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ABSTRACT. The fungus Pestalotiopsis sp. causes aberrant leaf fall, resulting in an annual
reduction in rubber production. The loss of latex yield has a significant impact
on the income of smallholder farmers. The objective of this study is to estimate
NDVI using reflectance from the upper canopy based on Sentinel-2 NDVI time
series data and daily climate data, analyze phenological changes of rubber trees
using a harmonic model and time-lag cross-correlation, and develop a prediction
model of vegetation indices using the random forest regressor (RFR) algorithm.
The study was conducted on the rubber plantation of the Indonesian Rubber
Research Institute in Sembawa, Indonesia. Three rubber clones aged 10 to
11 years were used to study the wintering trend. The study found that the overall
trend of the NDVI decreased significantly from 2019 to 2022. The cycle of defo-
liation and refoliation changed due to disease and climate change. The time lag
effects of vegetation index and climate variables are crucial for predicting vegeta-
tion dynamics. Increasing temperature and changing precipitation play significant
roles in influencing pathogen incidence. The mean absolute percentage error
(MAPE) was used to evaluate the trend of the vegetation indices. The RFR algo-
rithm predicts the vegetation indices with a MAPE of 6.07%, 5.96%, and 8.18% of
BPM24, GT1, and RRIC 100, respectively. Our finding indicated that the analysis
and prediction model can be used to understand the phenological pattern and
predict the wintering pattern to prevent disease spread and minimize latex yield
loss due to infestation outbreaks.
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1 Introduction
The Pestalotiopsis sp. fungal disease outbreak has significantly reduced the output of Indonesia’s
rubber plantations over the last 6 years (2016 to 2021).1,2 Pestalotiopsis sp. has infected mature
rubber trees on at least 0.4 million hectares. The spread of this disease afflicted South
Kalimantan, Central Sulawesi, Lampung, Central Java, and East Java. In Pestalotiopsis, up to
75% to 90% of the defoliation is abnormal, and more than 25% of the latex yield is lost.1
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Rubber cultivation in Indonesia is dominated by smallholder plantations. As a result, it has a
negative impact on the well-being of rubber smallholders.

Pestalotiopsis is distinguished by brown spots on juvenile leaves that develop into dark brown
spots and cause the leaves to fall prematurely. The newly developed leaves are smaller than ordinary
leaves. The transitions from leaf defoliation to new leaf production (refoliation) are the primary
phenological stages in rubber plantations. Plant phenology is the study of how vegetation develops
throughout the year. Ground observation and remote sensing are the two methodologies used to
study vegetation phenology.3–5 On the ground, species-specific phenology reactions are found at
limited scales. This procedure is time-consuming and expensive. Changes in vegetation can also
be visible in high spatial and spectral resolution remote sensing imagery. Remote sensing has the
potential to detect changes in vegetation features at numerous sizes, from the local to the continental
and even the global.6 Remote sensing has been used to collect data on plant biophysics, mostly on
pathogen-induced physiological changes and diseases.7–10 Previous study has shown that tracking
the phenological stages of a rubber plantation necessitates observing the phenological dynamics of
the rubber tree.11–15 Based on phenology, it is feasible to investigate how a rubber plantation changes
during the dry season, from defoliation to the growth of new leaves.15

The content of chlorophyll in leaves has been used to track changes in vegetation.
The normalized difference vegetation index (NDVI) has been widely utilized and imple-
mented to evaluate the chlorophyll content for vegetation development and health in areas
with complete leaf coverage.16 In rubber plantations, NDVI was found to be more susceptible
to phenological fluctuations in canopy moisture and vegetation cover. According to the study,
NDVI has been successfully employed to detect wintering in rubber plantations using MODIS
images.16

Accurate time-series of vegetation indices are crucial for monitoring vegetation phenology
in order to detect early stages of diseases and reduce production loss due to infestation outbreaks.
Time series of NDVI from satellite data can be used to approximate phenological states and
quantify overall vegetation behavior.17 The time-series NDVI obtained from remote sensing
pictures is commonly used in the extraction of vegetation phenology.18–22 The prediction of
vegetation dynamics using time series data is critical for disease control. Recent research has
shown that random forest (RF) may accurately predict vegetation phenology.23

The study of the phenology of the rubber tree is critical for disease prevention. Zhai et al.
studied whether prolonged defoliation enhanced powdery mildew disease infection rates and
resulted in lower latex yield.24 Gasparotto et al. discovered that the yearly defoliation and
refoliation cycles that occur in rubber plants after 5 years of age have a considerable con-
nection with foliar disease attacks.25 Although phenological studies have risen in recent
decades, we simply do not have any information on phenological studies of different rubber
clones during Pestalotiopsis disease, particularly in tropical rubber plantations, based on
Sentinel-2 imagery.

