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Abstract. Impacts of the extreme 2013 to 2014 drought on vegetation canopy cover in the Big
Sur region of central coastal California were assessed using a combination of satellite image
analysis and in situ measurements of soil moisture. Landsat and moderate resolution imaging
spectroradiometer satellite images were analyzed and compared across six ecosystems represen-
tative of the predominant vegetation types of the region at the U. S. Forest Service’s Brazil Ranch
study site. Results showed that differing spatial densities of woody plants among these ecosys-
tems corresponded to the observed changes in the normalized difference vegetation index
(NDVI) over the period of 2010 to 2016, with the herbaceous-dominated coastal terrace,
open shrub, and ridge-top grassland ecosystems declining 30% in greenness during the extreme
drought period of 2012 to 2014. Landsat images from the month of peak annual NDVI confirmed
this as a statistically significant difference in the loss of green cover in open shrub and grassland
ecosystems during the 2012 to 2014 drought, compared to the closed shrubland and redwood-
dominated ecosystems that were relatively unaffected at the study site. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
1117/1.JRS.12.026031]
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1 Introduction

The Pacific coastal region near Big Sur (Monterey County, California) is subjected to frequent
droughts and wildfires,' extreme winter storm events,” and human development impacts,
together affecting wildlife populations, native plant communities, riparian zones, and water qual-
ity. The numerous unique microclimates of Big Sur make it an important region in western
United States to monitor impacts on natural biodiversity,” including many endemic rare and
endangered species, such as the wild orchid Piperia yadonii, the Santa Lucia fir (Abies brac-
teata), California condor (Gymnogyps californianus), California southern sea otter (Enhydra
lutris nereis), and the southern-most habitat of the coast redwood (Sequoia sempervirens).
The Pacific coastal redwood ecoregion has been identified by the World Wildlife Fund as
being in the highest conservation priority class among ecoregions in the United States,
based on biological uniqueness, conservation status, and impending threats.*

Calendar year 2013 was the driest on record in California, with a total of just 30% of average
statewide precipitation.’ The previous statewide record low was 56% of average precipitation in
1976. This extreme lack of rainfall during 2013 and 2014 wet seasons created an unprecedented
level of stress on natural ecosystems and agricultural production systems throughout the central
regions of state,® where there remains a pressing need to develop assessment methods for
mitigating local drought impacts and future risks.

The main purpose of this study was to assess the impacts of the extreme 2013 to 2014
drought on ecosystem plant cover of the Big Sur region using a combination of satellite
image analysis and in situ measurements of soil moisture across six ecosystems representative
of the predominant vegetation types of the region. The study site for this analysis is arguably
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located at the nexus of modern climate change geography in the western United States. This
490-ha property overlooking the Big Sur coast is home to all the predominant ecosystems of
the region, including coastal grassland terrace, ridge-top grassland and coast redwood stands,
open and closed shrublands, and creek-side coast redwoods. The close proximity of these diverse
vegetation communities to one another on the study site, all within ready access to paved roads,
makes the opportunity for comparison of regional drought impacts on vegetation cover uniquely
valuable for long-term ecosystem studies.

2 Study Site Description

This study was located at the Brazil Ranch (center coordinates: latitude 36.36°N and longitude
121.89°W) in the northern Los Padres National Forest (LPNF) of Monterey County near Big Sur,
California (Fig. 1). This protected public property is named after the pioneer family that worked
to establish the land as a farm, ranch, as well as a dairy operation in the early 20th century. Today,
the property serves as a primary research site for the U. S. Forest Service LPNF, to monitor and
manage vegetation, wildlife, water quality, and sensitive coastal habitats.

The Big Sur region is generally delineated by 140 km (90 miles) of coastline from the Carmel
River in northern Monterey County, south to the San Carpoforo Creek in San Luis Obispo
County, and extends about 30 km inland to the eastern foothills of the Santa Lucia Mountains.
The terrain is rugged and undulating, with the steepest elevation gradients on the Pacific U. S.
coast,” ranging (over just several km inland) from sea level up to 1570-m elevation.

