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Abstract. WorldView-3 (WV-3) is a newly launched (August 2014) high-spatial resolution com-
mercial multispectral satellite sensor with eight visible to near-infrared bands (0.42 to 1.04 μm)
and eight shortwave infrared (SWIR) bands (1.2 to 2.33 μm). Previous analyses using hyper-
spectral imagery (HSI) data of Cuprite, Nevada, to simulate WV-3’s eight SWIR bands dem-
onstrated identification and mapping of a wide variety of minerals, including kaolinite, alunite,
buddingtonite, muscovite, calcite, and hydrothermal silica. These results, using partial unmixing,
showed mineral occurrences similar to those mapped using full resolution HSI data and estab-
lished WV-3’s potential as a valuable new mineral mapping tool. Confusion matrix analyses
using the HSI data as ground truth did indicate, however, some difficulties with mapping spec-
trally similar minerals using the multispectral data. Follow-up mineral mapping, using on-orbit
WV-3 data acquired September 19, 2014, for Cuprite, Nevada, and the same algorithms and
methods used for WV-3 simulation, indicates that the WV-3 sensor is performing as expected.
WV-3 SWIR data analyses closely match expectations for mineral mapping as predicted by the
simulation. While not as capable as an HSI sensor, WV-3’s carefully selected eight SWIR bands
provide new remote mineral mapping capabilities not available from any other spaceborne multi-
spectral system. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.9.096044]
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1 Introduction

WorldView-3 (WV-3), launched August 13, 2014, is the latest in a constellation of commercial
high-spatial resolution Earth imaging satellites developed by DigitalGlobe Inc. (Longmont,
Colorado, USA). WorldView-1 (WV-1) was launched in 2007 with a panchromatic (PAN) im-
aging system capable of 0.5-m spatial resolution.1 WorldView-2 (WV-2), launched in 2009, pro-
vides high-spatial resolution PAN data at a 0.46-m pixel size, plus visible and near-infrared
(VNIR) imagery (0.4 to 1.04 μm) at a 1.85-m spatial resolution in eight multispectral bands.2

WV-3 is an incremental improvement to the previous sensors, delivering essentially the same
PAN and VNIR multispectral capabilities (albeit at 0.31- and 1.24-m spatial resolution, respec-
tively).3 These are supplemented on WV-3 by an additional eight shortwave infrared (SWIR)
bands (referred to here as bands S1 to S8) ranging from approximately 1.2 to 2.33 μm at 3.7-m
spatial resolution (though currently released only at 7.5-m spatial resolution).3 The system also
includes an additional 12 bands “Clouds, Aerosols, Water Vapor, Ice, and Snow” (CAVIS) at 30-
m resolution for atmospheric compensation. Combined, these give WV-3 the distinction of hav-
ing a total of 29 spectral bands, spanning the VNIR-SWIR range, and being the only commercial
high-spatial resolution SWIR multispectral Earth imaging satellite currently in orbit.
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This paper summarizes an assessment of using only the eight WV-3 SWIR bands for mineral
mapping for a well-known site—Cuprite, Nevada. The Cuprite mining district is located about
200 km northwest of Las Vegas, Nevada, USA, along U.S. Highway 95. Surface geology at
Cuprite consists of a variety of Cambrian—through Tertiary-age rocks, most notable for their
extensive hydrothermal alteration4–7 (Fig. 1). Cuprite has been used since the 1970s to validate
multispectral and HSI remote sensing for mineralogical and geological mapping.6–13

An alteration map [Fig. 1(a)] compiled from a combination of airborne multispectral
imagery, traditional field mapping, and laboratory measurements6 and modified in presentation
by the U.S. Geological Survey (USGS)13 is shown to introduce alteration at Cuprite and for later
reference. The three mapped zones (silicified, opalized, and argilized) are classic alteration
descriptions that typically include mineral assemblages rather than a specific individual mineral.
Silicified rocks are described as containing abundant quartz, chalcedony, minor alunite, and kao-
linite, and some postalteration calcite.6,13 Opalized rocks (opalite) contain opal with variable
amounts of kaolinite and alunite, and minor calcite.6,13 Argillized areas are typically within or
adjacent to opalized zones and contain primary quartz, unaltered sanadine, opal, montmorillon-
ite, and kaolinite.6,13

Produced from airborne visible/infrared imaging spectrometer (AVIRIS) data by the USGS,13

Fig. 1(b) is a subset of the original image map, and provides a more detailed surface mineralogy
reference. The USGS mineral map is a highly detailed compilation of surface minerals based on
an expert system approach to HSI spectral feature and shape matching,11 and is supported by
field validation, x-ray diffraction, and laboratory spectral measurements.13 The spectral map
includes identification and mapping of several mineral groups, and information about mineral
composition, crystallinity, and spectral mixing based on matching to specific library spectra.13,14

While this provides extensive mineralogic information for Cuprite, note that most HSI algo-
rithms do not map to this level of detail, so more general mineral classes are used in this
study. Broader groups of key minerals are more typically identified, including kaolinites, alun-
ites, buddingtonite, muscovites, carbonates, and certain types of silica. Note that most algorithms
also map only the spectrally predominant mineral at each pixel. This is the approach adopted for
our investigation.

