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Abstract. Understanding how cortical networks interact in response to task demands is important both for pro-
viding insight into the brain’s processing architecture and for managing neurological diseases and mental dis-
orders. High-density diffuse optical tomography (HD-DOT) is a neuroimaging technique that offers the significant
advantages of having a naturalistic, acoustically controllable environment and being compatible with metal
implants, neither of which is possible with functional magnetic resonance imaging. We used HD-DOT to
study the effective connectivity and assess the modulatory effects of speech intelligibility and syntactic complex-
ity on functional connections within the cortical speech network. To accomplish this, we extend the use of a
generalized psychophysiological interaction (PPI) analysis framework. In particular, we apply PPI methods
to event-related HD-DOT recordings of cortical oxyhemoglobin activity during auditory sentence processing.
We evaluate multiple approaches for selecting cortical regions of interest and for modeling interactions
among these regions. Our results show that using subject-based regions has minimal effect on group-level con-
nectivity maps. We also demonstrate that incorporating an interaction model based on estimated neural activity
results in significantly stronger effective connectivity. Taken together our findings support the use of HD-DOT
with PPI methods for noninvasively studying task-related modulations of functional connectivity. © The Authors.
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1 Introduction
Functional neuroimaging has provided substantial insight into
how distributed dynamic neural processes are related in space
and time. Collections of brain regions implicated in task-
based or resting-state studies constitute functionally integrated
systems of neural networks with properties that have been
shown to be remarkably consistent across healthy
participants.1–3 Importantly, disruptions or alterations of these
functional networks have been shown to correlate with the
stage of multiple neurodevelopmental and neurodegenerative
conditions such as Autism and Alzheimer’s diseases.4–8

Mapping functional brain networks can potentially aid in
early prediction of these conditions and could facilitate the opti-
mization of interventions and tracking of treatment efficacy.
However, technical limitations such as a fixed scanner, contra-
indication with metal implants, loud scanner noise, and emo-
tional distress associated with the fear of small spaces limit
the clinical and translational applications of functional magnetic
resonance imaging (fMRI) for many types of diagnostic and
prognostic studies.

An emerging optical neuroimaging technique, high-density
diffuse optical tomography (HD-DOT), has the potential to
be used as a surrogate to fMRI in many circumstances.

HD-DOT provides a more naturalistic imaging setting where
the acoustic environment is highly controllable. It is metal-com-
patible, cap-based imaging that samples the brain’s hemo-
dynamic response with a relatively high temporal resolution
[compared to time course of the hemodynamic response func-
tion (HRF)] and provides fMRI-comparable anatomical locali-
zation at the gyral level.9 To date, DOT studies have been mainly
focused on investigating functional segregation (i.e., activity in
specific brain regions related to a particular task)10–12 or evalu-
ating resting state functional connectivity (i.e., correlations
among intrinsic activities of remote brain regions).13,14

Excluding topographic studies using functional near-infrared
spectroscopy,15,16 no previous studies have used optical neuro-
imaging to map effective connectivity within the brain (i.e., the
influence that one brain region exerts over another during a task
performance17) (Note that functional connectivity is a statistical
relationship between two time series, whereas effective connec-
tivity refers to the influence one system exerts over another, i.e.,
it implies a directionality to the relationship; see Ref. 18).

In the fMRI literature, psychophysiological interaction
(PPI) analysis has been among the most promising techniques
for examining effective connectivity.19–21 PPI analyses provide
estimates of effective connectivity patterns by modeling activ-
ity in brain regions in terms of the interactions among the input
from a seed brain region of interest (ROI) (physiological com-
ponent) and the demand imposed by a cognitive process
(psychological component). In this study, we use a generalized
PPI (gPPI) technique19 to investigate functional integration
during speech comprehension. We examine different strategies
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for selecting seeds and modeling interregional connections of
HD-DOT data.

One challenge facing all effective connectivity studies is the
selection of the seed ROIs. Methods for selecting seeds vary
across studies, and currently there is no established standard
approach for seed selection. Seeds can be defined in at least
four different ways:

1. Using anatomical landmarks or coordinates, as when
there is a strong hypothesis about a particular anatomi-
cal region,11–13

2. Using regions with the strongest task-dependent
response in group results,22–24

3. Using peaks from each individual’s task-dependent
response, which may help account for interindividual
differences in functional anatomy,25 or

4. Using a combination of these methods.26–28

In the current study, we investigate the degree to which dif-
ferent seed selection methods impact estimated effective
connectivity.