The region has Mediterranean climate of warm, dry summers and cool, wet winters, with
localized summer fog near the coast.>® The majority of annual precipitation falls in the winter
(November to March), annually varying from 40 to 150 cm throughout the range, with most
falling on the higher mountains in the northern extreme.' During the summer, low clouds are
frequently observed along the coast.” Summer fog is common below about 600 m (2000 ft)
elevation.” Mean annual temperature ranges from 10°C to 15°C from canyon bottom to
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Fig. 1 NAIP aerial image from May 2012 of 1-m resolution NDVI for the Brazil Ranch study area
(delineated by the blue line), with six 100-m radius ecosystem boundaries (red circles).
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ridge top, respectively.' Diurnal heating and cooling of ecological habitats along the Big Sur
coast and higher into the Santa Lucia range involves a complex series of elevation gradients
and topographic variations.

South-facing slopes on Brazil Ranch share a relatively equal distribution of coyote brush
(Baccharis pilularis) and California coffeeberry (Rhamnus californica) along with some
California sagebrush (Artemisia californica).’ The nearly vertical slopes of coastal grassland and
shrubland vegetation on ocean-facing bluffs starting just above sea level give way to mixed
hardwood (predominantly oaks) and pine (Pinus ponderosa) forests at around 100-m elevation,
which in turn transition to Coulter pine (Pinus coulteri) woodlands at around 850 m (3000 ft)
elevation.'® Along the riparian canyon bottoms and on the moist lower parts of north-facing
slopes below about 60-m elevation, coast redwood stands are able to grow.!' Logging removed
the majority of mature redwood stands in California over the past 200 years'? and has rendered
most present stands as secondary growth, aged between 100 and 150 years.'"!?

Plant growth on the Big Sur coast can be highly variable from year-to-year and is generally
limited by declines of soil moisture in the summer and by cool temperatures in the winter.' The
annual production pattern for coastal plants is rapid growth in the late fall (November) after the
first rains have returned, slow winter growth (December to February), and rapid growth again in
spring (March to May).'*

3 Methods

3.1 Climate Data

Monthly climate summaries from 2000 to 2017 were obtained from the Western Regional
Climate Center California Climate Tracker'® data portal'® for the Big Sur State Park (BSP,
NWS ID# 040790; elevation 320 m); station BSP represents the longest, complete rainfall record
on the Monterey County coast south of Carmel, dating back to 1950 for rainfall measurements.
The station is situated 3.5 km due east from the ocean coastline and 14 km from the
Brazil Ranch.

A Campbell weather station equipped with a CR800 data logger, a 03001 R. M. Young Wind
Sentry Set, and an HMP45C temperature and relative humidity probe was installed in open
ocean-facing grassland at the Brazil Ranch in 2007. The ongoing hourly meteorological data
collection included air temperature, humidity, wind speed and direction, and solar irradiance.'”

3.2 Soil Moisture Measurements

Soil moisture probes were placed in ridge-top grassland and open shrubland ecosystems at the
Brazil Ranch at depths of 10 and 30 cm in the soil profiles. As described by Potter,!” volumetric
water content (VWC) was monitored on an hourly interval using EC-5 frequency domain probes
(Decagon Devices Inc.).

3.3 Landsat and Moderate Resolution Imaging Spectroradiometer Satellite
Image Data

Near cloud-free imagery from the Landsat sensor was selected from the United States Geological
Survey (USGS) Earth Explorer data portal (available online)'® Landsat scenes from path/row
43/35 were acquired between April 1 and May 1 each year, around the peak of the Pacific coastal
growing season.!” All images used in this study were geometrically registered (UTM zone 10)
using terrain correction algorithms (level-1T) applied by the USGS EROS Data Center. Due to
sensor malfunction, Landsat imagery was not available for the year 2012.

