerical aperture
0.9, a 170-μm cover slip of refractive index n1 ¼ 1.54 and
a probe fluorescent molecule situated in water 50 μm below
the glass/water interface. The fluorescent molecule is merely
a way of depicting the location at which we evaluate the focused
field, we do not consider the process of fluorescence.

-10 0 10
0

0.5

1

0 0.2 0.4
0

0.5

1

0 0.5 1

10 -4

10 -2

10 0(a) (b) (c)

Fig. 4 (a) The magnitude of an A-scan obtained from the refractive index distribution in Fig. 3(a) (blue)
and the directly evaluated confocal function (red). (b) Themagnitude of an A-scan, on a logarithmic scale,
for the refractive index distribution shown in Fig. 3(b). (c) The three peaks in Fig. 3(b) aligned and
normalized to the same peak value, demonstrating the effect of dispersion in water.
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When focusing from air through a glass cover slip, spherical
aberration will occur if aberration compensation is not
implemented. Although an analytic approach was derived by
Török and Varga,12 we will use the stratified medium matrix
formalism employed in this paper for this purpose. Suppose that
we have an arbitrarily complex stratified medium that wewish to
compensate for. We must calculate the phase aberration suffered
by each plane wave components, a�TEðzÞ and a�TMðzÞ, appearing
in Eq. (21), due to the stratified medium. This phase aberration
can be found, as a function of s⊥, using the matrix Sðh−1 ; hþNÞ that
describes the entire stratified medium in Eq. (12). In particular,
we know the ratio between the amplitude of the plane wave
incident upon the stratified medium ½aþðh−1 Þ� and that of the
transmitted wave ½aþðhþNÞ� is given by Eq. (13) as

EQ-TARGET;temp:intralink-;e028;63;101

aþðhþNÞ
aþðh−1 Þ

¼ 1

s
ðh−

1
;hþN Þ

11

: (28)

We then use the matrix formalism again to calculate the ratio of
amplitudes for the same incident plane wave when all refractive
indices are set to that of air, i.e., the aberration free case. We
denote this ratio 1∕sfs11. We thus define the aberration caused
by the stratified medium by expðiWTÞ as

EQ-TARGET;temp:intralink-;e029;326;414WT ¼ arg½sfs11∕s
ðh−

1
;hþN Þ

11 �; (29)

where arg represents the argument of a complex number.

Although sfs11∕s
ðh−

1
;hþN Þ

11 is often real, it may be a complex value
if evanescent waves are produced, which cannot be compen-
sated for.

We used this approach to calculate the rotationally symmetric
aberration produced by the glass cover slip as plotted in
Fig. 7(b). Another aspect of the model presented in this
paper is the ability to model aberration functions with ease.
In particular, it is straightforward to incorporate Zernike
fringe polynomials into the model. For this work, we consider
only the rotationally symmetric Zernike fringe polynomials
defined as

EQ-TARGET;temp:intralink-;e030;326;242Z1 ¼ 1; (30)

EQ-TARGET;temp:intralink-;e031;326;212Z4 ¼ −1þ 2ρ2; (31)

EQ-TARGET;temp:intralink-;e032;326;187Z9 ¼ 1 − 6ρ2 þ 6ρ4; (32)

EQ-TARGET;temp:intralink-;e033;326;161Z16 ¼ −1þ 12ρ2 − 30ρ4 þ 20ρ6; (33)

EQ-TARGET;temp:intralink-;e034;326;135Z25 ¼ 1 − 20ρ2 þ 90ρ4 − 140ρ6 þ 70ρ8; (34)

EQ-TARGET;temp:intralink-;e035;326;110Z36 ¼ −1þ 30ρ2 − 210ρ4 þ 560ρ6 − 630ρ8 þ 252ρ10;

(35)

Fig. 5 (a) and (d) Intensity distributions for the Bessel–Gauss beam described in Eq. (27) focused into
free space with refractive index n0 ¼ 1.518, (b) and (e) through an interface between media with refrac-
tive indices n0 and n1 ¼ 1, and (c) and (f) through a λ∕4 wide air gap of refractive index n1 surrounded by
a medium of refractive index n0. Subfigures (a)–(c) show jEz j2 and (d)–(e) show jEx j2 þ jEy j2. Plots have
a common colormap, where 0 dB corresponds to the peak value across all six plots.

(a) (b)

Fig. 6 Schematic diagrams of the confocal microscopy aberration
example (a) and (b) are identical except for relative shifts of the strati-
fied medium and probe fluorescent molecule. Light is focused from air
into a glass cover slip of thickness 170 μm and then finally into water.
A probe fluorescent molecule, located 50 μm from the glass/water
interface, is depicted in green, where the intensity of the incident
light is recorded.
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where ρ ¼ js⊥j∕maxðjs⊥jÞ. As these polynomials are orthogo-
nal on the unit circle, we can decompose the aberrationWT onto
these functions using numerical integration. The result of this is
shown in Fig. 7(a), which shows the contribution due to
each individual polynomial. However, since we consider only
the first six rotationally symmetric polynomials, aberration
compensation described by a sum of these polynomials cannot
match, exactly, the actual aberration. This error is plotted in
Fig. 7(c) for the case where between three and six polynomials
are considered.