Fig. 1 (a) Cuprite field alteration map.6 (b) U.S. Geological Survey (USGS) hyperspectral imagery
mineral map of Cuprite.13
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The results reported here are a follow-up to a previous study which utilized hyperspectral
data to simulate WV-3 data and predict mineral mapping performance.12,15 Mapping results for
on-orbit WV-3 utilizing the exact same methodology and algorithms as those used in the sim-
ulation are reported and are directly compared to previous simulated WV-3 mineral mapping
performance. Results indicate that the capability to map selected key minerals at Cuprite
using WV-3 is similar to that predicted by simulation. Overall, on-orbit WV-3 SWIR data gen-
erally match mineral mapping as predicted by simulation and provide unprecedented high-spatial
resolution and multispectral capabilities.

2 Previous WorldView-3 Simulation

Previous research predicting WV-3 capabilities for spectral mapping of mineralogy utilized
AVIRIS data to simulate WV-3 SWIR data.12,15 AVIRIS data were spectrally resampled to
the proposed eight SWIR WV-3 bands at 3.7- and 7.5-m spatial resolution, and characteristic
reflectance signatures extracted from the data for known mineral locations were used to map
locations of specific minerals. Results demonstrated that WV-3 spectral bands should permit
identification and mapping of certain key minerals; however, a potential exists for multispectral
mapping errors for spectrally similar minerals.

2.1 AVIRIS Data and Analysis

AVIRIS radiance data collected by the Jet Propulsion Laboratory (JPL) on October 14, 2010, at
3-m spatial resolution for the Cuprite, Nevada, site were used as the starting point for the pre-
viously reported WV-3 SWIR simulation and mineral mapping.12 AVIRIS is an imaging spec-
trometer [hyperspectral imaging (HSI) system], measuring radiance over the 0.4 to 2.5 μm range
in 224 spectral bands at approximately 10-nm spectral resolution and variable spatial resolutions
from approximately 2 to 20 m depending on flight altitude.16,17 Eighty-six SWIR bands between

Fig. 2 (a) Mean shortwave infrared (SWIR) spectra extracted from the airborne visible/infrared
imaging spectrometer (AVIRIS) data at 7.5-m spatial resolution for selected image regions of inter-
est (ROI) with known mineralogy. (b) Mixture-tuned-matched filter (MTMF) mineral map showing
spectrally predominant mineral for each AVIRIS pixel.12
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approximately 1.2 and 2.5 μm with 3-m spatial resolution data were used for this analysis. The
AVIRIS data were coregistered to orthorectified Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) imagery,18,19 and resampled to both 3.7-m native WV-3 res-
olution, and the proposed WV-3 release spatial resolution of 7.5 m for analysis. The radiance
data were corrected to apparent reflectance using the model-based “ACORN” atmospheric cor-
rection program20 and further refined using field-measured calibration spectra.21 This allows
direct comparison to laboratory and field spectra (spectral libraries) using both visual and auto-
mated approaches.22–29 Characteristic mean HSI reflectance signatures for laterally extensive
minerals important to understand the general geology and hydrothermal alteration at Cuprite
were extracted from the data for known mineral locations [Fig. 2(a)], and mapped using the
mixture-tuned-matched filter (MTMF) partial unmixing algorithm30–32 [Fig. 2(b)].

The AVIRIS data were analyzed using a standardized approach—linear transformation uti-
lizing the minimum noise fraction transformation33 to whiten noise, followed by MTMF.30–32

Typically used for HSI data, this method locates known spectral signatures in the presence
of a mixed or unknown background (Fig. 3). MTMF is also described as “partial unmixing,”
as it does not require knowledge of all of the spectral endmembers, thus each individual
material can be separately unmixed without knowing the full background composition. MTMF
combines the best attributes of the classic matched filter (MF)34–36 with the feasibility con-
straints of spectral mixing.37 It allows both determination of specific minerals and estimation
of their pixel abundances by calculating two measures: an MF score and infeasibility score
(Fig. 3).32

These two attributes are typically used together to determine occurrence and abundance of a
particular material at each pixel of a spectral image dataset. The MF score determines the spectral
abundance of the material, while the infeasibility score determines whether the measurement is a
feasible mixture of background and the target signature. Two-dimensional scatter plotting is
usually used to highlight feasible mixtures; however, this is somewhat subjective. For the pur-
poses of this research, an “MTMF Feasibility Ratio”38 (MF score/infeasibility score) was used
for standardization between the datasets. All data analyzed utilizing MTMF were thresholded to
show only the best mineral match (one material per pixel) for MTMF feasibility ratios greater
than 0.025. AVIRIS results are presented for the spectrally predominant minerals only [Fig. 2(b)]
to facilitate later comparison with the simulated WV-3 data. Mineral classes mapped using
AVIRIS generally correspond with the main mineral groups and locations shown in previously
published alteration maps5,6 and HSI-derived mineral maps7–13 (Fig. 1). The same MTMF map-
ping approach was applied to AVIRIS data and simulated WV-3 data,12 and subsequently to the
on-orbit WV-3 data for consistency.

