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Abstract. In the past few years, the computer vision and
pattern recognition community has witnessed the rapid
growth of a new kind of feature extraction method, the mani-
fold learning methods, which attempt to project the original
data into a lower dimensional feature space by preserving
the local neighborhood structure. Among them, locality pre-
serving projection �LPP� is one of the most promising feature
extraction techniques. Based on LPP, we propose a novel
feature extraction method, called uncorrelated locality pre-
serving projection �ULPP�. We show that the extracted fea-
tures via ULPP are statistically uncorrelated, which is desir-
able for many pattern analysis applications. We compare the
proposed ULPP approach with LPP and principal component
analysis �PCA� on the publicly available data sets, FERET
and AR. Experimental results suggest that the proposed
ULPP approach provides a better representation of the data
and achieves much higher recognition accuracies. © 2006 So-
ciety of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2163873�
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1 Introduction

Recently, a new kind of feature extraction method, mani-
fold learning algorithms, based on the local geometry
analysis have drawn much attention. Unlike PCA, which
aims to preserve the global Euclidean structure of the data
space, manifold learning algorithms aim to preserve the
inherent manifold structure. Locally linear embedding
�LLE�, Isomap, Laplacian eigenmap, and locality preserv-
ing projection �LPP�1 are the most important manifold
learning algorithms. All of these four algorithms attempt to
embed the original data into a submanifold by preserving
the local neighborhood structure. They are based on the
assumption that the manifold’s intrinsic geometry can be
fully determined by the local metric and the neighborhood
information. Different from LLE, Isomap, and Laplacian
eigenmap, LPP is a linear algorithm. It is quite simple and
easy to realize. LPP is originally derived by the discretely
approximation of the Laplace Beltrami operator on com-
pact Rimannian manifold. He et al.1 have applied LPP on
d0091-3286/2006/$22.00 © 2006 SPIE
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ace recognition problem. The application has shown the
ffectiveness of LPP in discovering the the intrinsic geo-
etrical structure of the data.
Based on LPP, we propose a novel algorithm, called

ncorrelated locality preserving projection �ULPP�. It
hares the same locality preserving character as LPP, but at
he same time it requires the basis vectors to be statistically
ncorrelated. Uncorrelated attributes are highly desirable in
attern analysis, because they contain minimum
edundancy.2 However, the basis vectors of LPP are statis-
ically correlated, then the extracted features contain redun-
ant information. Moreover, the overlapped information
an distort the distribution of the features and even dramati-
ally degrade the performance of LPP. In this paper, we
vercome this problem by putting an uncorrelated con-
traint on the computation of the basis vectors. This makes
he proposed ULPP algorithm much more robust.

Locality Preserving Projection

PP1 can be explained by spectral graph theory. Let us
ssume that the n-dimensional data set �x1 ,x2 , ¯ ,xN�
s distributed on a low-dimensional submanifold. We desire
o find a set of d-dimensional �d�n� data points
y1 ,y2 , ¯ ,yN� with the same local neighborhood structure
s the data �x1 ,x2 , ¯ ,xN�. In order to do so, we can con-
truct a weighted graph G= �V ,E ,W�, where V is the set of
ll points; E is the set of edges connecting the points; and
= �wij� is a similarity matrix with weights characterizing

he likelihood of two points. The criterion function of LPP
s as follows:

in �
ij

�yi − y j�2wij . �1�

To make the mapping �embedding� not defined only for
he original data set, LPP defines a transformation. That
s, yi=�Txi, where �= ��1 ,�2 , ¯ ,�d��Rn�d. Following
ome algebraic steps, we see that

1

2�
ij

�yi − y j�2wij =
1

2�
ij

��Txi − �Tx j�T��Txi − �Tx j�wij

= �
ki

�k
TxiDiixi

T�k − �
kij

�k
TDiag�xi, ¯ ,xi�

�wijDiag�x j
T, ¯ ,x j

T��k

= trace��TX�D − W�XT�� , �2�

here X= �x1 ,x2 , ¯ ,xN�, and D=diag�Dii�; its entries
re row �or column since W is symmetric� sums of
, Dii=� jwij; Diag�x, ¯ ,x� returns a block diagonal ma-

rix with block entry x. L=D−W is the Laplacian matrix.1

In order to remove the arbitrary scaling factor in the
mbedding, LPP imposes a constraint as follows:

