
M

A
A
A
I
U
P
F
8
E

1

I
i
t
m
t
c
c
n
t

t
t
H
r
p
t
e
s
c
e
c
n

s
1
o
t
p
o
c
c
s
i
p
g
a
e

0

Optical Engineering 47�11�, 112001 �November 2008�

O

ultimode interference photonic switches

bdulaziz M. Al-hetar
bu Sahmah M. Supa’at
bu B. Mohammad

an Yulianti
niversiti Teknologi Malaysia
hotonics Technology Centre
aculty of Electrical Engineering
1310 Johor, Malaysia
-mail: alhetar�aziz@yahoo.com

Abstract. Photonic switches are becoming key components in ad-
vanced optical networks due to their various applications in optical com-
munication. One of the key advantages of photonic switches is the fact
that they redirect or convert light without any optical to electronic conver-
sions and vice versa. As one type of optical switch, multimode interfer-
ence �MMI� switches have received more attention in recent years due to
their significant role. The structure and operation principle of various
types of MMI switches are introduced, and the recent progresses of MMI
switches are also discussed. © 2008 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3028349�
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Introduction

n the beginning to the 21st century, there has been an
ntense race in optical fiber communication systems. The
ransmission capacity using dense wavelength division
ultiplexing �DWDM� has been increased dramatically to

erabits per second �Tbps�. The deployed optical communi-
ation system is not constrained by the signal transmitting
apacity, but by the exchange rate between the network
odes. It is analog to a highway with only a narrow en-
rance or exit and subsequently causes traffic jams.

Electronics switching is highly efficient in routing due to
he mature and sophisticated logic circuit and data storage
echnology capability that has been studied extensively.
owever, electronics switching is highly dependent on data

ate and protocol, which will result in the addition or re-
lacement of electronics switching when upgrading sys-
ems. Additionally, optical signal has to be converted to
lectronic signal �O/E conversion� before electrically
witching, and then after, converted back to optical �E/O
onversion� form again. With increase in network capacity,
lectronics switching nodes do not have the capability to
ope with the bit rate, hence causing an electronics bottle-
eck.

An optical add drop module �OADM�1 using optical
witches and wavelength multiplexer �MUX� shown in Fig.
has been designed to address this stringent limitation. The

ptical switches can selectively download the signal from
he channel, upload the signal to the channel, or simply
ass the signal through the OADM. This primarily depends
n the working status of the optical switches—either in the
ross or the bar state. Unlike any electrical exchange pro-
essors, optical switching enables routing of optical data
ignals without O/E and E/O conversion. Therefore, it is
ndependent of data rate and data protocol, and it is meant
rimarily for more effective data transmission. This will
reatly improve the system capacity and decrease the over-
ll system cost, due to reduction in the amount of network
quipment. There are many types of optical switches, such

091-3286/2008/$25.00 © 2008 SPIE
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as micro-electro-mechanics system �MEMS� optical
switches and optical waveguide switches �including the
multimode interference �MMI� switches�.

In recent years, multimode interference �MMI� couplers
have attracted considerable interest due to their: unique
characteristics such as compactness,2 relaxed fabrication
tolerance, large optical bandwidth,3 and polarization insen-
sitivity, when strongly guided structures are used.4,5 At the
same time, this can be applicable in splitters and
combiners,6 mode converters,7 and power splitters with ar-
bitrary splitting ratio.8 Only recently, their use has been
expanded from passive to active devices, and several pho-
tonic switches have been proposed using MMI effects.9–12

2 Multimode Interference Switches
The concept of multimode interference was first put forth
by John Talbot in 1836, and the possibility of achieving
self-imaging in uniform index slab waveguides was first
suggested by Bryngdahl.13 As a result of self-images, the
possibility of achieving a crossover of strip guides, a simple
3-dB directional coupler, and a filter �separating two wave-
lengths� was demonstrated by Ulrich and Ankele,14 but only
since the early 1990s has the concept been studied in more
detail. Key papers written by Soldano, Penning, et al.4,6,15

analyzed the mathematics of the self-imaging phenomenon
by calculating the coupling coefficients and predicting
where multiple images can be found. Another key paper by
Bachmann et al.16 in 1994 took this theory even further to
calculate the phase relation between the input and the out-
puts, and outputs relative to each other. A convenient de-
scription for the phase inside the MMI region has been
given by Heaton and Jenkins.17 Most MMI switches are
based on the self-imaging principle as described in Secs.
2.1 and 2.2.2 �a property of multimode waveguide by
which an input field profile is reproduced in single or mul-
tiple images at periodic intervals along the propagation di-
rection of the guide,4 as shown in Fig. 2�.