Fig. 3 MTMF concept showing identification and quantification of a known target spectrum in the
presence of a diverse background. Higher MF scores (from 0.0 to 1.0 ¼ 0% to 100% abundance)
indicate that there is more of the target spectrum material in the pixel of interest. Lower infeasibility
scores [forming 1σ and 2σ (etc.) cones extending from the background to the target] constrain the
spectral signature in the context of mixing of the background and target signature. The best spec-
tral matches can be mapped based on meeting the combined criteria of high MF score and low
infeasibility score.32
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2.2 WV-3 Simulation and Results

Simulated WV-3 SWIR bandpass functions were built based on specifications and generic
response functions provided by DigitalGlobe (DG) (Table 1).39 AVIRIS reflectance data
were spectrally resampled to the WV-3 bands using the simulated bandpasses, which were nomi-
nally similar to those measured for the actual WV-3 system launched into orbit in 2014 (Table 1
and Fig. 4).40 The spectrally simulated WV-3 data were then resized to 3.7- and 7.5-m spatial
resolution using pixel aggregation (averaging). The 7.5-m data were used for subsequent
analyses.

Mean SWIR reflectance spectra for selected minerals were extracted from the simulated WV-
3 data based on known field locations (same locations as for the AVIRIS data) [Fig. 5(a)]. The
spectral signatures were used to perform MTMF to match spectral signatures and map spatial
locations [Fig. 5(b)]. Results were visually compared to AVIRIS mean spectra and map-
ping (Fig. 2).

Despite numerous remote sensing campaigns at Cuprite, no fully validated ground truth
exists for the site—in fact, HSI data provide the best, most detailed mineral maps available
[Fig. 1(b)].13 Mineral classes mapped using AVIRIS, as part of this research, generally corre-
spond with the main mineral groups and locations shown in previously published alteration
maps5,6 and HSI-derived mineral maps7–13 (Fig. 1). For the purposes of this validation, the
AVIRIS mineral map described here and shown in Fig. 2(b) was used as surrogate ground
truth to evaluate WV-3 performance. These data were directly comparable in spectral and spatial

Table 1 Comparison of simulated WV-3 shortwave infrared (SWIR) bands versus on-orbit WV-3
SWIR. Full on-orbit WV-3 band responses (measured prelaunch) are shown in Fig. 4.

SWIR ID WV-3 (Simulated) WV-3 (On-Orbit)

Band S1 1.2097 1.2091

Band S2 1.5695 1.5716

Band S3 1.6495 1.6611

Band S4 1.7295 1.7295

Band S5 2.1645 2.1637

Band S6 2.2045 2.2022

Band S7 2.2594 2.2593

Band S8 2.3291 2.3292

Fig. 4 WorldView-3 SWIR band responses (September 26, 2013).
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Fig. 5 (a) Mean reflectance spectra extracted from simulated WV-3 SWIR data at 7.5-m spatial res-
olution for selected image ROIs with known mineralogy. (b) MTMF mineral map showing spectrally
predominant mineral for each simulated WV-3 pixel.12 Visually compare to Fig. 2 AVIRIS results.

Table 2 Confusion matrix and supporting statistics comparing WV-3 simulated results (vertical
axis) to airborne visible/infrared imaging spectrometer (AVIRIS) mixture-tuned-matched filter
(MTMF) results (horizontal axis). Accuracy 50.92% and Kappa ¼ 0.3843.

Class Unclass Alunite Budd. Kaolinite Calcite Silica Musov Total

Unclass 45.39 16.92 1.21 18.50 2.61 10.73 11.44 28.11

Alunite 4.30 34.69 0.26 3.55 2.06 0.32 3.75 7.45

Budd. 13.72 4.20 73.54 8.91 2.23 9.39 3.51 9.30

Kaolinite 6.24 14.14 20.76 46.84 4.03 8.49 14.47 11.55

Calcite 11.46 5.34 0.71 6.53 82.44 0.50 5.79 15.60

Silica 10.13 6.77 3.26 7.08 2.31 67.93 5.13 10.89

Muscov. 8.56 17.95 0.26 8.59 4.31 2.65 55.90 17.10

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Class Commission (%) Omission (%) Prod acc (%) User acc (%)