The main purpose of this study is to contribute to rubber disease monitoring by observing the
phenological changes of rubber plantations, specifically the pattern of the wintering period based
on Sentinel-2 NDVI time series data and local weather station data from 2019 to 2022 during
Pestalotiopsis infection. The goals of this study are as follows: (1) estimating NDVI using reflec-
tance from the upper canopy based on Sentinel-2 imagery across three rubber clones (BPM 24,
GT 1, and RRIC 100); (2) analyzing phenological changes of rubber trees on the wintering period
during Pestalotiopsis infection using a harmonic model and time-lag cross-correlation; and
(3) developing a prediction model of vegetation indices using the random forest regressor
(RFR) algorithm.

2 Material and Methods

2.1 Experimental Locations and Workflow
The study area of this research is the rubber plantation of Indonesian Rubber Research Institutes
(IRRI) in Sembawa, South Sumatra, Indonesia. The fields have been infected by Pestalotiopsis
diseases since 2016 with varying degrees of canopy infection severity. Three fields with different
rubber tree clones, namely BPM 24, RRIC 100, and GT 1, and aged 10 to 11 years were selected
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as experimental areas in this research. Figure 1 and Table 1 present the location and digital
elevation model image of the study area.

The workflow of the proposed work is shown in Fig. 2. The method starts with data acquis-
ition, pre-processing, NDVI calculation, imputation and smoothing, analysis of phenological
changes, prediction of vegetation indices, and evaluation.

Fig. 1 Location of the study area.

Table 1 Extent of each field for three rubber tree clones.

Clone name Left Top Right Bottom

BPM 24 104°32′27.635″ E 2°55′27.591″ S 104°32′30.594″ E 2°55′32.0406″ S

RRIC 100 104°30′31.456″ E 2°57′11.991″ S 104°30′36.474″ E 2°57′16.182″ S

GT 1 104°31′6.845″ E 2°56′58.121″ S 104°31′12.169″ E 2°57′3.355″ S

● Sentinel-2 Level 2A
● Drone
● Hemispherical
● Daily Climate Data
● Rubber Clones: BPM24, 

GT1, RRIC 100

1. Data Acquisition

Cloud Detection : 
s2cloudless

2. Pre-processing

NDVI Time Series

3. NDVI Calculation
● Imputation:Linear 

Interpolation Method
● Smoothing: Temporal 

based
Method: Moving Average

4. Imputation & Smoothing

● Harmonic Analysis
● Time-lag cross correlation
● Analysis of climate effects 

on wintering period using 
Random Forest algorithm

5. Analysis of 
Phenological Changes

● Prediction Model using 
Random Forest 
Regression

● Prediction of vegetation 
indices at horizon 1 to 5 
months

6. Prediction of 
vegetation indices

Mean Absolute Percentage 
Error (MAPE)

7. Evaluation

Fig. 2 General workflow of the proposedmethod: (1) data acquisition, (2) pre-processing, (3) NDVI
calculation, (4) imputation and smoothing, (5) analysis of phenological changes, (6) prediction of
vegetation indices, and (7) evaluation.
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2.2 Data Acquisition
In this study, we obtained a 4-year time series data from the Sentinel-2 level 2A product of the
study areas from January 1, 2019, to December 31, 2022. The 291 imagery data were acquired
from the Google Earth Engine (GEE) platform. Sentinel-2 provides reflectance data for 13 bands
and has a 5-day temporal resolution. For this study, we used four spectral bands from a top-of-
atmosphere product with a spatial resolution of 10 m: B02 (blue), B03 (green), B04 (red), and
B08 (infrared). We also collected UAV multispectral data and digital hemispherical data during
disease outbreak as the ground truth data for disease severity at two time periods, between
January 18–19, and June 15–16, 2022. The use of UAV data enables a broader understanding
of the affected area, providing increased resolution and enhanced accuracy through hemispheri-
cal data. These data were used by experts to assess the health of vegetation and determine the
severity of Pestalotiopsis disease. Daily climate data were obtained from local weather stations in
the rubber plantation and the Indonesian Central Bureau of Statistics and the Indonesian
Meteorology, Climatology, and Geophysical Agency from 2019 to 2022.26