Because interactions in the brain occur at the neural level
(rather than the hemodynamic level), an accurate model of neu-
ral interactions requires the neural signal, whereas HD-DOT
provides only an indirect measure of the neural activity (as
does the blood-oxygenation level-dependent signal measured
with fMRI). Prior applications of PPI in fMRI data have sug-
gested calculating interactions on the estimated neural activity
based on a deconvolution approach.21 Here, we examined
whether an interaction model based on deconvolution of a
canonical HRF from the hemodynamic activity at the seed loca-
tion can increase the statistical significance of measures of effec-
tive connectivity relative to a no deconvolution routine (where
interactions are simply modeled at hemodynamic level).

To examine these methodological decisions and explore the
use of PPI analyses in HD-DOT, we used data from an auditory
sentence comprehension task. We selected speech comprehen-
sion because of its distributed and hierarchical organization in
the brain that requires interaction among discrete cortical
regions, it is a behavior that is frequently of interest in clinical
populations,29–31 and it is well suited for optical neuroimaging.32

Using sentences with different levels of syntactic complexity,
we examine how demands made by syntactic processes are man-
ifested in the patterns of interregional connections. We hypoth-
esized that processing sentences with increasing levels of
linguistic challenge would result in increased effective connec-
tivity within the speech network.

2 Materials and Methods
Herein are new analyses of data that were presented in a pre-
vious paper.12

2.1 Participants

Participants were 10 healthy right-handed native English speak-
ers (ages 20 to 30 years, mean ¼ 27.6, STD ¼ 3.3, 6 female).
All had normal hearing by self-report and no history of neuro-
logical or psychiatric disorders. All gave written informed con-
sent under a process approved by the Human Research
Protection Office by the Washington University School of
Medicine.

2.2 HD-DOT Imaging System and Data Acquisition

We used a high-density, relatively large field-of-view, continu-
ous wave, diffuse optical tomography system for data acquisi-
tion. The instrument consists of a flexible imaging cap that holds
96 source and 92 detector locations. Using fiber optic bundles,
source locations are illuminated by continuous-wave light-emit-
ting diodes. Light emitted from the head and collected by optical
fibers at detector locations is detected by avalanche photodiodes
(Hamamatsu C5460-01). Hemoglobin spectroscopy is enabled
using two wavelengths (750 and 850 nm). The detected light
signal is digitized by dedicated 24-bit analog-to-digital convert-
ers (MOTU HD192),33 which have high dynamic range (>106)
and low crosstalk (<10−6). The dynamic range allows the detec-
tion of light from multiple source-detector distances (e.g., first
through fourth-nearest neighbors are separated by 13, 30, 39,
and 47 mm, respectively). This array provides more than
1200 usable source-detector measurements at a 10-Hz full-
field frame rate. Full details on this system have been previously
described.13

Subjects were seated in an adjustable chair in a sound-iso-
lated room facing a 19-in. LCD screen (located 1 m from sub-
jects at approximately eye level) and two stereo speakers (each
located at 1.5 m from subjects at approximately ear level).
Subjects held a keyboard on their lap. The HD-DOT cap was
put on the subject’s head covering occipital, temporal, and
parts of parietal, motor, and frontal cortices (Fig. 1). Once
the cap was placed comfortably with a good signal-to-noise
ratio (the average signal for all the optodes across the cap
was within two orders of magnitude and the temporal standard
deviation of the signal was less than 7.5%), the exact placement
of the cap with respect to the locations of anatomical landmarks
on the head and face of the subject (e.g., the distance between
optode location in one of the outer four corners of the imaging
array and the nasion) was noted to locate the cap relative to the
subject’s head, later used to generate a subject-specific finite
element light model.9

2.3 Stimulus Protocol

We used 60 meaningful six-word sentences each with a subject-
relative embedded clause, and reworded them to vary (1) their
syntactic complexity (turning subject-relative into object-rela-
tive construction) and (2) the gender of the character performing
the action: male (e.g., king and brother) or female (e.g., queen
and sister).34 These manipulations resulted in 120 sentences
with subject-relative center-embedded clauses and 120 senten-
ces with object-relative center-embedded clauses, split evenly
between male and female characters performing the action.