Unclass 22.13 54.41 45.59 77.87

Alunite 42.75 65.31 34.69 57.25

Budd. 97.46 26.46 73.54 2.54

Kaolinite 70.28 53.16 46.84 29.72

Calcite 49.10 17.56 82.44 50.90

Silica 67.31 32.07 67.93 32.69

Muscovite 43.86 44.10 55.90 56.14

Note: bold values represent correlation between WV-3 simulated results and AVIRIS results for each mineral.
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coverage and spatial resolution. Visual comparison of the two mineral maps indicates a good
correspondence [Figs. 2(b) and 5(b)]. A confusion matrix41 computed using the AVIRIS as
“ground truth” and evaluated with respect to mapping specific alteration minerals using the
simulated WV-3 data,12 however, shows that the overall accuracy is 50.92% and the per-
pixel match between the AVIRIS and WV-3 mineral mapping results using the Kappa coeffi-
cient42,43 is 0.38 (Table 2). The simulated WV-3 data performed best for identification and map-
ping of buddingtonite, calcite, and silica according to the diagonals of the confusion matrix.
Assessment of the errors of commission and omission in Table 2 and the AVIRIS and simulated
WV-3 mineral maps illustrate, however, that the simulation mapped a large amount of budding-
tonite, where the AVIRIS data did not [Figs. 2(b) and 5(b)]. Table 2 also illustrates that signifi-
cant portions of the errors for all classes are attributable to unclassified areas, indicating that
rather than misidentification of materials, many of the errors are ones where no identification
was possible using the multispectral data, presumably because the simulated WV-3 data cannot
resolve key spectral features because of lower spectral resolution. Additionally, Table 2 shows
that there is significant confusion between alunite, kaolinite, and muscovite as well as between
buddingtonite and kaolinite at simulated WV-3 bandpasses and spectral resolution.

Excluding unclassified pixels from the confusion matrix analysis improves the overall accu-
racy to 63.43% and the Kappa coefficient to 0.54 (Table 3). Confusion matrix diagonals are
somewhat improved, and errors of commission and omission are more easily evaluated with
respect to specific minerals. Buddingtonite, kaolinite, and silica are most often mapped as
another mineral. AVIRIS pixels containing alunite, kaolinite, and muscovite are most often miss-
ing from the simulated WV-3 MTMF mapping.

Table 3 Confusion matrix and supporting statistics comparing WV-3 simulated results (vertical
axis) to AVIRIS MTMF results (horizontal axis). Unclassified omitted. Accuracy 63.43% and
Kappa ¼ 0.5406.

Class Unclass Alunite Budd. Kaolinite Calcite Silica Musov Total

Unclass

Alunite 41.75 0.26 4.36 2.12 0.35 4.23 11.76

Budd. 5.06 74.44 10.94 2.29 10.52 3.96 5.94

Kaolinite 17.02 21.01 57.47 4.14 9.51 16.34 18.70

Calcite 6.42 0.72 8.01 84.65 0.56 6.54 22.06

Silica 8.14 3.30 8.69 2.37 76.09 5.80 13.17

Muscov. 21.60 0.26 10.53 4.43 2.97 63.13 28.38

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Class Commission (%) Omission (%) Prod acc (%) User acc (%)

Unclass

Alunite 20.80 58.25 41.75 79.20

Budd. 91.30 25.56 74.44 8.70

Kaolinite 59.88 42.53 57.47 40.12

Calcite 21.37 15.35 84.65 78.63

Silica 40.91 23.91 76.09 59.09

Muscovite 26.10 36.87 63.13 73.90

Note: bold values represent correlation between WV-3 simulated results and AVIRIS results for each mineral.
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Some minerals are better separated by the WV-3 SWIR bands than others. Examination of the
confusion matrices shows that performance is high for calcite, buddingtonite, and silica. There is
still, however, confusion between minerals with similar SWIR spectral features such as alunite,
kaolinite, and muscovite, which at high spectral resolution all have characteristic spectral fea-
tures near 2.2 μm [Fig. 2(a)].

3 On-Orbit WV-3: Empirical Line Reflectance, Mineral Mapping, and
Comparisons

WV-3 data of the Cuprite site were acquired September 19, 2014, at 3.7-m spatial resolution.
SWIR data were prepared for release by DG at 7.5-m spatial resolution and stacked with the
1.6-m resolution VNIR bands using nearest neighbor resampling, providing a 16 band data cube.
The full dataset was corrected to reflectance by DG using an empirical line correction44,45 of WV-
3 radiance data to October 2010 HSI AVIRIS reflectance data. AVIRIS data were previously
corrected to reflectance using the model-based “FLAASH” atmospheric correction.46 FLAASH-
corrected AVIRIS reflectance spectra of bright and dark in-scene targets (playa and basalt,
respectively) were used with WV-3 spectra for the same areas/materials to perform a linear
regression (empirical line correction, calculating, and applying gains and offsets), converting
radiance for each WV-3 band to match the known AVIRIS reflectance. (Note that DG plans
to implement a WV-3 atmospheric-model-based reflectance correction, taking advantage of
the WV-3 aerosol and water vapor CAVIS bands; however, this correction was not available
to apply to the data used in this investigation.) Representative reflectance spectra were then
extracted from the WV-3 SWIR reflectance data for known minerals using the same locations
defined for both AVIRIS and simulated WV-3 analyses. MTMF mineral mapping was applied
using the standardized approach, and the on-orbit WV-3 mapping results were compared to the
AVIRIS mineral mapping results and the previous WV-3 simulation.