For the Landsat 5 Thematic Mapper (TM) images acquired in 2010 and 2011, 30-m
resolution surface reflectance data were generated from the Landsat Ecosystem Disturbance
Adaptive Processing System.'” Moderate resolution imaging spectroradiometer (MODIS)
atmospheric correction routines were applied to level-1 TM data products. Water vapor, ozone,
geopotential height, aerosol optical thickness, and digital elevation are input with Landsat data to
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the second simulation of a satellite signal in the solar spectrum (6S) radiative transfer models to
generate top of atmosphere reflectance, surface reflectance, brightness temperature, and masks
for clouds, cloud shadows, adjacent clouds, land, snow, ice, and water. Landsat 8 (after 2012)
surface reflectance products were generated from the L8SR algorithm,”® a method that uses
the scene center for the sun angle calculation and then hard codes the view zenith angle to
0. The solar zenith and view zenith angles are used for calculations as part of the atmospheric
correction.

The normalized difference vegetation index (NDVI) from Landsat imagery has been fre-
quently used to monitor live vegetation canopy cover and trajectories of forest growth during
and after ecosystem disturbances.?'”> Advantages of NDVI for the purpose of vegetation mon-
itoring have been cited in its mathematical simplicity and ease of comparability across numerous
multispectral remote sensing platforms.**

NDVI was computed for this study using Landsat or MODIS image bands as

NDVI = (NIR — Red)/(NIR + Red),

where Red is the reflectance from ~0.6 to 0.7 ym and NIR is the near-infrared reflectance from
~0.7 to 1.1 yum. NDVI was scaled from 0 to 10,000 (by multiplying by 10,000 and omitting
negative, nonvegetation values). Low values of NDVI (near 0) indicate barren land cover,
whereas high values of NDVI (above 7000) indicate dense canopy vegetation cover. Schiffman®’
found that summer NDVI values >5000 corresponded to a leaf area index (LAI) above 1 and
NDVI values >7000 corresponded to an LAI above 3 in California montane forests.

The MODIS NDVI product (MOD13Q1) was computed every 16 days since the year 2000 at
250-m spatial resolution and provided in a sinusoidal projection. This MODIS product was qual-
ity assessed and filtered for aerosol quantity, cloud cover, shadows, and sun-target-viewing
geometry.”*

3.4 Ecosystem Delinetations and Statistics

Six ecosystem boundary areas were delineated on the Brazil Ranch property using 1- X 1-m
resolution NDVI computed from color aerial images, which were obtained and orthorectified
in May 2012 by the National Agriculture Imagery Program (NAIP). A circular radius of
100-m length was established around each ecosystem center point (Fig. 1). The Big Sur eco-
systems represented were coastal grassland terrace, ridge-top grassland, open shrubland, closed
shrubland, ridge-top redwood, and creek-side redwood. Each circular area of 100-m radius
covered between 23 and 35 (30 X 30 m) Landsat pixels, depending on the cloud and fog-
free period of each year.

A 95% confidence interval for an NDVI sample mean difference between ecosystem loca-
tions was reported as > 4 2 standard errors (SE).” A p < 0.05 value means that the results are
significant the 95% confidence level.

4 Results

4.1 Drought Weather Records

For the water years (WY; October 1 to September 30) of 2013 and 2014, precipitation in the
study region totaled to 69 and 47 cm, respectively, compared to the historical average (1950 to
2016) WY total of 105 cm rainfall (Fig. 2). Over the three consecutive WYs of 2012 to 2014,
only 50% of long-term annual rainfall was recorded at this Big Sur station location. The slightly
higher rainfall total during the WY of 2013 compared with the WY 2014 was attributable to a
wetter November to December period. In contrast, total precipitation during the WYs of 2015
and 2016 was 82 and 112 cm, respectively, amounting to 80% to 100% of historical annual
rainfall. Just prior to the extreme drought period of 2012 to 2014, the WY of 2011 recorded
near-average precipitation of 101 cm at the BSP station.
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Fig. 2 Big Sur station (BSP) precipitation record from 2010 to 2017.

4.2 MODIS NDVI: 2000 to 2016

Comparisons of the long-term (2000 to 2016) NDVT for six ecosystems at the Brazil Ranch
showed that the highest annual greenness levels were recorded in the springtime periods of
the years of 2005, 2008, 2015, and 2016 (Fig. 3). The lowest annual greenness levels were
recorded in the late summer periods of the years 2003, 2007, and 2013.