Fig. 1 Schematic view of HD-DOT experimental setup, subject posi-
tion, and imaging cap structure. Shown in red is group field-of-view
overlaid on a cortical surface view of the MNI atlas.
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The mean length of auditory stimuli was 1.76� 0.05 s (range:
1.32 to 1.89 s). These stimuli are available in Ref. 35.

Sentences with object-relative clauses are more difficult to
comprehend compared to those containing subject-relative
clauses,36,37 typically resulting in longer response times,38
more errors, or equivalent performance but through increased
neural activity.12 During the experiment, each of the 240 senten-
ces was presented a single time and participants were asked to
indicate the gender of the character performing the action (male
or female) using a button-press response.

Additionally, we included unintelligible speech trials (noise)
as a control condition. The noise stimuli consisted of one-chan-
nel noise-vocoded speech created by modulating white noise
(lowpass filtered at 8 kHz) with the amplitude envelope of
the sentence (lowpass filtered at 30 Hz). Noise vocoding
removes much of the spectral detail from the sentence while
retaining its temporal amplitude envelope.39 The code for
noise vocoding (jp_vocode.m) is available in Ref. 40.

We presented stimuli using Psychophysics Toolbox 3,41

sending audio to the speakers via an external audio interface
(M-Audio Fast Track Pro). We set the sound level at a comfort-
able listening level that did not change over the course of a ses-
sion. Stimuli were presented in four separate runs, each of which
contained 30 subject-relative (easy) sentences, 30 object-relative
(complex) sentences, and 10 noise trials. These stimuli were pre-
sented in a pseudorandom order, with the order of conditions
varied among runs but constant across subjects. Subjects
were instructed to press a key with their left index finger if
the person performing the action was female and a separate
key with their right index finger if the person performing the
action was male. A central fixation cross was displayed at
the center of a gray screen; after each key press the cross
was changed to an “x” to inform the subject that a response
was received. This sign was on the screen during part of
interstimulus interval (ISI). ISIs were pseudorandomly distrib-
uted between 2 and 10 s; the subject’s reaction time at each
trial was considered as a part of the ISI of that trial. If the reac-
tion time was over the predetermined ISI for a given trial, the
next stimulus was presented immediately following a subject’s
key press. One second prior to the stimulus trial the “x” was
changed back to a cross to prepare the subject for listening
to the next stimulus. Stimuli were presented in a pseudorandom
order.

Prior to the experiment, subjects were given a short practice
session containing 24 trials (eight trials per condition) to explain
the instructions and ensure they were performing the task cor-
rectly. None of these sentences was presented in the actual
experiment. Participants’ average accuracy was greater than
97% for both subject-relative and object-relative sentences
and did not differ between conditions.

2.4 Data Preprocessing

Volumetric measurements of hemodynamic activity were
obtained from standard HD-DOT preprocessing of raw detector
data.42 HD-DOT preprocessing includes denoising by superfi-
cial signal regression and bandpass filtering (0.02 to 0.5 Hz)
of ratiometric changes in light levels, followed by reconstruction
of hemodynamic-related changes in the absorption coefficients
within the imaging field of view (FOV) and spectroscopy to esti-
mate changes in the concentration of regional oxyhemoglobin
and deoxyhemoglobin (ΔHbO and ΔHbR, respectively).
Hemodynamic signals were then downsampled to 1 Hz. For

image reconstruction, we used individuals’ head models
(derived from participants’ T1- and T2-weighted MRIs) to gen-
erate subject-specific forward light propagation models.9 For
each participant, the reconstructed image was then normalized
to Montreal Neurological Institute (MNI) 152 atlas space using a
linear affine transformation, concurrently resampling to a voxel
size of 3 × 3 × 3 mm. Due to the cap fitting on a variety of head
sizes and shapes, the FOV measured within each subject varied
across participants. For this study, the group FOV includes only
voxels sampled with acceptable sensitivity in all subjects (Fig. 1,
red area on the cortex). To find these voxels, we calculated a flat
field reconstruction [reconstruction of an image where the
absorbance change is assumed to be equal throughout the
FOV (i.e., all the voxels)43] and included only voxels whose
reconstructed value was within two orders of magnitude of
the maximum. The group FOV contains ∼700 cm3 of head vol-
ume, covering occipital cortex and aspects of parietal, temporal,
motor, and prefrontal cortices.

