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Abstract. Recent studies have used deep residual convolutional neural networks (CNNs) for JPEG compres-
sion artifact reduction. This study proposes a scalable CNN called S-Net. Our approach effectively adjusts
the network scale dynamically in a multitask system for real-time operation with little performance loss. It offers
a simple and direct technique to evaluate the performance gains obtained with increasing network depth, and
it is helpful for removing redundant network layers to maximize the network efficiency. We implement our archi-
tecture using the Keras framework with the TensorFlow backend on an NVIDIA K80 GPU server. We train our
models on the DIV2K dataset and evaluate their performance on public benchmark datasets. To validate the
generality and universality of the proposed method, we created and utilized a new dataset, called WIN143, for
over-processed images evaluation. Experimental results indicate that our proposed approach outperforms other
CNN-based methods and achieves state-of-the-art performance. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JEI.27.4.043037]

Keywords: compression artifact reduction; encoder–decoder model; scalable convolutional neural network; depth evaluation.

Paper 180359 received Apr. 23, 2018; accepted for publication Jul. 5, 2018; published online Aug. 2, 2018.

1 Introduction
Image restoration for reducing lossy compression artifacts
has been well studied, especially for the JPEG compression
standard.1 JPEG is a popular lossy image compression stan-
dard because it can achieve high compression ratio with only
minimal reduction in visual quality. The JPEG compression
standard divides an input image into 8 × 8 blocks and per-
forms discrete cosine transform (DCT) on each block sepa-
rately. The 64 DCT coefficients thus obtained are quantized
based on standard quantization tables that are adjusted with
different quality factors. Losses such as blackness, ringing
artifacts, and blurring artifacts are mainly introduced by
quantizing the DCT coefficients.

Recently, deep-neural-network-based approaches2,3 have
been used to significantly improved the JPEG compression
artifact reduction performance in terms of peak signal-to-
noise ratio (PSNR). However, these methods have several
limitations. First, most existing methods2,4,5 focus on the
construction performance of grayscale images and try to
restore each channel separately when applied to color
images; however, this will introduce palpable chromatic
aberrations in the reconstructed image (Fig. 1). Second,
many methods3,4 based on the ResNet6 architecture try to
optimize the performance by increasing the number of
residual blocks in networks. Although this is an effective
optimization method, determining the exact depth for
maximizing the network performance without traversing
all depths remains challenging. Third, as found for super-

resolution convolutional neural network (SRCNN),7 CNN-
based image restoration algorithms can be used for encoding,
transforming, and decoding. Most existing CNN-based
algorithms use only one decoder at the end of the network;
alternatively, they use a stack of layers at the tail of the net-
work as a decoder. This is called a columnar architecture;
however, we believe that a columnar architecture contains
too many layers between the input layer and the loss layer.
Increased network depth could make it much harder for train-
ing layers around the bottom, although residual connections8

or some excellent optimizers9 could mitigate this problem.
Therefore, if we use only some layers of the transforming
part, the results could degrade considerably.

To solve these problems, first, we use color image pairs to
train the network to restore color images directly. Second, we
present a symmetric encoder–decoder model to finish the
encoding and decoding tasks independently. Third, based
on the greedy theory, we propose a scalable CNN called
S-Net to maximize the performance of each convolutional
layer in the network. We also prove that it is helpful to evalu-
ate the influence of depth on the network performance.

We trained our models on the newly provided DIV2K10

dataset and evaluated them on public benchmark datasets
(LIVE111 and BSDS50012). The proposed architecture
achieved state-of-the-art performance on all datasets in
terms of PSNR and structural similarity index (SSIM).