DYT = I Þ �TXDXT� = I . �3�

his constraint sets the mapping �embedding� scale and
akes the vertices with high similarities to be mapped

earer to the origin. Finally, the minimization problem re-

uces to:
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argmin
�

�TXDXT�=I

trace��TXLXT�� . �4�

The transformation matrix � that minimizes the objec-
tive function can be obtained by solving the generalized
eigenvalue problem:

XLXT� = �XDXT� . �5�

Note that the Laplacian matrix can be viewed as the dis-
cretely approximation of the Laplace Beltrami operator on
compact Rimannian manifold.1

Based on the matrix �= ��1 , ¯ ,�d�, for any instance
u= �u1 ,u2 , ¯ ,un�T�Rn, we can define the following lin-
ear transform from Rn to Rd:

	
v1

v2

]

vd


 = 	
�1

T

�2
T

]

�d
T

u . �6�

Equation �6� with the constraint �3� forms the LPP trans-
formation. It is easy to obtain the following theorem.

Theorem 1: Any two features vi and v j �j� i� in Eq. �6�
are correlated.

Proof: Let the covariance matrix of the data �xi�i=1
N be �.

It is easy to obtain the following equation:

E��vi − Evi��v j − Ev j�� = �i
T�� j . �7�

With the constraint �3�, we have inequality, in general,

�i
T�� j � 0 �j � i� . �8�

Therefore, we cannot obtain the following equation in gen-
eral:

E��vi − Evi��v j − Ev j�� = 0, �9�

thus completing the proof.

3 Uncorrelated Locality Preserving Projection

The algorithmic procedure of uncorrelated locality preserv-
ing projection �ULPP� is stated below:

1. Perform PCA projection. We project the data set into
a PCA subspace to make the matrix XDXT become
nonsingular. Let the transformation matrix of PCA be
�PCA.

2. Construct the similarity of any two data points. For
each sample xi, if xj is among the m-nearest neigh-
bors of xi, set the similarity wij =wji=xi

Tx j; otherwise,
set the similarity wij =wji=0. The similarity reflects
the local structure of the data space.

3. Obtain the diagonal matrix D and the Laplacian
matrix L.

4. Compute the uncorrelated locality preserving
projections. Let SL=XLXT, SD=XDXT and
I=diag�1,1 , ¯ ,1� for concision. Let ��1 ,�2 , ¯ ,�k�
be the uncorrelated locality preserving projections,

thus we define t
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��k−1� = ��1,�2, ¯ ,�k−1� . �10�

he uncorrelated locality preserving projections
�1 ,�2 , ¯ ,�k� can be iteratively computed as follows:

�a� Compute �1 as the eigenvector of SD
−1SL associ-

ated with the smallest eigenvalue.
�b� Compute �k as the eigenvector associated with

the smallest eigenvalue of the eigenfunction

P�k�SL� = �SD� , �11�

where

P�k� = I − ����k−1��T���k−1��SD
−1����k−1��T�−1

���k−1��SD
−1. �12�

5. Perform the ULPP transformation. Let
�*= ��1 ,�2 , ¯ ,�d�. The embedding is as follow:

v = �ULPP
T u , �13�

where v is a d-dimensional representation of u and
�ULPP=�PCA�*.

.1 Justification
n this subsection, we provide the justification of our algo-
ithm.

According to the following theorem, we can compute
he k-th uncorrelated direction �k as the eigenvector of P�k�

Eq. �12�� associated with the the smallest eigenvalue
f P�k�.

Theorem 2: The k-th uncorrelated direction �k is the
igenvector corresponding to the smallest eigenvalue of the
ollowing eigenfunction:

�k�SL� = �SD� ,

here

�k� = I − ����k−1��T���k−1��SD
−1����k−1��T�−1��k−1��SD

−1.