3.1 Comparison of SWIR Imagery

SWIR color composites were generated from the AVIRIS data, the simulated WV-3 data, and the
on-orbit WV-3 data using bands at approximately 1.65, 2.20, and 2.33 μm (RGB) (Fig. 6).
Potentially altered areas are shown on the images as magenta to red pixels. Based on
known mineralogy, the alteration mineral alunite (absorption feature near 2.16 μm) appears
dark magenta, whereas areas with argillic (high kaolinite content) alteration and muscovite
(absorption features near 2.2 μm) occur as more pure red (pink) colors. Note the close visual
match between AVIRIS, simulated WV-3, and on-orbit WV-3 color composites (Fig. 6).

3.2 Comparison of Mean Image Spectra for Known Locations

Mean SWIR reflectance spectra extracted from all three datasets for the previously defined
regions of interest (ROI) show a close correspondence between the AVIRIS spectra, the

Fig. 6 SWIR color composite images using (a) AVIRIS bands 137, 194, 207 (1.652, 2.198, 2.327 μm)
as RGB, (b) WV-3 simulated data using SWIR bands S3, S6, S8 (1.65, 2.20, 2.33 μm) as RGB, and
(c) on-orbit WV-3 data using bands S3, S6, S8 (1.661, 2.202, 2.329 μm) as RGB.
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simulated WV-3 spectra, and the actual WV-3 spectra (Fig. 7). All spectra have the expected
shapes and show key absorption features, with less than 5% error in all cases. Nearly all of the
spectra agree to within about 2%. Clearly, on-orbit WV-3 spectra delineate the mineralogy at
Cuprite, exhibiting spectra very similar to those predicted in the WV-3 simulation using AVIRIS
HSI data. Specific key features present in the WV-3 spectra include the 2.2 and 2.3 μm absorp-
tion features in muscovite [Fig. 7(a)], the 2.33 μm feature in calcite [Fig. 7(b)],
the asymmetrical 2.2 μm feature in kaolinite [Fig. 7(c)], the 2.16 μm feature in alunite
[Fig. 7(d)], and the broad hydrothermal silica shoulder feature near 2.25 μm [Fig. 7(e)]. The
buddingtonite feature near 2.1 μm is still distinct, but is shifted to 2.2 μm because WV-3 does
not include a specific band at 2.1 μm [Fig. 7(f)]. Together, these spectra form the basis of the
MTMF mineral mapping for the Cuprite site.

3.3 Comparison of MTMF Mineral Maps

The on-orbit WV-3 reflectance spectra extracted for the previously defined ROI for selected
minerals based on known field locations (Fig. 7) were used to perform MTMF to map the spatial
locations of specific minerals [Fig. 8(c)]. This result was visually compared to the AVIRIS
MTMF results [Fig. 8(a)] and simulated WV-3 MTMF mapping results [Fig. 8(b)]. The
WV-3 on-orbit results [Fig. 8(c)] generally appear to match the simulated WV-3 mapping
[Fig. 8(b)]. In some aspects, however, they actually appear to more closely match AVIRIS map-
ping (better performance than predicted). For example, it appears that the actual WV-3 sensor did
a better job of mapping buddingtonite and kaolinite than that shown in the simulated results.
Note that buddingtonite occurrences mapped by WV-3 are limited, and mostly correspond to

Fig. 7 Comparison of mean SWIR reflectance spectra extracted from the three datasets (AVIRIS,
WV-3 simulated data, and on-orbit WV-3 data) for selected ROIs with known mineralogy: (a) mus-
covite, (b) calcite, (c) kaolinite, (d) alunite, (e) hydrothermal silica, and (f) buddingtonite. Note that
colored symbols indicate the simulated WV-3 spectra, which are nearly identical to the AVIRIS
spectra where they overlap, but with fewer bands.

Kruse, Baugh, and Perry: Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave. . .

Journal of Applied Remote Sensing 096044-9 Vol. 9, 2015



those shown in AVIRIS (cyan colored areas near the center of the left image), while the simulated
WV-3 shows more extensive buddingtonite occurrences in areas known to be principally alunite
or unclassified (cyan areas near top of center image and along right center edge, Fig. 8).

3.4 Comparative Statistics

Again, the AVIRIS HSI data provide the best, most detailed mineral maps available for the
Cuprite site.13 Comparison of the AVIRIS and on-orbit WV-3 MTMF mineral maps illustrates
that mapped mineral classes generally correspond with main mineral groups and locations shown

Fig. 8 (a) SWIR MTMF mineral mapping using AVIRIS, (b) WV-3 simulated data, and (c) on-orbit
WV-3 data.