For the cortical surface representation of results, volumetric
results are mapped onto the cortical gray matter midthickness
surface of MNI152 atlas extracted using FreeSurfer software
(version 5.1.0, Martinos Center for Biomedical Imaging,
Massachusetts General Hospital).44

2.5 Timeseries Analysis

Here, we focused our analysis on oxyhemoglobin signal because
(1) ΔHbO signal offers a higher contrast-to-noise ratio com-
pared to ΔHbR and (2) we found that response maps based
on ΔHbR signal are generally consistent with ΔHbO
results.12,42 Prior to effective connectivity analysis, a standard
general linear model (GLM) approach was used to localize
the responses to each stimulus. Five conditions were included
in the design matrix: subject-relative sentences, object-relative
sentences, noise trials, left button presses, and right button
presses. Auditory stimuli were modeled as events with 2 s dura-
tion and button presses as events with 0 s duration. Each event
onset was convolved with a canonical HRF to produce a task-
dependent reponse (TDR) model (predicted hemodynamic
response). The canonical HRF was a double-gamma function
with temporal properties matching the general features of the
oxyhemoglobin response (averaged across all conditions and
subjects) in primary auditory cortex: delay time of 2 s, time
to peak of 7 s, and undershoot at 17 s. For each subject, we
combined data for all four runs using a fixed effects analysis.
Linear contrast maps including “sentences > baseline” and
“complex sentences > easy sentences” were generated and stat-
istical z-value maps for each contrast were calculated. We
assessed group-level response maps using random effects analy-
ses of these contrast maps. Group maps were thresholded at p <
0.001 (voxelwise) and corrected for multiple comparisons using
a nonstationary cluster analysis technique at p < 0.05.45,46

2.6 Effective Connectivity Analysis: Generalized
Psychophysiological Interaction Analysis

To obtain effective connectivity maps, we used a linear model
with three types of regressors: one regressor per condition to
model the response to the main effect of that condition (equiv-
alent to the regressors used in GLM for estimating TDR maps),
one regressor to model task-independent connectivity (TIC) to a
selected seed region (equivalent to the resting-state connectivity),
and one regressor per condition to model the task-dependent
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connectivity (TDC) (i.e., effective connectivity) to the seed
region during that condition (the PPI term). A TDC regressor
models hemodynamic activity in terms of interaction between
the task and the influence of the seed location. Hence, signifi-
cant effects for a TDC regressor indicate brain regions in which
the influence of (connectivity to) the seed region is modulated
by the task. The TDR model (XTDR) was built by convolving the
time trace of each stimulus onset (noise, subject-relative, and
object-relative sentences) with the canonical HRF. The hemo-
dynamic activity (ΔHbO signal) from each seed region (ys)
was used as a regressor for TIC. We used the PPI analysis
method19,20 to model the TDC (XTDC)

EQ-TARGET;temp:intralink-;e001;63;620yjðtÞ ¼ XTDRðtÞβTDRj þ ysðtÞβTICj þ XTDCðtÞβTDCj þ ejðtÞ;
(1)

yjðtÞ is the hemodynamic activity at time t and location j and
βTDRj , βTICj , and βTDCj are fitting parameters for each regressor for
the location j, and ejðtÞ is the residual signal at that location.
Further details about how we built ys and XTDR are found in
the following sections.

2.7 Effective Connectivity Analysis: Selecting Seeds

The first step in conducting a PPI analysis is defining one or
more seed ROIs. We selected 10 nonoverlapping ROIs based
on their known roles in speech processing including posterior
and anterior parts of temporal cortex, dorsal and ventral prefron-
tal cortex, and premotor and inferior parietal cortex.12,34,47 The
locations of seeds within these ROIs were specified on the basis
of significantly activated (at voxelwise p < 0.001 uncorrected)
local maxima on group maps of auditory speech processing
(sentences > noise contrast) and syntactic complexity process-
ing (complex sentences > easy sentences contrast) (Fig. 2).