The presence of coastal low clouds and fog evidently reduced the number of quality-filtered
NDVI values at the coastal grassland terrace location, compared to the ridge-top grassland loca-
tion (Fig. 3). Nonetheless, the peak annual NDVI, recorded in late April to early May of each
year, was slightly higher after the year 2007 at the ridge-top grassland compared to the coastal
terrace. Peak annual NDVI was nearly identical between open and closed shrubland locations
since the year 2000, whereas the lowest greenness level of each year was about 1000 NDVT units
lower in the open shrub compared to the closed shrub cover. The NDVI of creek-side redwood
forest was notably less variable over each year than NDVI in any of the other ecosystems.
The ridge-top redwood forest NDVI was as variable over each year as the open shrubland and
grassland locations.

The yearly deviation from the mean of maximum NDVI (computed over all the years since
2000) showed that 2000 to 2003, 2005, and 2016 were above average green cover periods at the
majority of ecosystems at Brazil Ranch (Fig. 4). From 2010 to 2014, maximum NDVI levels
were below average at the majority of ecosystems. Peak yearly NDVI values were the lowest in
2012 across all six ecosystem locations. Peak NDVI in the two redwood forest ecosystems was
the least impacted in 2012, but by 2013, the negative deviation of maximum annual NDVI was
more consistent among all ecosystems, except for the coastal terrace grassland.

4.3 Landsat NDVI: 2010 to 2016

The 30-m resolution April NDVI, averaged within each 100-m radius circular area for the six
ecosystems at Brazil Ranch, showed that creek-side redwood forest greenness was significantly
higher (p < 0.05) and more stable than all other ecosystem NDVI levels since the year 2011
[Fig. 5(a)]. The average April NDVI of ridge-top redwoods and the closed shrub ecosystem
was consistently higher than the open shrub and the two grassland ecosystems, particularly
in 2011, 2013, and 2015. The mean April NDVI was lowest across all six ecosystems in
2011 and 2013.

The areas within each ecosystem that showed the lowest NDVI in April were consistently
detected within the ridge-top grassland and the open shrubland [Fig. 5(b)] at below 5000 NDVI
units, most notably in 2011 and 2013. Despite the relatively low WY precipitation recorded in
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Fig. 3 MODIS time series for 250-m resolution NDVI at six ecosystem center locations shown in

Fig. 1.
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Fig. 5 Landsat time series for 30-m resolution (a) mean and (b) minimum April NDVI within six
ecosystem locations shown in Fig. 1. Error bars show 2 SE of the mean April NDVI.

2014, minimum NDVT detected within the six ecosystem areas was the most consistent, all at
between 6000 and 8000 NDVI units, among the years compared. The minimum April NDVI
levels within the open shrubland and the ridge-top grassland ecosystems recovered more slowly
to predrought levels in 2015 and 2016 than in the other ecosystem areas.
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Fig. 6 Plots of hourly soil moisture measured at Brazil Ranch grassland and open shrubland sites.
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4.4 Soil Moisture Variations

The record of hourly soil moisture under ridge-top grassland and open shrub cover at the Brazil
Ranch from 2011 to mid 2017 (Fig. 6) showed that the dry season months of May to September
had the lowest consistent VWC levels at both 10- and 30-cm soil depths during the time series.
Grassland soil VWC levels at 30-cm depth remained below 0.4 from 2012 to late 2015, during
both dry and wet seasons. The WYs of 2012 and 2013 were the driest and had the most hours
recorded below VWC levels of 0.2 of any periods in the grassland time series. Throughout the
wet seasons (November to April) of 2015, 2016, and 2017, soil VWC regularly exceeded 0.4 and
peaked in the ridge-top grassland site at above 0.6 VWC levels.

5 Discussion

It was apparent from visual inspection of NAIP 1-m imagery from May 2012 that evergreen plant
cover was sparse within the coastal terrace, open shrub, and ridge-top grassland sites at the Brazil
Ranch. In contrast, groups of nearly closed-canopy evergreen plants covered roughly half of the
closed shrubland and ridge-top redwood sites, and continuous tree canopy was growing densely
over the creek-side redwood site. These differing spatial densities of woody plants among eco-
systems corresponded to the observed changes in NDVI over the period of 2010 to 2016 near
Big Sur, with the herbaceous-dominated coastal terrace, open shrub, and ridge-top grassland
ecosystems declining 30% in greenness during the extreme drought period, whereas closed
shrubland and redwood-dominated sites were relatively unaffected.