2 Related Work
Deep convolutional networks (DCNs) are trained for image
restoration tasks by converting an input image into a feature
space and building nonlinear mappings between the features*Address all correspondence to Xiang Tian, E-mail: tianx@mail.bme.zju.edu.cn
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of the input and the target images. To exploit error back-
propagation, groups of convolutional filters that construct
DCNs are learned during the training procedure, so that
they can be used for convoluting an input image for a specific
image restoration task. SRCNN is the first DCN-based
image restoration method that has been proposed for image
super-resolution (SR). It uses bicubic interpolation to
up-sample the low-resolution image and train a three-layer
CNN to restore the up-sampled image. Based on SRCNN,
ARCNN,2,13 a four-layer CNN, was proposed to reduce
JPEG compression artifacts. However, because ARCNN
does not use a pooling layer and a fully connected layer,
the result deteriorated with increasing network depth, and
it was difficult to guarantee convergence unless the weights
of the convolutional layers were initialized carefully.

Furthermore, because DCNs show promise for high-level
computer vision tasks,14,15 many DCN-based algorithms for
image restoration tasks tried to improve the network con-
struction based on high-level computer vision algorithms.
Ledig et al.16 used a generative adversarial network
(GAN)17 to reconstruct high-resolution images by the bicu-
bic interpolation of down-sampled low-resolution images.
Li et al.18 used GAN to solve the image dehazing problem.
Other studies applied inception modules15,19 to image SR.
Shi et al.20 introduced a dilated convolutional layer21 and
improved the inception module in an SR network.

For image restoration tasks, very deep CNNs can only
operate well with residual connections and effective optimiz-
ers. Svoboda et al.3 used an eight-layer CNN and introduced
a skip connection to learn Sobel features between a JPEG
compressed image and the original image. Because JPEG
compression artifacts are introduced by quantizing DCT
coefficients, DDCN4 uses the DCT domain and trains a net-
work with both the image and the DCT domains to learn
the difference between the JPEG compressed image and the
original image. DDCN uses 30 residual blocks, with 10 each
used for the pixel-domain branch, DCT-domain branch, and
aggregation. Because SR has shown success with DCNs,
CAS-CNN5 imported stepped convolutional layers and
deconvolutional layers (also called up-sample layers) and
transformed the compression artifact reduction problem
into an SR problem. Mao et al.22 proposed RED-Net for
image restoration. RED-Net uses a series of encoder–
decoder pairs with symmetric skip connections to restore

a noisy image. Dong et al.23 improved RED-Net by adding
a batch-normalization layer24 and a rectified linear unit
(ReLU)25 layer to the output of each convolutional layer
and deconvolutional layer26,27 to learn the intrinsic represen-
tations and successfully solved the image restoration and
image classification problems using the same pre-trained net-
works. However, these two approaches based on a convolu-
tional autoencoder did not provide an explicit presentation
of the relationship between the whole network and each
encoder–decoder pair in it. By contrast, symmetrically
connected convolutional layer pairs were more likely to be
deformed residual structures rather than encoder–decoder
pairs. Lim et al.8 proposed a very deep network with 32
residual blocks for single-scale SR (EDSR) and an even
deeper network with 80 residual blocks for multiscale
SR (MDSR).

In general, DCN-based methods for image restoration
tasks like compression artifact reduction (AR) and SR
focus on improving performance by increasing the number
of parameters in the network; however, large-scale networks
always incur higher computational costs and longer training
procedures that may sometimes be unaffordable. Higher
costs are also incurred to evaluate whether the best perfor-
mance is achieved by the network. This study focuses on
maximizing the network performance using fewer parame-
ters and minimizing the training procedure time.

3 Proposed Method
This section describes the proposed network architecture and
implementation. First, we propose a convolutional encoder–
decoder architecture to extract features from an input image
and recover the input image from the feature domain. Then,
we introduce the characterization of the greedy loss architec-
ture for building a scalable CNN. Finally, we discuss the
implementation of our proposed architecture.

3.1 Symmetric Convolutional Encoder–Decoder
Model

A traditional autoencoder constructed by a multilayer full-
connection network is a classical unsupervised machine
learning algorithm for dimension reduction and feature
extraction. Some SR reconstruction algorithms28,29 use an
autoencoder to learn the sparse representation of image

Fig. 1 Comparison of JPEG compression (QF40) artifact reduction results of existing and proposed
methods.
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patches and to try to refine image patches in the sparse
representation domain. Considering the relative position
information of pixels in image patches, we modified the
autoencoder by replacing fully connected layers with convo-
lutional layers and built a convolutional encoder–decoder
architecture.