As it has been known that the input field profile E�x ,0�
imposed at z=0 will be decomposed into the modal field
distribution � �x� of all modes
v
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�x,0� = �
m

Cm�m�x� , �1�

he field profile at a distance z=L can then be written for

�x,L� = �
m

Cm�m�x�exp� j
m�m + 2��

3L�

L� , �2�

here m is the mode number, and L� is the beat length of
he two lowest-order modes.4 Therefore, we can change the
eld profile by modulating mode phases and obtain the de-
ired output field.

.1 MMI-MZI Switches
he general structure of tunable MMIs is based on the
ach-Zehnder interferometer �MZI� principle. A typical
MI-MZI is composed of an MMI power splitter with N

nput ports, an MMI recombined with N output ports, and
everal phase-shift arms with active regions as shown in the
ig. 3.18 The active region �electro- or thermo-optic region�

s used to change the relative phases among the arms,
hich can realize the switching18–33 or tunable power split-

ing function at the outputs.22

Generally, the MZI switches are based on Y-junction,
irectional coupler and MMI. The Y-junction is large

Fig. 1 OADM unit using optical

Fig. 2 Field distribution of MMI.
ptical Engineering 112001-
and requires precise lithography at the waveguide
intersection.32 On the other hand, directional couplers need
tight ��0.1 �m� control of the waveguide dimensions
since they exploit mode coupling between two waveguides
that are close to each other.33 When compared with direc-
tional couplers, MMI couplers show better uniformity, po-
larization insensitivity,5 and bandwidth and fabrication
tolerances3 and are more suitable for an MZI-type optical
switch. Second, with a Y-junction, MMI couplers show bet-
ter polarization insensitivity and fabrication tolerances.

A selection of realized MMI-MZI switches is summa-
rized in Table 1. Nevertheless, the structure of MMI-MZI
switches is similar to the traditional MZI in phase shifters,
which clearly indicate that they also have poor fabrication
tolerance, as does the MZI.

s and wavelength multiplexers.

Fig. 3 Schematic layouts of a 1�N and N�N general Mach-
Zehnder interferometer, comprising MMI couplers as splitter/
combining elements, and waveguide phase shifter.
switche
November 2008/Vol. 47�11�2
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.2 MMI Photonic Switch
ew compact structures for tunable MMIs have been car-

ied out. The optical functions are realized by tuning the
efractive index directly within different section of MMIs.

In the MMI photonic switch �MIPS�, the index modula-
ion �IM� region is located within the MMI section. Accord-
ng to the position of the IM, MIPS is classified as size
odulated or image modulated.

.2.1 Size-modulated MMI switch
he IM regions are located horizontal to the light propaga-

ion. In first configuration, the confinement guide region is
reated10–12,38 to allow the light to pass through the region,
s shown in Fig. 4.

Second, the width of the MMI region is varied by vary-
ng the refractive indices of the segments �IM regions� in-
ide the MMI section,39 It is possible to use different inter-
erence phenomena �general, paired, and symmetric
nterference� in one device to achieve different switching
tates. If the width of the MMI regions is reduced by de-
ressing the refractive index �by means of the electro-optic
ffect�, the imaging locations will be changed. Thus, the
witching of the input signal to different output ports may
e possible. Figure 5 shows 3�3 MMI-switch of the same
ype. Electro-optic is highly effective to use in this type of

MI switch in comparison with thermo-optic.

Table 1 A selection of published MMI-MZI switc
fiber; SW=switching time; CT=crosstalk; IL=in

N�N Technology
CT �dB�

cross/bar IL �dB�

1�2 SiOx/SiO2

2�2 SOI −23.4 1.8

2�2 SOI −17.1 2 �f-f�

2�2 SOI −18.5/−15 14 �f-f�

4�4 SOI −16.5 17 �f-f�

2�2 SOI −32/−16 3.4

4�4 InGaAsP −15 5

2�2 InGaAsP −21 4

2�2 SiON/SiO2 −24/−27 3

2�2 InGaAlAs −30/−20 14.2 �f-f�

2�2 SiOx/SiO2 −21 1

1�4
Polymer/

SiO2
−6 0.65

2�2
Polymer/

SiO2
−20 4.1

2�2 SOI −2/−5 8

2�2 Polymer −33/−31
ptical Engineering 112001-
Additionally, the power consumption is high due to the
length of index modulation. This type of switch is very
promising for future DWDM and optical cross connect
�OXC� systems, due to its compactness and multifunction-
ality.