Now that the aberration introduced by the glass cover slip
has been calculated, it can be compensated for by applying
a phase modulation to the beam incident upon the aperture of
the focusing lens as

EQ-TARGET;temp:intralink-;e036;63;142εfpx ð−fs⊥Þ ¼ expð−iΨÞ εfpy ð−fs⊥Þ ¼ 0; (36)

where, in this example, Ψ will be evaluated in two
different ways. One way is by directly setting Ψ ¼ WT . The
alternative way is by setting Ψ ¼ P

N
i¼1 ci2Zi2 , for values of

N between 3 and 6, where ci2 is the weight associated with

polynomial Zi2 evaluated using numerical integration as
ci2 ¼ ∫ 1

0Zi2ðρÞWTðρÞρdρ∕∫ 1
0Zi2ðρÞZi2ðρÞρdρ.

The unaberrated illumination PSF, evaluated as if the probe
fluorescent molecule was in air, is plotted in Fig. 8(f). All other
PSFs in Fig. 8 are normalized by the peak of this PSF. The PSFs
in Figs. 8(a)–8(e) are calculated with the combination of
glass cover slip and fluorescent molecule embedded in water.
Aberration compensation is applied using an increasing number
of Zernike fringe polynomials beginning with three in Fig. 8(a)
(i.e., Ψ ¼ P

3
i¼1 ci2Zi2 ) and going up to six in Fig. 8(d) (i.e.,

Ψ ¼ P
6
i¼1 ci2Zi2 ). Significant spherical aberration is present

in each of cases (a), (c), and (d) due to the fluorescent molecule
being located in water rather than air. It is interesting, however,
that case (b), where four Zernike fringe polynomials are consid-
ered, is substantially less aberrated. Analysis shows that the
combination of aberration due to compensation, combined
with propagation through the cover slip and water, results in
less overall aberration in the water. Although not considered
in this example, we emphasize that noncircularly symmetric
aberration polynomials can be just as easily treated within
this model.

0 0.5 1
0

100

200

300

400

500

600
(b)

0 0.5 1

-400

-200

0

200

(a)

0 0.5 1
-20

-10

0

10

20

30
(c)

Fig. 7 (a) Contributions of each Zernike fringe polynomial to the aberration due to the glass cover slip,
(b) the total phase aberration, WT , due to the glass cover slip, and (c) the phase error that results when
between three and six Zernike fringe polynomials are used to represent WT .

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8 (a–e) The intensity of the focused illumination at the location of the fluorescent molecule as
a function of shift between the glass/water interface for a variety of aberration compensations and
(f) for focusing directly into air without aberration. Intensities are normalized by the peak value in air.
Plots (a), (b), (c), and (d) correspond to compensation by three, four, five, and six Zernike fringe poly-
nomials, respectively. Plot (e) corresponds to compensation by the directly evaluated phase aberration.
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4 Discussion and Conclusions
The model presented in this paper will be useful across many
fields of optics, particularly in optical imaging. The strength
of the model is that its components that deal with the beam
type, stratified medium and focusing are decoupled from one
another. This has some important ramifications. One is that
this means that incident beams and stratified media of arbitrary
complexity can be modeled just as simply as a free-space focus-
ing problem. Another consequence is that the implementation in
software closely mirrors the theory itself, making the model
amenable to use and modification by others. This approach is
quite deliberate as it is intended that this model be available
for use by researchers in the field, freeing them from the
need to implement their own bespoke focusing code when
a new, slightly different, application arises.

Examples including OCT, cylindrical vector beams, and high
numerical aperture focusing have been considered. Each of
these examples is based upon a result that has already been
published, plus some new results. These examples have been
chosen to demonstrate the breadth of applications, which this
model is able to address.

There are several extensions that we intend to make to this
model. Perhaps the most straightforward is the calculation of the
magnetic fields, which is trivially evaluated as the magnetic field
associated with a plane wave can be directly evaluated from the
electric field amplitude and polarization, propagation vector and
the refractive index. Consideration of a tilted stratified medium
is also possible and of practical significance. Modeling of aniso-
tropic layers within the stratified medium would also be of high
practical importance. There are many improvements that can be
made to the computational efficiency of the code. Little has been
done to date in this regard as the emphasis of the code was on
readability. However, there is scope for making the existing code
more efficient. Furthermore, as the code is written in MATLAB
it should be straightforward to execute it on a graphics process-
ing unit using MATLAB’s parallel computing toolbox.
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