2.3 Pre-Processing Sentinel-2 Imagery
Cloud cover is a common problem in evaluating time-series data using optical imaging. Cloud
removal is vital for the subsequent data analysis and to increase the integrity and availability of
the remote sensing data. There are three approaches of cloud removal, i.e., spatial information-
based method, temporal information-based methods, and multi-source auxiliary information-
based method.27 Many studies on cloud removal have been conducted.28–31

To eliminate cloud cover in this experiment, we used s2cloudless, a machine learning-based
cloud identification technology developed by Sinergise’s EO Research team. This technique
leverages the light GBM algorithm, which was trained on a massive dataset of cloudy and
non-clouded samples from around the world.32 Before applying the gradient boost-based tech-
nique, all bands are upsampled to 10 m resolution using bilinear interpolation. The algorithm
employs Sentinel-2 Level-1C TOA reflectance values from the following 10 bands as input: B01,
B02, B04, B05, B08, B8A, B09, B10, B11, B12; and the output is a cloud probability map.
In this study, we used a threshold value of 0.4 to reduce cloud omission errors.

2.4 Calculation of NDVI
To explore the rubber trees phenology stages and define vegetation behavior during Pestalotiopsis
infestation, we studied the NDVI-time series data acquired from Sentinel-2 datasets. The time
series graph was created using the NDVI from random sites in the three rubber fields. The
NDVI is determined using the equation as follows:

EQ-TARGET;temp:intralink-;e001;114;316NDVI ¼ ðNIR − REDÞ∕ðNIRþ REDÞ; (1)

where NIR is the reflectance of NIR radiation and RED is the reflectance of visible RED energy.
The index for Sentinel-2 can be derived as the ratio of the difference and total of reflectance in
NIR (B8) and red (B4) areas, as shown as:33

EQ-TARGET;temp:intralink-;e002;114;257NDVI ¼ ðB8 − B4Þ∕ðB8 − B4Þ: (2)

2.5 Imputation and Smoothing NDVI Time Series
The missing information generated by cloud causes spatial and temporal gaps in satellite earth
observation data, as well as biases in subsequent image processing and application. Various meth-
ods for dealing with missing data have been proposed. Methods are classified into four types:
spatial-based methods, spectral-based methods, temporal-based methods, and hybrid methods.34

In this study, we used a temporal-based method or “gap filling” technique. Recent temporal tech-
niques, such as data fusion,35,36 pixel unmixing,37 data interpolation,38 or best-pixel selection,39,40

have been examined for large-area land cover mapping. To obtain the gap-filled satellite image,
we used the linear interpolation method in this work. The linear interpolation function equation is
as follows:41

EQ-TARGET;temp:intralink-;e003;114;101fðxÞ ¼ fðx0Þ þ
fðx1Þ − fðx0Þ

x1 − x0
ðx − x0Þ; (3)
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where x is the independent variable, x1 and x0 are known values of the independent variable, and
fðxÞ is the value of the dependent variable for a value x of the independent variable.

The noise of the signals received by the satellite sensors can occur due to cloud cover, atmos-
pheric disturbance, sensor failure, and so on.42 The time series smoothing method can be used to
reduce noise and assess plant phenological trends.42 Smoothing methods were investigated by
Atkinson et al. in reconstructing consecutive time series of vegetation indices to estimate
vegetation phenology.43 There were three types of smoothing methods:44 temporal methods, fre-
quency methods, and hybrid methods. In this study, we used temporal-based method, a moving
average (MA) filter for smoothing NDVI time series data. The MA filter reconstructs NDVI time
series by replacing the central point with the average of all points in an equation-based moving
window of fixed size. The advantage of this strategy is that the seasonal peak of the curve is
preserved.

2.6 Analysis of Phenological Changes
The analysis of phenological changes of NDVI was investigated using harmonic analysis. The
harmonic analysis of NDVI time series aims to characterize the spectral behavior of NDVI by
decomposing the time series into a sequence of basic sinusoids and a set of sine or cosine terms
with unique coefficients and intercept (harmonic terms).45 Time-lag cross-correlation analysis
was used to understand the relationship and potential lag (lead effects) between NDVI and
climate variables. Cross-correlation measures the similarity between two time series as a function
of the time lag applied to one of them. Time lag indicates the time delay between precipitation
and temperature changes and their impact on NDVI.