O=thermo-optic; EO=electro-optic; f-f= fiber to
loss�.

��S�
Power
�mW�

Switching
technology Reference

22 19 TO 26

30 20 TO 25

60 35 TO 27

8 45 TO 28

15 88 TO 29

000 58 TO 31

.2 0.5 V EO 19

60 TO 34

000 57 TO 35

0.7 V EO 20

80 110 TO 21

000 7 mA TO 23

TO 30

85 TO/first using 36

2.1 TO 37

Fig. 4 �a� and �b� 2�2 MMI switch using a confinement guide
region.
hes �T
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.2.2 Image-modulated MMI switch
witching is achieved by exploiting the fact that within an
MI, the input field is reproduced in single or multiple

mages at certain periodic intervals along the propagation
irection of the light.13 The interference pattern of the self-
mages in one interval can lead to the formation of new
elf-images in the next interval and subsequently to the
utput images. Consequently, the output image can be
hanged by modifying the refractive index around some
elected spots within one interval of the MMI where such
elf-images occur. Modifying the refractive indices will
ead to a new phase relation between the self-images at the
ext interval and with that to a modified output image.
ight can then be directed to a specific output waveguide.
his approach works properly as long as the refractive in-
ex change is entirely confined within the areas containing
he principal self-images.

The first example of this configuration used the passive
MI coupler to select the splitter power ratio.40,41 After

hat, several photonic switches have been proposed using
he IM inside the MMI section to modify the phase relation
etween the self-images.9,37,42–47 The switching mechanism
f all these switches is the same—they operate by modify-
ng the refractive index at specific areas within the MMI
aveguide, which are collocated with the occurrence of
ultiple self-images. This change in the refractive index

ffectively alters the phase relation between the self-
mages, which ultimately modifies the output image and
witches the light between the output waveguides. Hence,
his will eventually show more efficient switching capabil-
ty. Figure 6 shows the structure of a 2�2 image-

odulated MMI switch.47 The index modulation region is
ocated where two images are formed. For waveguide
ength equal to odd multiples of L�, the phase shift between
ymmetric and asymmetric modes is an odd multiple of �,
nd the input image will be inverted.4 Introducing an addi-
ional phase shift of � at one of two formed images will
ake the image switch to the other port. In the same way,

Fig. 5 Segmented MMI switch.

Fig. 6 2�2 image-modulated MMI switch.
ptical Engineering 112001-
the 3�3 �Ref. 43� and N�N �Ref. 9� image-modulated
MMI switches have been demonstrated, as shown in Figs. 7
and 8.

Various types of switches based on MMI are summa-
rized in Table 2. In essence, their operations depend greatly
on changing the refractive index of a particular region. It is
difficult to say which switch type is best because their de-
sign aims are not exactly the same. For instance, some par-
ticularly emphasize high speed, while others emphasize
compact structure.

Until recently, most of the reported MMI-MZI switches
are based on electro-optic effect, current injection, and
thermo-optic, while the MMI switches are based on electro-
optic and current injection because the index modulation
region is accurately controlled by the electric field without
the effect of the other regions inside the MMI region. Even
the reported MMI-MZI switches based on thermo-optic are
unequal of crosstalk in the cross and bar state, due to the
thermal diffusion from a heated arm to a nonheated arm in
single-mode waveguides. It is important to investigate for a
way to restrict lateral thermal diffusion when thermo-optic
is used in this type of switch.

Recently, lateral thermal diffusion has been conquered
when thermo-optic is used in MMI and MMI-MZI
switches48,49 by introducing a ridge in the silicon substrate.
The purpose behind this change to the MMI and interme-
diate single-mode waveguide structures for MMI and
MMI-MZI switches, respectively, was to localize the heat-
ing. Thus, the switch performances of the devices have
been improved.

Fig. 7 3�3 image-modulated MMI switch.

Fig. 8 N�N image-modulated MMI switch.
November 2008/Vol. 47�11�4
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Conclusion
MI switches are very promising for their particular ad-

antages, such as compactness and relaxed fabrication tol-
rance. With the improvement of switching performance,
MI switches will play an important role in optical com-
unications.
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