Figure 2 shows the construction of our convolutional
encoder–decoder model. The encoder and decoder blocks
are formulated by a series of combinations of a convolutional
layer and an activation layer. Let X be the input; the encoder
and decoder blocks are expressed as

EQ-TARGET;temp:intralink-;e001;63;383ϕiðXÞ ¼
�

maxð0;Wi � X þ BiÞ i ¼ 0

max½0;Wi � ϕi−1ðXÞ þ Bi� i > 0
; (1)

where Wi and Bi, respectively, represent the parameters of
the i’th convolutional filters and bias, and * is the convolu-
tion operation.

The two blocks have the same number of layers and a
symmetric convolutional kernel size. For example, if the
encoder block contains M layers and the convolutional
kernel size of the k’th (k ∈ f1; 2; 3: : :Mg) layer is sk × sk,
then the convolutional kernel size of the k’th layer in the
decoder block should be sM−kþ1 × sM−kþ1.

Moreover, unlike in the case of the encoder block, we
tried to formulate a decoder block with transposed convolu-
tional layers30 instead of convolutional layers. However,
although the relationship between convolution and trans-
posed convolution seems like a key–lock relationship, this
change does not result in any improvement in the datasets
in our benchmark.

3.2 Greedy Loss Architecture
Although increasing the network depth is a simple way to
improve performance, a deeper network does not always
result in better performance. It is difficult to ensure the
appropriate depth that maximizes the network performance
without testing various depths. To solve this problem,
we propose a greedy loss architecture to maximize the

performance of each convolutional unit in the network.
We use the encoder–decoder architecture to translate inputs
from the image domain to the feature domain and to ensure
that each output of a convolutional unit is limited to a fixed
feature domain. We connect the decoder and loss layer after
the output of each convolutional unit and hope that each unit
can map the JPEG compressed features to the original
features.

Convolutional units at different depths clearly receive
different gradients from back-propagation; specifically,
shallower ones receive more gradients than deeper ones,
and this could be helpful for optimizing the performance
of shallower layers. In contrast, the greedy loss architecture
constrains the output of each convolutional unit; this is
conductive for avoiding gradient explosion19 when training
large-scale convolutional networks. Furthermore, it is fea-
sible to determine the network performance with different
depths without training the whole network repeatedly by
analyzing the loss from each convolutional unit with fixed
depth. Section 4 discusses the experimental evaluation of
the network performance.

3.3 Building a Scalable Convolutional Neural
Network

3.3.1 Overview

Our network architecture can be divided into three parts:
encoder, decoder, and nonlinear feature mapper. The encoder
uses JPEG compressed image patches as inputs and trans-
lates them to the feature domain. A nonlinear feature mapper
learns nonlinear functions to map features from anamorphic
image patches to uncompressed image features. The decoder
translates mapped features back to the image domain.
Figure 3 shows an overview of our network architecture.
Unlike other deep neural networks in which all parts have
to operate in combination in order for the network to func-
tion, these three parts construct a scalable CNN in which the
operation of even one part enables the network to function
normally. For example, if part of the nonlinear feature map-
per is removed, the network can give a comparatively good

Fig. 2 Constructions of convolutional encoder–decoder model.
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result. Moreover, even if the nonlinear feature mapper is
completely removed, the symmetrically encoder–decoder
pairs can still give quite improved outputs.

3.3.2 Architecture

The encoder and decoder are both formulated using two
convolutional layers with a ReLU activation layer. Table 1
shows the construction of the encoder and decoder.
Because the second convolutional layer of the decoder is
connected to the loss layer, its number of channels depends
on the channel size of the input/output images. A nonlinear
feature mapper is formulated by a series of shortcut connec-
tions. Because these shortcut connections in low-level image
processing using DCNs are always constructed using only
convolutional layers, we call these full-convolutional short-
cut connections as convolutional units. We denote these
convolutional units as CU1;CU1; : : : ;CUL, where L is the
total number of convolutional units. All these convolutional
units have the same structure, and they are formulated by
convolutional layers and activation layers.