Table 4 Confusion matrix and supporting statistics comparing WV-3 results (on-orbit 2014) (ver-
tical axis) to AVIRIS results (horizontal axis). Accuracy 55.90% and Kappa ¼ 0.3902.

Class Unclass Alunite Budd. Kaolinite Calcite Silica Musov Total

Unclass 65.63 26.48 10.33 29.18 14.05 35.26 24.25 44.30

Alunite 7.13 35.02 13.07 13.41 2.86 4.48 6.30 10.35

Budd. 2.03 1.57 36.72 1.93 0.82 3.70 1.00 1.87

Kaolinite 4.72 16.97 36.67 40.14 4.36 15.71 9.97 10.37

Calcite 6.77 2.11 0.90 2.82 62.52 1.68 4.48 10.60

Silica 3.36 2.16 0.88 2.77 1.39 36.71 1.11 4.33

Muscov. 10.36 15.68 1.44 9.76 14.00 2.46 52.88 18.18

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Class Commission (%) Omission (%) Prod acc (%) User acc (%)

Unclass 28.88 34.37 65.63 71.12

Alunite 58.38 64.98 35.02 41.62

Budd. 93.70 63.28 36.72 6.30

Kaolinite 71.62 59.86 40.14 28.38

Calcite 43.19 37.48 62.52 56.81

Silica 55.60 63.29 36.71 44.40

Muscovite 50.05 47.12 52.88 49.95

Note: bold values represent correlation between on-orbit WV-3 results and AVIRIS results for each mineral.
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in previously published alteration maps5,6 and HSI-derived mineral maps.7–13 The AVIRIS min-
eral map shown in Fig. 2(b) and again in Fig. 8(a) provided surrogate ground truth to evaluate the
WV-3 performance [Fig. 8(c)]. Confusion matrices were computed using AVIRIS as ground
truth and evaluated for mapping each specific alteration mineral. The overall performance of
WV-3 on-orbit (Table 4) appears similar to that predicted by the WV-3 simulation (Table 2).
While visual comparison of the two mineral maps suggests good correspondence, closer inspec-
tion and analysis of the confusion matrices for these data (Table 4) demonstrates an overall
accuracy of 55.90% and the per-pixel match between AVIRIS and WV-3 mineral mapping
results using the Kappa coefficient42,43 is 0.39. The on-orbit WV-3 data performed best for iden-
tification and mapping of calcite and muscovite according to confusion matrix diagonals. Further
assessment of errors of commission and omission indicates that WV-3 mapped a greater amount
of buddingtonite compared to AVIRIS. This was less severe for the on-orbit WV-3 mapping, with
only 16,263 pixels (2%) mapped as buddingtonite when they should have been unclassified,
compared to the simulated WV-3 map of 109,847 pixels (14%) as buddingtonite that were
unclassified on the AVIRIS mineral map. On-orbit WV-3 also exhibited considerable errors
of commission for kaolinite and alunite mineral mapping. Most errors were caused by mapping
unclassified AVIRIS pixels as specific minerals by WV-3 (Table 4). Overall, WV-3 illustrated
serious errors of omission with respect to nearly all minerals mapped, indicating that, in many
cases, no identification was possible using the multispectral data and the MTMF approach.
These errors are similar to those observed in the WV-3 simulation. Table 4 shows that at
the actual WV-3 bandpasses and spectral resolution, significant mineral mapping confusion
exists between alunite, kaolinite, and muscovite. This is most prevalent in alluvial fan areas,
where mixing occurs between all three minerals. Additional confusion exists between

Table 5 Confusion matrix and supporting statistics comparing WV-3 results (on-orbit 2014) (ver-
tical axis) to AVIRIS (horizontal axis). Unclassified pixels omitted. Accuracy 62.23% and
Kappa ¼ 0.5122.

Class Unclass Alunite Budd. Kaolinite Calcite Silica Musov Total

Unclass

Alunite 47.64 14.58 18.94 3.33 6.92 8.32 17.67

Budd. 2.14 40.95 2.72 0.95 5.72 1.32 2.29

Kaolinite 23.08 40.89 56.68 5.07 24.26 13.16 20.67

Calcite 2.88 1.00 3.98 72.24 2.60 5.91 18.74

Silica 2.93 0.98 3.91 1.62 56.71 1.47 6.94

Muscov. 21.33 1.60 13.77 16.29 3.79 69.81 33.69

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Class Commission (%) Omission (%) Prod acc (%) User acc (%)

Unclass

Alunite 37.81 52.36 47.64 62.19

Budd. 86.86 59.05 40.95 13.14

Kaolinite 63.68 43.32 56.68 36.32

Calcite 18.05 27.26 72.74 81.95

Silica 29.26 43.29 56.71 70.74

Muscovite 31.24 30.19 69.81 68.76

Note: bold values represent correlation between on-orbit WV-3 results and AVIRIS results for each mineral.
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buddingtonite and kaolinite, probably due to the fact that WV-3 does not have a spectral band
that corresponds exactly to the buddingtonite absorption feature near 2.11 μm. Both results are
similar to the previous WV-3 simulation.