2.7 Prediction of Vegetation Indices
In this study, we analyzed the relationship between NDVI variations and climatic variables to
understand the impact of the Pestalotiopsis diseases on vegetation dynamics in a rubber planta-
tion using RFR. RFR was first proposed by Breiman (1996) as an ensemble learning method that
can be used in both classification and regression task.46 RFR is a non-linear ensemble technique
that focuses solely on decision trees for classification or regression. The concept behind RF for
time series is to replace the standard bootstrap with a dependent bootstrap in order to subsample
time series during the tree construction phase in order to account for time dependence.46

2.8 Evaluation
To validate the performance of the model, multi-step-ahead monthly NDVI forecasts were
simulated to walk-forward validation. The walk-forward validation was utilized to improve the
model’s precision. The dataset time series was divided into training, validation, and testing sets,
with 90% of the dataset used for training and validation, and 10% retrained for testing. Means
absolute percentage error (MAPE) performance evaluation was conducted to validate the accu-
racy of the proposed model. The following expression is the MAPE equation:

EQ-TARGET;temp:intralink-;e004;117;268MAPE ¼ 1

N

XN

t¼1

����
Et − At

At

����; (4)

where Et is the predicted value for t’th, and the At is the element is the actual value for t’th.

3 Results and Discussion
Understanding and predicting the leaf phenology changes of rubber trees can help control dis-
eases. The pattern of defoliation and refoliation of rubber trees (wintering period) is used to
understand disease spread and severity, as well as to plan or decide on chemical spraying to
control diseases.45 Wintering happens when rubber developed an adaptation to reduce transpi-
ration due to water scarcity during the dry season. Wintering patterns are well known to have
an impact on yield. In this study, we analyzed phenological changes during through wintering
period during Pestalotiopsis infection using Sentinel-2 NDVI time series data and daily climate
data from 2019 to 2022.
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3.1 Environmental Factors Affecting Pestalotiopsis Disease
The incidence and severity of Pestalotiopsis sp. disease are intricately correlated with various
environmental factors that influence the fungus’s growth, spread, and impact on plant
populations.47 Pestalotiopsis sp. prefers specific temperatures for growth and reproduction.
Extreme temperatures cause stress in plants, making them more susceptible to infections.48

Temperature fluctuations can also affect the fungus’s growth rate and development, as well
as the host plants’. High humidity can create an ideal microclimate for fungal growth.
Humidity, along with temperature, affects spore production and dispersal. Pestalotiopsis sp.
thrives in humid environments, as do many other fungi.

Environmental stressors, such as intense rainfall or flooding, have the potential to accelerate
disease spread by creating favorable conditions for spore dispersal and germination.48,49 In con-
trast, prolonged periods of drought have the potential to diminish the vitality of plants and render
them more vulnerable to infections.50,51

The vegetation index is an effective tool for assessing plant health in relation to Pestalotiopsis
disease. A declining vegetation index may indicate stress on plant populations, which could be
caused by Pestalotiopsis spp. infection. Monitoring this index enables the early detection of
potential outbreaks. A thorough understanding of the interactions between temperature, precipi-
tation, vegetation index, and other environmental factors is required for predicting, preventing,
and managing Pestalotiopsis disease in rubber plantations. The analysis of the relationships
between these variables allows for the identification of patterns and correlations, which aids
in the prediction of Pestalotiopsis sp. outbreaks, the implementation of preventive measures, and
the development of disease management strategies in affected ecosystems.47

3.2 Phenological Changes Based on Harmonic Analysis of NDVI Time
In this study, we observed three rubber clones (GT 1, BPM24, and RRIC 100) aged 10 to 11
years to study the NDVI trend. Figures 3(a)–3(c) show a harmonic model of NDVI time series
from 2019 to 2022 for three rubber clones. We found that the overall trend of the NDVI decreased
significantly from 2019 to 2022 for all clones.