There are active discussions about the problem of deeper
networks or wider networks.31,32 The creators of ResNet
preferred deeper networks and tried to make the network
as thin as possible in order for it to have only a few param-
eters. Some recently proposed DCN-based methods for
image restoration adopted this strategy to construct their
networks. However, the wide ResNet (WRN)33 was devel-
oped based on the rationale that deeper networks can lead to

less gradient flowing and fewer convolutional units can
result in useful intern representations being learned.
Further, the performance also suffers significantly from
this very deep structure when the depth of the network is
dynamically scaled. Motivated by this observation, we
designed our S-Net with larger width and shallower
depth. We set L ¼ 8, and all convolutional layers in the
convolutional units comprise filters with a kernel size of
3 × 3 and a channel size of 256.

3.3.3 Convolutional unit

Residual connections have been widely and successfully
used in many image restoration algorithms.16,34,35 A convolu-
tional unit constructed with residual connection is the basic
component of a network, and it plays an important role in the
network performance. Here, we compare two widely used
convolutional units: classic residual structure, the simplest
residual connection structure in which the residual branch
is constructed using a convolutional layer and an ReLU acti-
vation layer, and advanced residual structure, first proposed
by Peng et al.36 for boundary refining in image segmentation
and which shows great performance for image restoration
tasks.8,35 Although the batch-normalization layer is a basic
component in the residual connection structure, it has
been found that removing them from the network can
improve the network performance of image SR tasks.8 We
found that this modification is also effective for AR tasks
and therefore applied this modification to our network.
Figure 4 shows the configuration of both structures. The
residual branch of the advanced residual structure contains
two convolutional layers and a ReLU activation layer.
Table 2 shows the parameters of our networks constructed
using these two different convolutional units.

Several researchers replaced the ReLU layer in networks
with a parametric rectified linear unit (PReLU)2,5,37 layer.
PReLU imports a learnable parameter α to restrict the neg-
ative output, whereas ReLU compulsively cuts the negative
output to zero

Fig. 3 Overview of proposed network.

Table 1 Construction of convolutional encoder–decoder model.

Conv layer

Filter size

Encoder Decoder

1 5 × 5 × 256 3 × 3 × 256

2 3 × 3 × 256 5 × 5 × 3
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EQ-TARGET;temp:intralink-;e002;63;341PRðxÞ ¼
�

x x ≥ 0

αx x < 0
: (2)

We tried using PReLU layers to replace ReLU layers in
our network. However, doing so did not result in any

improvement; instead, it increased the computational and
memory costs. Therefore, we use only ReLU as the activa-
tion function in our following experiments.

3.3.4 Training

PSNR is the most universal evaluation indicator for image
restoration tasks. It can be represented as follows:

EQ-TARGET;temp:intralink-;e003;326;545PSNR ¼ 10 log10½MSEðX̂; YÞ�; (3)

where Y is the target image, X̂ is the restored image, and
MSE is the mean square error. To maximize the PSNR of
the reconstructed image, we use the MSE loss as the loss
function of each metric in the greedy loss architecture.
The loss weight of each metric is equated to others, and
the sum of the weights of all metrics is one. The final training
loss function is

EQ-TARGET;temp:intralink-;e004;326;435τðΘÞ ¼ 1

MN

XN
i¼1

XM
j¼1

kκjðXi;ΘÞ − Yik; (4)

where N is the number of samples in a training batch, M is
the number of metrics, and κj is the output of the j’th metric
in the greedy loss architecture.

We used the adaptive moment estimation (Adam)9

method as the optimizer during the training procedure.
Adam is a recently proposed optimization algorithm that
has been proved to be effective for training very deep
networks. We used the default parameters (beta_1 = 0.9,

Fig. 4 Structures of different convolutional units: (a) classic residual structure and (b) advanced residual structure.

Table 2 Size of parameters of proposed architectures.