Exclusion of unclassified pixels from the confusion matrix analysis for on-orbit WV-3 data
improves both the overall accuracy to 62.23% and the Kappa coefficient to 0.51 (Table 5).
Confusion matrix diagonals are significantly improved and errors of commission and omission
are clarified with respect to specific minerals. As observed in the previous WV-3 simulation,
buddingtonite, kaolinite, and silica are most often mapped as another mineral. Errors of omis-
sion, however, are generally higher for on-orbit WV-3 mineral mapping than indicated by sim-
ulation predictions.

3.5 Other Approaches and Products

Even though WV-3 is a multispectral sensor, we have compared its performance to the hyperspec-
tral AVIRIS sensor and direct mineral mapping approaches to establish a baseline against HSI
mineral mapping. This research establishes that, in fact, WV-3 can directly map some minerals
based on their spectral signatures because of the well-designed placement of its SWIR bands.
There are also other approaches well-suited to multispectral analysis that can produce unique and
useful mapping products. A few selected examples shown here for WV-3 include spectral-based
methods such as band ratios, directed color composite images, and mineral indices.

Color ratio composite images have long been used to highlight spectral signature shapes
using multispectral data.4,47–49 These are known to reduce the effects of shade, shadows, and
image noise on classification. WV-3 VNIR reflectance ratios, in combination with the WV-3
S3/S5 (1.66∕2.20 μm) ratio, provide legacy capabilities similar to Landsat color ratio composites
that include the Thematic Mapper SWIR bands 5/7 (1.65∕2.20 μm) ratio, but at much higher
spatial resolution. This ratio generally allows mapping of clays and carbonates.49 The well-
placed WV-3 SWIR bands also provide a wide range of new possibilities for mapping key mate-
rials of interest for geologic and alteration mapping using band ratios. For example, WV-3 SWIR
band ratios S5/S6 (2.16∕2.20 μm) and S7/S6 (2.26∕2.20 μm) used together highlight spectral
absorption features at 2.2 μm. Band ratio S7/S8 (2.26∕2.33 μm) in combination with band ratio
S7/S6 (2.26∕2.20 μm) accentuates the distribution of materials with absorption features near
2.33 μm and establishes a spectral slope for materials like alunite. Combining S5/S6, S7/S6,
and S7/S8 ratios (RGB) as a color composite image allows mapping of materials like muscovite
(light red), alunite and related minerals (blue-green), and carbonates (blue) [Fig. 9(a)]. The
orange area right–center in the image corresponds to the distribution of hydrothermal silica.
Other band ratios can be designed utilizing both VNIR and SWIR bands to highlight different
minerals or specific materials, and to identify and/or mask areas of water or vegetation.

Directed color composites are simple three-band color images designed based on the known
spectroscopic response of materials of interest. Key materials can be emphasized in specific
colors by strategically selecting the three bands used for the RGB display based on spectral
features and characteristics of the material(s) of interest. Using bands centered on a specific
spectral absorption feature allows design of a color composite showing the desired material
(s) in a predetermined color or range of colors. The vertical colored lines in the spectral
plot [Fig. 9(b)] show the RGB bands used in the WV-3 directed color composite image of
SWIR bands S5, S6, and S8 (2.16, 2.20, 2.33 μm) [Fig. 9(c)]. Image color saturation was
enhanced using decorrelation stretching.50 Muscovite appears red because of high SWIR
band S5 (2.16 μm) reflectance coupled with low contributions of green and blue caused by
absorption in SWIR band S6 (2.20 μm) and lower reflectance in SWIR band S8 (2.33 μm).
Kaolinite is light magenta because of high contribution from SWIR band S5 (2.16 μm) in con-
junction with some contribution of blue and green from SWIR bands S8 (2.33 μm) and S6
(2.20 μm), respectively. Carbonates (calcite) are yellow-green in Fig. 9(c) because of high reflec-
tance in SWIR bands S5 (2.16 μm) and S6 (2.20 μm) and low reflectance in SWIR band S8
(2.33 μm) caused by the carbonate absorption feature near 2.33 μm. Alunite appears blue in the
image because of higher reflectance near 2.33 μm compared to lower reflectance in SWIR bands
S5 (2.16 μm) and S6 (2.20 μm). Other directed color composites can be designed to highlight
specific materials, spectral shapes, or absorption features.
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Indices for mapping spectral characteristics of materials using multispectral data have long
been used for detection of vegetation (e.g., NDVI).51–53 They have also been extensively used for
geologic/mineral mapping with the ASTER sensor,48,54,55 which had SWIR spectral bands sim-
ilar to WV-3, but at a lower (30 m) spatial resolution. Mineral indices are typically more complex
images than simple RGB color composites or band ratios. They are designed to show occurrence
measures for specific minerals or groups of minerals. There are many possible combinations,
several of which are shown in Fig. 10 to illustrate the WV-3 capabilities.