Coordinates of these local maxima are given in Table 1.
Seeds were defined as 6-mm-diameter spheres centered at these
points. We refer to these seeds as canonical seeds because they
are based on the group results rather than individual results.

Variability in response maps across individuals motivated us
to investigate the use of subject-specific seeds in the effective
connectivity analysis. To identify these seeds, all the local
peaks in individual maps were found and among them the clos-
est peak to each canonical seed was located. If an individual
participant’s peak was within 18-mm Euclidean distance of
the canonical seed, the subject-specific seed was used; other-
wise, the canonical seed location was used. 18-mm threshold
is selected to be a couple of voxels larger than the FWHM
of estimated point spread function for our imaging array
(which is ∼14 mm48). We chose this approach to ensure that
every participant had a seed region, and that there was a reason-
able amount of spatial consistency across participants.

2.8 Effective Connectivity Analysis: Generating
Task-Dependent Connectivity Regressors

In a PPI analysis, a task-dependent connectivity (TDC) regres-
sor is constructed by multiplying the signal at a seed region
(physiological component) by a vector representing the task
condition (psychological component). In this study, we took
two approaches to model the TDC regressors.

In the first approach, we modeled interactions at the hemo-
dynamic signal level, so the TDC regressors were built by sim-
ply multiplying the signal at the seed location to the TDR model
[Fig. 3(a)]

EQ-TARGET;temp:intralink-;e002;326;425XTDCðtÞ ¼ ysðtÞ⊙XTDRðtÞ; (2)

⊙ sign denotes a componentwise multiplication.

Fig. 2 (a) Procedure of selecting canonical seeds. (b) Seeds at 10
nonoverlapping ROIs located at posterior middle temporal gyrus
(pMTG), lateral superior temporal gyrus (lSTG), ventral inferior frontal
gyrus (vIFG), anterior superior temporal gyrus (aSTG), dorsal middle
frontal gyrus (dMFG), dorsal premotor gyrus (dpreMG), and dorsal
inferior parietal gyrus (dIPG) were selected for effective connectivity
analysis.

Table 1 ROIs and coordinates of centers of canonical seeds.

Region

Center coordinates

x y z

Left

Dorsal premotor −61.5 3.0 45.5

Dorsal middle frontal −46.5 24.0 39.0

Dorsal inferior parietal −55.5 −54.0 45.0

Lateral superior temporal −52.5 −21.0 −3.0

Posterior middle temporal −55.5 −66.0 3.0

Anterior superior temporal −67.5 9.0 −15.0

Ventral inferior prefrontal −40.5 39.0 −6.0

Right

Lateral superior temporal 67.5 −21.0 0.0

Posterior middle temporal 64.5 −57.0 3.0

Ventral inferior prefrontal 52.5 27.0 −9.0
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In the second approach, we modeled the interactions in a
faster frequency band (closer to a neural level) with subsequent
convolution by an HRF to build TDC regressors. Because HD-
DOT measures of brain activity are filtered by a slow hemo-
dynamic response, estimating interactions at the neural level
can be approached by deconvolution of HRF from hemo-
dynamic measures, noise permitting. We used a parametric
empirical Bayes formulation method21 along with our data-
driven canonical HRF (as explained earlier) to estimate faster
underlying neural activity. We then constructed XTDC by multi-
plying the estimated neural activity (yns ) into the task vector
(ytv), and then reconvolved the result with the same HRF
used in the deconvolution step [Fig. 3(b)]. The noise introduced
by the initial deconvolution step is thus smoothed by the final
convolution. The task vector for each stimulus in this study was
a vector of ones (epochs of 2 s for each stimulus trial) and zeros
(when the stimulus is off).

EQ-TARGET;temp:intralink-;e003;63;565XTDCðtÞ ¼ ½yns ðtÞ⊙ytvðtÞ� ⊗ HRF: (3)

2.9 Effective Connectivity Analysis with a Permuted
Signal

In order to verify the physiological relevance of our effective
connectivity results, we performed a second set of PPI analyses
with a signal for the physiological component that was not

related to the current task-based neural activity. To hold all
the other characteristics of a real signal constant—including
spectral characteristics of noise (with different origins)—we
used the seed signal recorded in another run (the stimuli
order was pseudorandomly altered from run to run). We used
a two sample chi-square test to determine whether the connec-
tivity results based on permuted (physiologically irrelevant) sig-
nal follow the same distribution function as those based on real
(physiologically relevant) signal or they are drawn from a differ-
ent distribution function.