Pestalotiopsis was reported in rubber plantations in North Sumatra and South Sumatra since
2016.1 Figure 4 depicts defoliation and refoliation trends of each clone. According to previous
research phenology stage of defoliation and refoliation period for rubber wintering occurs in the
dry season, which in Sumatra is between July and September16 (as shown in Fig. 4 in gray area).
Defoliation takes place over a 4-week span from July to August, signifying the conclusion of the
growing season. Simultaneously, it marks the onset of the subsequent growing season, transi-
tioning into the refoliation period spanning August to September. During 2019 to 2022, we found
that defoliation and refoliation events shifted due to Pestalotiopsis disease. Early wintering was
reported in all clones. The first defoliation occurred in March to July 2019, followed by sec-
ondary leaf fall in November and January 2020. In 2020 and 2021, the defoliation occurred
repeatedly or extensively in all clones, indicating physiological stress, nutrient depletion, and
a compromised defense system. These factors create favorable conditions for pests and patho-
gens to thrive, leading to increased vulnerability and the potential for further damage to the trees.

In 2022, the NDVI gradually decreased and defoliation significantly and occurred earlier in
March. All clones suffered from extensive defoliation between March and July in 2022.
According to weather statistics data in Fig. 5, in 2022, precipitation increased and caused a
decrease in minimum temperature compared to 2019 to 2021. The increase in precipitation can
create a cascade of unfavorable conditions for rubber trees, including the spread of fungal dis-
eases, waterlogged soil, nutrient deficiencies, disruption of photosynthesis, pest infestations, and
physiological stress. These factors collectively contribute to the extensive defoliation observed in
rubber trees during periods of heavy rainfall and this can be reflected in temporal NDVI profiles
with shifts in the timing of NDVI peaks and valleys.

The phenology of rubber trees is affected by the period of defoliation. A longer defoliation
period would consume more conserved carbohydrates, reducing available reserves for disease
defense and latex production.24 This condition is associated with significant defoliation and
decrease in rubber yield. The shifts in the starting and ending periods of the annual dry season
and wintering are likely the result of a complex interplay between Pestalotiopsis disease and
broader climate change impacts.
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Fig. 3 Harmonic model of NDVI time series over four years (from 2019 to 2022) for three clones,
(a) GT1, (b) BPM24, and (c) RRIC 100. The red curve illustrates the fitted model, while the blue
points denote the actual NDVI data.
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The proliferation of Pestalotiopsis leaf disease has caused extensive defoliation. This symp-
tom indicates the presence of Pestalotiopsis disease in all rubber clones. To prove the occurrence
of disease in rubber plantations, in 2022 we collected UAV multispectral data and digital hemi-
spherical data as the ground truth data for disease severity at two time periods, between January
18–19, and June 15–16, 2022. Pathologist experts from IRRI also conducted research to deter-
mine the severity of Pestalotiopsis disease in rubber plantations. Figure 6 shows the vegetation
index maps of disease severity at different fields (BPM 24, RRIC 100, and GT 1) on January 18,
2022. The colors green, yellow, and red on the map represent the values of NDVI which are high,
moderate, and low, respectively. Higher values indicate healthy plants and lower values indicate
a plant infested with pests, damaged plants, or unhealthy plants.

3.3 Analysis and Prediction of NDVI Based on Climate Variable Time Series
Using Random Forest Algorithm

The values of NDVI, temperatures, humidity, precipitation, radiation, and wind speed were used
to assess phenological changes in response to disease outbreaks and climate changes for three
rubber clones. We applied the augmented Dickey–Fuller test (ADF test) to test the stationary time
series. If the p-value is >0.05, then the data series is non-stationary. Table 2 shows that the

Fig. 5 Temperature (Tmin and Tmax) and precipitation trends during Pestalotiopsis outbreak from
2019 to 2022.

Fig. 4 Defoliation and refoliation trends of several rubber clones (BPM 24, GT 1, and RRIC 100)
with Pestalotiopsis infection in 2019 to 2022. The gray area denotes the annual wintering period in
Sumatra (between July and September).
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p-values of NDVI for all clones (GT1, BPM24, RRIC), precipitation, maximum temperature,
humidity, and radiation are greater than the significance level of 0.05, and the ADF statistic is
higher than any of the critical values. Therefore, the sequence of NDVI and climate data were
non-stationary.

We applied time-lag cross-correlation analysis to understand the relationship and potential
lag (lead effects) between NDVI and climate variables. We found a time lag which indicates the
time delay between precipitation and temperature changes and their impact on NDVI. Figure 7
shows the lag value associated with the peak of the correlation function of precipitation, temper-
ature, and NDVI. Results show that vegetation has a 1- to 3-month lag response to precipitation
and temperature anomalies. It means the precipitation and temperatures highly correlate with a
time shift of 1 to 3 months. A negative peak cross-correlation between NDVI and precipitation
and a positive peak cross-correlation between NDVI and temperature anomaly correlation are
crucial for assessing the impact of changing climate patterns. Anomaly correlation between
NDVI and climate variables indicates how variations in climate patterns affect vegetation growth
and disease prevalence. The time lag between climatic conditions and changes in NDVI reflects
the health conditions of vegetation caused by Pestalotiopsis disease. The significant reduction in
NDVI values resulting from disease outbreaks and climatic conditions provides evidence for
the development of Pestalotiopsis.