Architecture

Number of parameters Total

Classic Advanced Classic Advanced

Encoder 0.58M 0.58M — —

Decoder 0.58M 0.58M — —

CU1 0.56M 1.12M 1.72M 2.29M

CU2 0.56M 1.12M 2.29M 3.41M

CU3 0.56M 1.12M 2.85M 4.54M

CU4 0.56M 1.12M 3.41M 5.66M

CU5 0.56M 1.12M 3.97M 6.78M

CU6 0.56M 1.12M 4.54M 7.91M

CU7 0.56M 1.12M 5.10M 9.04M

CU8 0.56M 1.12M 5.66M 10.16M

Fig. 5 Performance comparison of models with convolutional unit of advanced residual structure trained
using greedy loss architecture and columnar architecture on LIVE1 dataset with JPEG quality of 40.
(a) PSNR and (b) SSIM.
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beta_2 = 0.999, and epsilon ¼ 10−8)9 as specified in the
original paper.

4 Experimental Evaluation

4.1 Dataset
The DIV2K10 dataset has been recently proposed in the
NTIRE2017 challenge for single-image SR.10 The dataset
consists of 1000 2K-resolution images, of which 800 are
training images, 100 are validation images, and the remain-
ing 100 are testing images. Because the testing dataset was
prepared for image SR and the groundtruth has not been not
released, we could not compare performances using this

dataset. Instead, we evaluated the performance of our pro-
posed method and compared it with other state-of-the-art
methods on other known datasets.

LIVE111 and BSDS50012 are two known datasets that are
frequently used to validate the performance of proposed
approaches in reducing JPEG compressed artifacts. LIVE1
is a publicly released dataset that contains 29 images for
image quality assessment. BSDS500 is a publicly released
database for image segmentation that contains 200 training
images, 100 validation images, and 200 test images.
Quantitative evaluations are conducted on the 29 images
in the LIVE1 dataset and the 200 test images in the
BSDS500 dataset.

Fig. 6 Comparison of details of images reconstructed by models with convolutional unit of advanced
residual structure trained using greedy loss architecture and columnar architecture on LIVE1 dataset
(JPEG quality = 40): (a) PSNR and (b) SSIM.
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4.2 Training
For training, we extracted 48 × 48 RGB image patches from
training images in the DIV2K dataset with random steps
from 37 to 62 as the input. Although the JPEG compression
algorithm is applied to each 8 × 8 patch, taking a random
step to avoid integral multiples of eight can significantly
enhance the network performance, as in the case of
DDCN.4 The initial learning rate was set to 10−4 at the
start of the training procedure, and subsequently halved
after every set of 104 batch updates until it was below
10−6. All network models for different convolutional units
were trained with 2 × 105 batch updates. Considering the
limitation of computational resources, the batch size was
set to 16. We first trained models with JPEG quality of
40 (QF40) to evaluate the performance of different convolu-
tional units. Then, we fine-tuned the pre-trained QF40 mod-
els for JPEG qualities of 10 (QF10) and 20 (QF20) with
initial learning rate of 1 × 10−5 and 4 × 104 batch updates.
During fine-tuning, the learning rate was also halved after
every set of 104 batch updates until it reached 10−6 or
below. We performed the experiments using the Keras frame-
work with a TensorFlow backend on an NVIDIA K80 GPU

server. Training of the QF40 model took five days and
two days were required to fine-tune the QF20 and QF10
models.

4.3 Greedy Loss Architecture Performance
Evaluation

We measured the PSNR and SSIM with only the y-channel
considered, and used standard MATLAB library functions
for the evaluations. We trained the network models with
the convolutional unit of the advanced residual structure
using the columnar architecture and greedy loss architecture
for the JPEG quality of 40. For fairness, these two models
were trained with the same image patches and same learning
rate during the whole training procedure. Figure 5 shows the
results in terms of PSNR and SSIM for the LIVE1 dataset.
We compared the performances of the two network models
after 2 × 105 batch updates on the LIVE1 dataset. Although
the greedy approach may lead to a local optimum, the model
trained using the greedy loss architecture showed better
performance in terms of both PSNR and SSIM compared
with the model trained using the columnar architecture.

Fig. 8 Comparison of performance of models with different convolutional units on LIVE1 dataset
(JPEG quality = 40): (a) PSNR and (b) SSIM.