3 Results
To investigate response variability across subjects, we combined
four runs of data collected per subject using fixed effects analy-
ses and generated individual response maps of sentence compre-
hension and syntactic complexity processing. These maps were
thresholded at p (uncorrected) <0.05 and converted to binary
maps (1 if the voxel z-statistic was above 1.6 and 0 otherwise).
As shown in Fig. 4, the overlap between individuals’ binary
maps is relatively poor at some of the canonical seed coordi-
nates: not everyone showed a significant response at those loca-
tions. When selecting subject-specific seeds, local peaks in
individuals’ maps in the vicinity of canonical seeds were iden-
tified. The average distance between these peaks and the canoni-
cal seeds, as well as the number of subjects that had a local
maximum within 18 mm, are given in Table 2.

Fig. 3 Procedure for making the TDC regressor (green curves) for PPI analysis. (a) At hemodynamic
level: TDC regressor is simple componentwise multiplication (⊙) of the signal at seed location [TIC
regressor, ysðtÞ] and response model to task [TDR regressor, XTDRðtÞ]. (b) At neural level: TDC regres-
sor is built by first deconvolving HRF from the signal at seed location [TIC regressor, ysðtÞ] and multi-
plying the result [neural activity, yn

s ðtÞ] into task vector (vector of ones and zeros, one for when stimulus/
task is on) and reconvolving the result with the same HRF. The floating scale on the right side shows the
scale of signals in x and y axes.
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In order to assess the effect of using subject-specific seeds
versus canonical seeds, we compared TIC maps generated with
both sets of seeds. The TIC regressor (ys ) was built by aver-
aging ΔHbO signal within the seed region (i.e., across voxels

intersecting a 6-mm-radius sphere centered at the seed loca-
tion). To summerize the resulting connectivity patterns, we cal-
culated a seed-to-ROI connectivity matrix. For each TIC map,
we averaged the z-values from thresholded group maps within
cubes of 9 mm per side centered at each canonical seed co-
ordinate; these measures made a row in the connectivity matrix
[Fig. 5(a)]. Note that these connectivity matrices are not sym-
metrical because they are not presenting direct seed-to-seed
correlation coefficients but rather results of different gPPI
analyses. The seed-to-ROI connectivity matrix with both
seed sets (canonical and subject-specific) looked relatively
similar (correlation coefficient r ¼ 0.91) [Fig. 5(b)]. TIC
maps for left dorsal inferior parietal gyrus (dIPG) and left dor-
sal premotor gyrus (dpreMG) seeds that had the highest num-
ber of subject-specific seeds (9 and 8, respectively) are shown
in Fig. 5(c).

Next, we deconvolved the canonical HRF from seed signals
to incorporate the estimated neural signals in effective connec-
tivity analysis and then we looked at how task demands influ-
ence the effective connectivity within the speech network. The
effect of speech intelligibility on TDC patterns was investigated
by comparing TDC maps for the sentence condition with those
for the noise condition. Results showed that intelligibility sig-
nificantly increased the effective connectivity between left fron-
tal lobe and several cortical areas including both left and right
posterior middle and lateral superior temporal gyri, and left ante-
rior superior temporal and left dorsal inferior parietal gyri. In
addition, intelligibility modulated the connections between
left angular gyrus and left middle frontal gyrus (Fig. 6).
Intelligibility did not have a significant effect on the connectiv-
ity between ventral inferior frontal gyri and the rest of the brain,
nor did it affect the connectivity between left dpreMGwith other
regions in the brain.

Fig. 4 Between-subject variance in speech processing maps. Map of overlap between individuals’ sig-
nificant responses (thresholded at p < 0.05 uncorrected) during (a) general auditory sentence processing
task (all sentences > baseline) and (b) syntactic complexity processing (complex sentences > easy sen-
tences). The colorbar shows the number of subjects with above threshold response at a given location of
cortex. (c) Individuals’ seeds at 10 selected ROIs.

Table 2 Subject-specific seed distribution. Average Euclidean dis-
tance between the location of subject-specific peaks and canonical
seeds for each ROI and the number of subjects that had local maxima
within 18 mm from each canonical seed.