These alternative processing and analysis methods demonstrate the wealth of spectral infor-
mation available in the WV-3 SWIR bands. They illustrate that the WV-3 data are equally ame-
nable to mineral analysis using a wide variety of algorithms and methods developed for
multispectral data analysis. In addition to unique SWIR bands, WV-3 provides matchless oppor-
tunities for fused VNIR-SWIR analysis and for PAN sharpening of results at an unprecedented
0.31-m spatial resolution.

Fig. 9 (a) WV-3 SWIR reflectance band ratios S5/S6, S7/S6, S7/S8 (2.16∕2.20 μm,
2.26∕2.20 μm, 2.26∕2.33 μm) as RGB, (b) selected representative WV-3 mineral spectra, and
(c) directed color composite with SWIR bands S5, S6, and S8 (2.16, 2.20, 2.33 μm) as RGB.
Color saturation of the right image was enhanced using decorrelation stretching50 (hues remain
unchanged). The vertical colored lines in the spectral plot (b) show the bands displayed as RGB in
the directed color composite image (c). The spectral plots are used to design specific color ratios
and directed color composites to show materials of interest in predetermined colors.

Fig. 10 Selected SWIR mineral indices derived from the on-orbit WV-3 data. (a) WV-3 carbonate
index [defined here as WV-3 SWIR bands [S6∕ðS7þ S8Þ], or 2.20 μm∕ð2.26 μmþ 2.33 μmÞ]:
areas with carbonate signatures appear red or white. (b) Alunite/kaolinite/pyrophyllite index
[defined by the USGS as a relative band depth (RBD) image48 using ASTER bands
ðS4þ S6Þ∕S5 and implemented here as WV-3 SWIR bands [ðS3þ S6Þ∕S5], or
ð1.66 μmþ 2.20 μmÞ∕2.16 μm]: areas with these minerals are green through white. (c) AL-OH
group composition index [defined by CSIRO55 as ASTER bands ðS5þ S7Þ∕S6 and adapted
here to WV-3 SWIR bands ðS5þ S7Þ∕S6 or ð2.16 μmþ 2.26 μmÞ∕2.20 μm]: blue is well ordered
kaolinite or Al-rich white mica (muscovite, illite, paragonite, pyrophyllite, beidellite). Red is Al-poor
(Si-rich) white mica (phengite), or montmorillonite.55
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4 Conclusions

WV-3 is a highly capable commercial multispectral satellite sensor with an impressive combi-
nation of high-spatial resolution and key SWIR spectral bands. Previous simulation using
AVIRIS data of Cuprite, Nevada, demonstrated that WV-3 should be able to identify and
map selected minerals based on their SWIR spectral properties utilizing spectral matching
approaches. MTMFmineral maps produced during the simulation showed similar mineral occur-
rences and spatial distributions to those mapped using full-resolution, 86-SWIR-band AVIRIS
data. Statistical analyses using confusion matrices and AVIRIS data as ground truth, however,
illustrated typical multispectral shortcomings (confusion between similar minerals), caused by
reduced spectral resolution as compared to AVIRIS and with respect to key spectral features of
minerals. Given that WV-3 is not a hyperspectral sensor and does not perform as such, simulated
WV-3 mineral mapping results were promising, establishing WV-3’s potential as valuable new
tool for geologic and alteration mapping—better than any other commercial multispectral sensor
currently in orbit.

Follow-up mineral mapping using actual on-orbit WV-3 data for Cuprite and the same
algorithms and methods used for the simulation, indicates that the WV-3 sensor is performing
as expected and predicted. Extracted spectra are remarkably similar to the simulated spectra
with typically less than 5% error. Key mineral features are readily apparent in the on-orbit
WV-3 spectra, and these were successfully used to map the character and distribution of
alteration minerals at the Cuprite site using the MTMF approach. Minerals mapped included
kaolinite, alunite, buddingtonite, muscovite, calcite, and hydrothermal silica. Overall, the on-
orbit WV-3 SWIR data closely match expectations for mineral mapping as predicted by the
simulation, and WV-3’s carefully selected eight SWIR bands and 7.5-m resolution provide
extensive new mineral mapping capabilities not available from other spaceborne multispec-
tral systems.

In addition to the direct mineral mapping approaches described in the WV-3 simulation and
validated against on-orbit WV-3 SWIR data, the unique selection of spectral bands provides
SWIR multispectral mapping capabilities similar to those demonstrated by the ASTER sensor
but at much higher spatial resolution. Approaches such as band ratios, directed color composites,
and mineral indices can be used with WV-3 data along with direct mineral mapping methods and
other multispectral algorithms to provide results unmatched by any current orbiting commercial
sensor. With the ASTER SWIR bands now defunct; WV-3 is the only multispectral sensor cur-
rently in orbit with multiple, nearly contiguous, SWIR bands. It is clear that WV-3 will provide
vastly improved capabilities in support of geologic and other surface mapping applications.
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