Long-term weather station records from the Big Sur coast show that precipitation was about
50% below historical annual average rainfall over the WYs of 2012 to 2014. The extreme dry
period at the study site lasted for these three consecutive years, rather than only two years, as has
been documented over most central regions of the state of California.® Soil moisture measure-
ments at the study site confirmed that plant water shortages persisted from 2012 to late 2015,
during both dry and wet seasons at Brazil Ranch.

Peak annual NDVI from the MODIS satellite sensor during the drought of 2012 to 2014 was
the lowest of any 3-year period since 2000, and open shrub and grassland ecosystems declined to
their lowest levels in the past 17 years during that drought period. The WY's 2005 and 2008 also
showed that maximum NDVI was one standard deviation below the long-term mean for open
shrub and ridge-top grassland sites, whereas maximum NDVI was closer to the long-term normal
for the closed shrub and redwood sites during these relatively dry years. Landsat images (2010 to
2016) from the month of peak NDVI confirmed this as a statistically significant difference in
the response of open shrub and grassland ecosystems to the 2012 to 2014 drought compared to
the closed shrub and redwood ecosystems at the study sites.

Rainfall is not the only source of moisture for shrub-dominated ecosystems on the Big Sur
coast. Over the summer seasons (June to October) of 2014 and 2015 at Brazil Ranch, Potter**?’
measured rates of shrub canopy fog interception at levels that helped sustain elevated soil water
levels under shrubs and aid woody vegetation survival through extended periods of low rainfall.
Summer season totals of 125 and 31 cm of fog water drip were recorded under open shrub
canopies in 2014 and 2015, respectively. If these summer moisture deposition results are rep-
resentative across the region, then fog water drip to soils under coastal shrub canopies can be
equivalent to as much as 50% of annual average rainfall rates.

From a long-term climate change viewpoint,” reported physiological evidence that coast red-
wood and most other ecosystems along the Pacific coast may be increasingly drought stressed
under a summer climate of reduced fog frequency, higher solar radiation flux, and greater evapo-
rative demand. Carroll et al.?® found that correlations between tree-ring chronologies and
summer drought indices were statistically significant at 10 California coast redwood forest loca-
tions, but the correlations were by far the strongest on the Big Sur coast, where the summer
drought index was 46% coincident with the stem growth chronology. The tree-ring chronologies
further showed that stem growth in redwoods on the Central Coast decreased significantly with
maximum temperature in April and June.

The patterns of future climate change are uncertain and likely to be complex in Pacific coastal
ecosystems. For example, Potter' analyzed 20 years of daily temperature records from the BSP
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location and reported that, even as average monthly maximum temperatures (7,,,) have
decreased gradually, the number of extreme warm summer days (T, > 37°C) has increased
by several fold in frequency. Overall patterns in weather station records since the mid 1990s
indicated that diurnal temperature ranges are widening on the Big Sur coast, with markedly
cooler nighttime temperatures (frequently in the wet winter season) followed by slightly higher
than average daytime temperatures, especially during the warm, dry summer season. In sum-
mary, climate warming and an increased frequency of extreme weather events, such as the
2012 to 2014 drought, have the potential to tip the balance in favor of or against vulnerable
biological resources and the human activities that sometimes require a struggle to prosper in
a remote and rugged landscape such as the Big Sur coast.

6 Conclusions

Differing densities of woody plants among various plant communities on the Big Sur Pacific
coast of central California were closely related to changes in satellite-observed NDVI over the
period of 2010 to 2016, with the herbaceous-dominated coastal terrace, open shrub, and ridge-
top grassland ecosystems declining 30% in greenness during the extreme drought period of 2012
to 2014. Landsat images from the month of peak annual NDVI showed a significant loss of green
cover in open shrub and grassland ecosystems during the 2012 to 2014 drought, compared to
the closed shrubland and redwood-dominated ecosystems that were relatively unaffected during
this extreme dry period.
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