Region
Euclidean
distance (mm)

# subjects
<18 mm

Left

Dorsal premotor 14.1 8

Dorsal middle frontal 17.1 6

Dorsal inferior parietal 12.1 9

Lateral superior temporal 12.0 7

Posterior middle temporal 14.7 7

Anterior superior temporal 25.2 2

Ventral inferior prefrontal 22.5 4

Right

Lateral superior temporal 15.8 5

Posterior middle temporal 18.4 5

Ventral inferior prefrontal 23.1 4
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We assessed the effect of syntactic complexity on interre-
gional connections by statistically comparing TDC maps for
the complex sentence condition with those for the easy sentence
condition. These comparisons show that processing complex
sentences increased bilateral connectivity between ventral
parts of the prefrontal cortex and also had a strong modulatory
effect on the connections between left temporal cortex and right
prefrontal cortex, as well as on connections between left parietal
lobe and left prefrontal cortex (Fig. 7).

As described previously, we deconvolved the canonical HRF
from seed signals to estimate the underlying neural activity.
Estimated neural activity carried more high frequency compo-
nents than the hemodynamic activity [Fig. 8(a)], and when
incorporated in PPI models changed the effective connectivity
maps. In order to statistically evaluate its effect on the maps, we
looked at changes in the effective connectivity measures at the
seed-to-ROI level [that summarizes maps Fig. 5(a)]. Bonferroni
correction was applied to address the effect of multiple compar-
isons (10 comparisons per map, thus a p-value for significance
at seed-to-ROI level was set to 0.005). We found significant
increases in the measures of effective connectivity between sev-
eral seeds and ROIs including left vIFG seed and left aSTG, left
dIPG and right vIFG regions as well as those between right
vIFG seed and left aSTG region [Fig. 8(b)]. For the rest of
the seed-to-ROI comparisons, the effect of deconvolution of
neural activity was not significant.

To examine the physiological relevance of the results, we
used seed signals from different runs in the gPPI analysis.

These resulted in lower connectivity values that followed a sig-
nificantly different distribution as compared (using two sample
chi-square test, p < 0.001) to those of correct physiological sig-
nal (Fig. 9).

4 Discussion
In this paper, we establish the use of the gPPI analysis for
HD-DOT studies of functional brain networks. We show that,
as in fMRI, gPPI analyses provide useful information regarding
physiologically relevant dynamic (task-dependent) connectivity
among brain regions. Although several analysis approaches pro-
vided comparable results, the strongest measures of effective
connectivity resulted when we included a deconvolution step
in constructing the PPI model.

Our approach for estimating effective connectivity was semi-
exploratory in that we selected seeds based on local maxima
from group maps within known speech regions. Previous neuro-
psychological and functional neuroimaging studies have repeat-
edly reported involvement of lateral portions of STG in speech
perception.49–54 There is also strong support for the key role that
pMTG plays in lexical-semantic processing34,51,55,56 and evidence
of the role the inferior parietal cortex plays in working memory
processes that are essential for speech comprehension.57

Additionally, multiple parts of the left frontal cortex including
MFG, IFG, and premotor cortex have been repeatedly observed
during speech comprehension,47,53,58 particularly during sentence
processing.59,60 In addition to specifying canonical seeds in these
ROI, we explored using subject-specific seeds that allow for

Fig. 5 (a) Procedure for making a row in the seed-to-ROI connectivity matrix. (b) Seed-to-ROI matrices
for TIC maps with canonical and subject-specific seed sets. (c) TIC maps for seeds at left dIPG and
left dpreMG based on canonical and subject-specific seed sets. z-maps are thresholded at voxelwise
p < 0.001 (z ¼ 3.1) and (corrected) cluster significance threshold of p < 0.05. These results are based on
oxyhemoglobin signal changes (ΔHbO).
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individual variance in functional organization. Overall, a
relatively small change in the TIC patterns was seen when
subject-specific seeds were employed.