Fig. 7 Comparison of the performance of metrics in S-Net using columnar architecture CNNs with same
network scale on LIVE1 dataset with convolutional unit of advanced residual block (JPEG quality = 40):
(a) PSNR and (b) SSIM.
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Fig. 9 Comparison of our model with state-of-the-art methods for QF10 JPEG compression artifact
reduction.

Table 3 Comparison of our approaches with existing methods on public benchmark datasets. Boldface indicates the best performance.

Dataset
JPEG
Quality

Average PSNR (dB)/SSIM

JPEG ARCNN CAS-CNN DDCN
Metric1

(proposed)
Metric2

(proposed)
Metric8

(proposed)

LIVE1 40 32.93/0.9255 33.63/0.9306 34.10/0.937 —/— 34.41/0.9402 34.48/0.9410 34.61/0.9422

20 30.62/0.8816 31.40/0.8886 31.70/0.895 —/— 32.05/0.9034 32.13/0.9046 32.26/0.9067

10 28.36/0.8116 29.13/0.8232 29.44/0.833 —/— 29.67/0.8415 29.75/0.8435 29.87/0.8467

BSDS500 40 32.89/0.9257 33.55/0.9296 —/— 34.27/0.9389 34.27/0.9394 34.33/0.9401 34.45/0.9413

20 30.61/0.8811 31.28/0.8854 —/— 31.88/0.8996 31.97/0.9017 32.04/0.9028 32.15/0.9047

10 28.39/0.8098 29.10/0.8198 —/— 29.59/0.8381 29.64/0.8391 29.71/0.8410 29.82/0.8440
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Furthermore, the proposed model showed better perfor-
mance for intermediate outputs than the columnar architec-
ture. Figure 6 shows the reconstructed images. The greedy
loss architecture significantly improved the consistency of
color accuracy and texture sharpness in different metrics.
With some convolutional units removed from the network,
the result obtained using the greedy loss architecture was
obviously more stable than that obtained using the columnar
architecture.

We also compared S-Net with columnar architecture
CNNs with 1 to 8 convolutional units. Figure 7 shows the
obtained results. The performance of metric two in S-Net
is very close to that of the columnar architecture CNN
with two convolutional units. The subsequent metrics in
our model all show better performance than the columnar
architecture CNNs for the same network scale. These results
also show that scalable CNN is effective for evaluating the
performance improvement with increased network depth.
The results for columnar architecture CNNs show that the
performance of the nonlinear feature mapper with four con-
volutional units is close to eight, and the decrease in PSNRs
from eight to four is <0.1 dB. Furthermore, the performance
did not significantly improve for more than six convolutional
units. The results of the metrics in S-Net are identical. This
indicates that the greedy loss architecture in S-Net is effec-
tive for evaluating the improvement achieved with an
increased network scale.

4.4 Evaluation of Different Convolutional Units
Figure 8 shows quantitative evaluation results of network
models with different convolutional units on the LIVE1 data-
set. The model trained with an advanced residual block
showed significant improvement compared with that of
the model trained with a classic residual block. The advanced
residual block model provides average enhancement of
0.20 dB for each metric with the tradeoff of double the
number of parameters in the nonlinear feature mapper.

4.5 Comparisons to State of the Art
We compared our models with the state-of-the-art models
ARCNN,2 DDCN,4 and CAS-CNN5 on the BSDS500 and
LIVE1 datasets. Because only ARCNN provides open-
source code and a pre-trained model, the results for
ARCNN were obtained from experiments conducted by our-
selves, whereas the results for DDCN and CAS-CNN were
obtained from the reports presented in corresponding papers.
Further, no qualitative comparison could be carried out for
DDCN and CAS-CNN. As shown in Table 3, our model con-
structed with convolutional units of the advanced residual
structure showed significant improvements compared with
the other methods for all public benchmark datasets.
Figure 9 shows some qualitative results for the BSDS500
dataset.

Table 4 Comparison of our approaches with existing methods on the WIN143 datasets. Boldface indicates the best performance.