We applied the lagging time series to the features for predicting the NDVI changes using
RFR based on time-lag cross-correlation of temperature and precipitation. Table 3 shows the
features of the prediction model.

In order to evaluate the performance of the predictive model, we utilized time series cross-
validation, a process that involves conducting multiple validation iterations. The prediction
model was built using data from 2019 to 2023. The entire time period was divided into training
and testing sets. The expanding window walk-forward validation method, specifically a fivefold
time series cross-validation, was used in our evaluation, as shown in Fig. 8. As the cross-
validation process progressed, the training data expanded to encompass all data that had preceded
it, while the size of the testing data remained constant. The objective of walk-forward validation
was to enhance the accuracy of the model in predicting the initiation of defoliation, with fore-
casting intervals varying between 1 and 5 months.

Before starting the model’s training and testing phases with the RFR model, we used ran-
domized search and grid search hyperparameter tuning. Randomized search is used as the first
step in hyperparameter optimization. It aids in quickly gaining an understanding of the hyper-
parameter space and identifying promising areas for further investigation through grid search.
The training set was subjected to grid-search time-series cross-validation in order to identify
optimal hyperparameters from the search space and to ensure unbiased tuning. We ran a ran-
domized search for each fold in the time series cross-validation. This experimental setup was
used for three different rubber clones. Table 4 shows the description and optimal hyperparameters
used in the RFR model for each clone.

Figures 9(a)–9(c) show the predicted NDVI results for each clone, with time horizons rang-
ing from 1 to 5 months. The performance of the prediction model is measured by the mean
absolute percentage error (MAPE) which yields the following results for each rubber clone:

BPM 24 RRIC 100 GT 1

Fig. 6 Time-lag cross correlation between NDVI and climate variables (precipitation and
temperature).
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Fig. 7 Time-lag cross correlation between NDVI and climate variables (precipitation and temper-
ature) for (a) GT, (b) BPM24, and (c) RRIC 100.

Table 3 List of features for prediction model.

Features Description Features Description

Precipitation Precipitation lag_pre2 Precipitation value 2 months
before (lag features)

Radiation Radiation lag_rad2 Radiation value 2 months
before (lag features)

Humidity Humidity lag_hum2 Humidity value 2 months
before (lag features)

Wind Speed Wind speed lag_diff_temp2 diff_temp value 2 months
before (lag features)

diff_temp Difference maximum
temperature and
minimum temperature

lag_win2 Wind speed value 2 months
before (lag features)

pre_temp Precipitation/temperature lag_pre_temp2 pre_temp value 2 months
before (lag features)

lag_ndvi1 NDVI value 1 month
before (lag features)

month Month of NDVI
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Fig. 8 Illustration of time series cross-validation.

Table 4 The description and optimal hyperparameter used in the RF regression model.

Hyperparameter Description RRIC 100 BPM24 GT1

max_depth The maximum depth of the tree 10 40 5

max_features Number of random features sampled per node 30 30 40

min_samples_leaf The minimal number of data points required
in order to create a leaf

5 2 5

min_samples_split The minimal number of data points required
to split an internal node

4 4 2

bootstrap Whether to train in bootstrap samples or
on the full train set

True True True

n_estimators The number of trees in the forest 25 25 25

Table 3 (Continued).

Features Description Features Description

lag_pre1 Precipitation value 1 month
before (lag features)

rolling_mean_ndvi mean of ndvi value from lag
features

lag_rad1 Radiation value 1 month
before (lag features)

rolling_mean_diff_temp mean of diff_temp value from
lag features

lag_hum1 Humidity value 1 month
before

rolling_mean_pre Mean of precipitation value
from lag features

lag_diff_temp1 diff_temp value 1 month
before

rolling_mean_pre_temp Rolling mean lag features of
pre_temp

lag_win1 Wind speed value one
month before

rolling_mean_rad Rolling mean lag features of
radiation

lag_pre_temp1 pre_temp 1 month before
(lag features)

rolling_mean_hum Rolling mean lag features of
humidity

lag_ndvi2 NDVI value 2 month
before (lag features)

rolling_mean_win Rolling mean lag features of
wind speed
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8.18% for RRIC 100, 6.07% for BPM24, and 5.96% for GT1. The model had accuracies of
90.80%, 93.65%, and 93.35% for RRIC 100, BPM24, and GT1, respectively.