Proof: Recall the minimization problem of LPP:

argmin
�

TXDXT�=I

trace��TXLXT�� .

n order to compute the k-th uncorrelated direction �k, we
dd the constraints

k��i = 0 �i = 1,2, ¯ ,k − 1� .

e can use the method of Lagrange multipliers to trans-
orm the minimization function to include all constraints.
ecall SL=XLXT and SD=XDXT, we have

��k� = �k
TSL�k − ���k

TSD�k − 1� − �
i=1

k−1

�i�k
T��i. �14�

he minimization is performed by setting the partial deriva-

ive of L��k� with respect to �k equal to zero:
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2SL�k − 2�SD�k − �
i=1

k−1

�i��i = 0. �15�

Multiplying the left side of Eq. �15� by �k, we have

� =
�k

TSL�k

�k
TSD�k

. �16�

Thus, � represents minimization problem to be optimized.
Multiplying the left-hand side of Eq. �15�, respectively,

by � j
T�SD

−1 �j=1,2 , ¯ ,k−1�, we have

2	
�1

T

�2
T

]

�k−1
T

�SD

−1SL�k − 	
�1

T

�2
T

]

�k−1
T

�SD

−1�	
�1

�2

]

�k−1


	
�1

�2

]

�k−1


 = 0.

�17�

Let 	�k�= ��1 ,�2 , ¯ ,�k−1�T, thus we can obtain

	�k� = 2���k��SD
−1����k��T�−1��k��SD

−1SL�k. �18�

Since Eq. �15� can be written as

2SL�k − 2�SD�k − ����k−1��T	�k� = 0, �19�

substituting Eq. �18� into Eq. �19�, we have

SL�k − �SD�k − ����k−1��T���k��SD
−1����k��T�−1��k�

��SD
−1SL�k = 0, �20�

or in another form

�I − ����k−1��T���k−1��SD
−1����k−1��T�−1��k−1��SD

−1�SL�k

= �SD�k, �21�

thus completing the proof.

4 Experiment Results

4.1 Experiments on FERET Data Set
FERET3 is a very popular database. Face image variations
in the FERET database include pose, illumination, facial
expression, and aging. In our experiment, we use a subset
of the FERET data set. The data set we selected contains 72
people and 6 images for each individual. All images are
aligned by the centers of the eyes and mouth and then
scaled with resolution 112�92. We randomly select 3 im-
ages from each person for training, while the rest of the
images of each individual are selected for testing. The ex-

Table 1 Recognition accuracies �%� comparison of FERET data set.

Eigenface LPP ULPP

Rank 1 58.61 72.64 85.90

Rank 2 63.70 78.22 89.49

Rank 3 68.22 81.39 91.07
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eriments are repeated 20 times and the average accuracies
f rank 1 to rank 3 are recorded and shown in Table 1. The
esults show ULPP gives the best performance. The recog-
ition accuracy of ULPP increases from 85.90% with rank
to 91.07% with rank 3, which is about 10% higher than

he recognition accuracy of LPP.

.2 Experiments on AR Data Set
R4 is also a popular database. Face image variations in the
R database include illumination, facial expression, and
cclusion. In our experiment, 952 images �119 individuals,
images per person�, which involve large variations in fa-

ial expression, are selected. We manually cropped the face
ortion of the images. All the cropped images are aligned at
he centers of eyes and mouth and then normalized with
esolution 112�92. We randomly select 4 images from
ach person for training, while the rest of the images of
ach individual are selected for testing. The experiments
re repeated 30 times and the average accuracies of rank 1
o rank 3 are recorded and shown in Table 2. From Table 2,
t can be seen that ULPP outperforms the other two meth-
ds. The recognition accuracy of ULPP increases from
0.32% with rank 1 to 86.51% with rank 3, which is about
% higher than the recognition accuracy of LPP.

Conclusion

his paper presents a novel feature extraction method,
alled uncorrelated locality preserving projection �ULPP�.
LPP can extract uncorrelated features which contain mini-
um redundancy and are highly desirable for many appli-

ations. In this paper, we present a theoretical study on
LPP and provide an implementation of it. The experi-
ents on face image data show the superiority of ULPP

ver the other both PCA and LPP.
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