Effective connectivity analysis relies on modeling the
interactions between tasks and brain activity. A problem arises
when brain activity is measured in the form of hemodynamic

response, which is delayed and smoothed by neurovascular cou-
pling (e.g., an HRF). On one hand, we assume interactions are at
the neural level, which suggests deconvolution might be helpful.
On the other hand, as typically implemented, deconvolving is
sensitive to noise and requires model estimations about the
shape of the HRF. However, deconvolution is needed only to
create the interaction term and can be followed by convolution
using the same HRF. This two-step procedure minimizes the
effect of model errors (same model for both deconvolution
and convolution). In the data analyzed here, deconvolution of
HRF seemed to enhance frequencies in the expected range
for the neural activity in the speech network: as we expected
to see (1) enhancement in the stimulus-locked components
(i.e., between 0.1 and 0.5 Hz related to interstimulus-intervals
of 2 to 10 s) and (2) slower frequencies in the higher order brain
regions (related to integration of information over longer time-
scales in nonsensory regions61–63). Incorporating estimates of
neural activity in the interaction model significantly strength-
ened the effective connectivity measures within the speech net-
work. These included connections between left frontal lobe and
several cortical areas, including both left and right posterior
middle and lateral superior temporal gyri as well as left anterior
superior and left dorsal inferior parietal gyri. Based on the
deconvolution model, we found that speech intelligibility modu-
lated the connections between left angular gyrus and left middle
frontal gyrus. As we hypothesized, increased syntactic complex-
ity modulated the effective connectivity among regions that we
previously found to be involved in processing syntactically com-
plex sentences.12 Overall, these results highlight the presence of

Fig. 7 Modulatory effect of syntactic complexity on interregional con-
nections. Statistical parametric maps showing regions for which effec-
tive connectivity to the indicated seed locations (shown by blue
circles) increased when listening to complex sentences compared
to easy sentences. z-maps are thresholded at voxelwise p < 0.001
(z ¼ 3.1) and (corrected) cluster significance threshold of p < 0.05.
These results are based on oxyhemoglobin signal changes (ΔHbO).

Fig. 8 (a) Power spectra for the hemodynamic activity (black curve)
and for the estimated neural activity (green curve) at a seed region.
(b) Modulation of effective connectivity by task demands is signifi-
cantly (p < 0.05) better revealed when deconvolution is applied.
These are mean (averaged across subjects) seed-to-ROI effective
connectivity measures using deconvolution method (black bars)
and no deconvolution method (grey bars) between left and right
vIFG, left vIFG and left aSTG, left vIFG and left dIPG, and also
right vIFG and left aSTG. Error bars indicate standard errors and
* indicates statistical significance.

Fig. 6 Modulatory effect of speech intelligibility on interregional con-
nections. These maps highlight brain regions with significant increase
in effective connectivity to the indicated seed locations (shown by
blue circles) during sentences as compared to noise. z-maps are
thresholded at voxelwise p < 0.001 (z ¼ 3.1) and (corrected) cluster
significance threshold of p < 0.05. These results are based on oxy-
hemoglobin signal changes (ΔHbO).
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hierarchical effective connectivity within a distributed speech-
processing network.

Finally, we examined the biological relevance of the results
by comparing the distributions of averaged connectivity values
based on real signals with those based on scrambled signals.
With the real signals, we found that distributions were leaning
more toward positive values but with the scrambled signals dis-
tributions of positive and negative values were found to be rel-
atively symmetric around 0 particularly in task-independent
condition [Fig. 9(a)]. Interestingly, for the task-dependent con-
dition [Fig. 9(b)], we found greater negative correlations with
the scrambled signals. While distributions with real and
scrambled signals were significantly different for both task-
independent and task-dependent cases, this difference was
less pronounced for the latter one in the positive values. That
could be because in addition to physiological component
[ysðtÞ], the TDC regressor has a psychological component
[XTDRðtÞ� [Eq. (2)] that carries a significant amount of variance
in data.

5 Conclusion
In this paper, we established a method for network-level study of
brain function using HD-DOT. We incorporated this method in
analysis of HD-DOT recordings of brain activity during differ-
ent levels of speech processing and showed the modulatory
effect of intelligibility and complexity on functional connectiv-
ity patterns within the cortical speech network. These advances
facilitate studies of network-level brain processes using HD-
DOT for a variety of tasks and populations.
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extend functional neuroimaging beyond current limitations. These
methods allow brain imaging in populations unsuited to traditional
methods due to discomfort with current technology or implanted
devices who are not able to be studied with MRI due to safety
concerns.
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