Figure 10 depicts the important variables in the correlation between NDVI and climate var-
iables for individual rubber clones using RFR model. Incorporating time lag effects of vegetation
and climate variables is especially useful in predictive analysis, particularly when vegetation

Fig. 9 The predicted result of NDVI with horizons of 1 to 5 months for (a) RRIC 100, (b) BPM24,
and (c) GT1 clones.
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responses to changing conditions follow temporal patterns. Our findings show that time lag
effects recognize that the current NDVI value is influenced not only by the immediate past value
but also by values from specific time intervals prior to the current observation. In this study,
the time-lag effects of NDVI (lag_ndvi1, lag_ndvi2, rolling_mean_ndvi) and climate variables,
such as precipitation (lag_pre2, rolling_mean_pre), temperature (lag_diff temp1), radiation
(lag_rad1, lag_rad2), humidity (lag_hum2), and wind speed (wind_speed, lag_win1, lag_win2)
influenced the prediction of NDVI values in time series data. Significantly, the 1-month interval
preceding NDVI features (lag_ndvi1) emerges as the most important NDVI predictor for all
rubber clones.

Precipitation and temperature have a much greater impact on the phenological pattern of all
rubber clones than humidity, wind speed, and radiation. Important characteristics for NDVI value
prediction include the significance of time-lag effects, particularly precipitation (lag_pre2), the
variance in maximum and minimum temperatures (diff_temp, lag_diff_temp2), and the ratio of
precipitation to temperature (pre_temp, lag_pre_temp2). The ratio of precipitation to temperature
offers valuable insights into the equilibrium between temperature and water availability,
a critical determinant in evaluating potential stress on vegetation. A disparity in temperature and
precipitation may indicate water stress, which has negative impacts on plant development and
overall ecosystem health. Furthermore, the combination of increased precipitation and lower
temperatures creates an environment conducive to the growth, spread, and establishment of
pathogenic microorganisms, particularly fungi. This phenomenon contributes to an increased
prevalence of diseases among rubber trees. It is concluded that the temporal lag effects of climate
variables and the vegetation index are significant in the prediction of forthcoming vegetation
dynamics.

The results show the random-forest-based classification was highly effective in modeling the
relationship between NDVI and climate variables. We found a strong correlation between NDVI
and climate variables. This correlation indicates that these variables can be used to determine the
vegetation cover and to assess phenological changes in response to disease outbreaks. The analy-
sis indicated that the outbreak of Pestalotiopsis disease and the weather pattern have been
confirmed to influence the pattern and timing of defoliation and refoliation of rubber trees
(wintering period). We conclude that the analysis of the phenological pattern and the proposed
prediction model can be used to forecast the early wintering period of rubber trees to prevent the
spread of disease and minimize latex yield loss.

Fig. 10 Importance of variables in relationship between NDVI and climate variables.
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4 Conclusion
During the Pestalotiopsis disease outbreak, the phenological pattern of rubber trees changed.
Disease and climate change have shifted the defoliation and refoliation cycles in rubber planta-
tions. Structure of temporal sequences RFR was used in conjunction with NDVI data and climate
variables to forecast the phenological stages or wintering pattern of rubber trees. Time lag effects
in both climate variables and vegetation indices are critical for predicting future vegetation
dynamics. The time lag between temperature and precipitation changes and their impact on the
NDVI was determined to be 1 to 3 months. By utilizing this methodology, complex correlations
between historical and current NDVI values can be captured, thereby improving the precision of
the forecasts. MAPE was applied to evaluate of the NDVI changes with horizon of 1 to 5 months.
RFR algorithm exhibits good performance in predicting the NDVI changes for three rubber
clones, The MAPE of prediction model for each rubber clone are 8.18%, 6.07%, and 5.96%
for RRIC 100, BPM24, and GT1, respectively. The investigation of the phenological pattern
and the prediction of the early stages of rubber tree defoliation is essential for disease spread
prevention and minimize latex yield loss.
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