Items

Average PSNR (dB)/SSIM

JPEG ARCNN Metric1 (proposed) Metric2 (proposed) Metric8 (proposed)

WIN143 32.95/0.9033 33.09/0.9106 34.38/0.9220 34.47/0.9232 34.61/0.9250

Public benchmarka improvement — +0.69/+0.0046 +1.37/+0.0195 +1.44/+0.0219 +1.55/+0.0238

WIN143 improvement — +0.14/+0.0073 +1.43/+0.0187 +1.52/+0.0199 +1.66/+0.0217

aHere, public benchmark refers to the combination of BSDS500 and LIVE1 datasets; improvement refers to the PSNR and SSIM improvements
compared to JPEG compressed images.

Fig. 10 Comparison of computational efficiency of our model with those of other state-of-the-art
methods.
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We also compared the computational efficiency of the
proposed method with those of other state-of-the-art meth-
ods. All algorithms were implemented on a K80 GPU server
with a single GPU core. We measured the computational effi-
ciency in terms of million color pixels per second (MCP/s).
However, because there is a significant difference between

the qualities of the images reconstructed by ARCNN and
other state-of-the-art methods, ARCNN is not included in
this comparison although it is quite fast. Figure 10 shows
the computational efficiencies. S-Net with one and two con-
volutional units shows improved image quality and computa-
tional efficiency.

Fig. 11 Comparison of our model with state-of-the-art methods for QF20 JPEG compression artifact
reduction on the WIN143 dataset.
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4.6 Extensional Performance Evaluation on the
WIN143 Dataset

However, we noticed that the images in both LIVE1 and
BSDS500 are typically everyday scenes. Further, few shoot-
ing skills or postprocessing technologies were utilized when
getting these images. We call images acquired like this as
normal images. However, because we believe that these
limitations may not thoroughly show the generality and
universality of algorithms, as a supplement, we created an
extensional dataset, called WIN143, to evaluate the algo-
rithm performance on specially acquired or postprocessed
images. The WIN143 dataset contains 143 desktop wallpa-
pers with a resolution of 1920 × 1080 that are always used in
the Windows 10 operating system. The images in WIN143
were collected from the Internet and are specially shot or
carefully postprocessed, or even generated by computer
graphics technologies. Here, we call images such as these
over-processed images. Compared with daily shot images,
the over-processed images always get higher contrast and
saturation, and their complexity and unexpected changes
are obviously enhanced.

The extensional experiment on the WIN143 dataset was
conducted with a JPEG quality of 20. Because the original
resolution of the images in the WIN143 dataset was too large
for them to be placed in memory, we reduced the image
height and width by half using the bicubic interpolation algo-
rithm. The performance comparison results in terms of
PSNR and SSIM are shown in Table 4. The performance dif-
ference between ARCNN and S-Net is significantly magni-
fied in that 28 of 143 images restored by ARCNN get even
worse results in terms of PSNR while S-Net retains good
performances as before. Figure 11 shows the qualitative
results for the WIN143 dataset. The images restored by
S-Net have higher color and intensity accuracy, especially
in the dark and the smooth areas. Further, S-Net is better
able to distinguish the true textures and fake textures created
by JPEG compression.

5 Conclusion
This study investigated the effects of increased network
depth on network performance and proposed a scalable
CNN called S-Net for JPEG compression artifact reduction.
By applying a symmetric convolutional encoder–decoder
model and a greedy loss architecture, S-Net dynamically
adjusts the network depth. We proved that this greedy
theory-based architecture does not sink into a local optimum
and achieves better results than a specifically trained network
under the same conditions. Furthermore, the proposed archi-
tecture is also helpful for discovering the minimal network
scale with maximum possible network performance. With
the greedy loss architecture, the evaluation results for the
depth of the network were quickly obtained after training
once, whereas several training sessions had to be applied
with the conventional architecture. We compared our
approach with other state-of-the-art algorithms on public
benchmark datasets and achieved top ranking. We also cre-
ated an over-processed image dataset, called WIN143, using
images obtained from the internet. The results of extensional
performance evaluation on the WIN143 dataset successfully
validated the generality and universality of the proposed
algorithm.
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