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Abstract. Recently, deep learning has been used to establish the nonlinear and nonintuitive mapping between
physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.
However, to obtain sufficiently accurate predictions, the conventional deep-learning-based method consumes
excessive time to collect the data set, thus hindering its wide application in this interdisciplinary field.
We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance
on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another
spectral range. We demonstrate three transfer strategies and experimentally quantify their performance,
among which the “frozen-none” robustly improves the prediction accuracy by ~26% compared to direct
learning. We propose to use a complex-valued deep neural network during the training process to further
improve the spectral predicting precision by ~30% compared to its real-valued counterparts. We design
several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target
network and a global optimization algorithm. The simulated results successfully validate the capability of
our approach. Our work provides a universal methodology for efficient and accurate metasurface design
in arbitrary wavebands, which will pave the way toward the automated and mass production of metasurfaces.
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1 Introduction and photonics. The intriguing advantages of metasurfaces enable
versatile functionalities, such as focusing,”” beam steering,®’
vortex generation,”"” polarization control,' ™" and holography.'*"®
The common methodology of metasurface design is a one-time
and trial-and-error process relying much on physical insights
and experience, and the practical pattern of metasurface comes
from the manually iterative numerical calculations, such as the
“Address all correspondence to Jiangiang Gu, gjq@tju.educn; Bing Cao,  linite-element method and the finite-difference time-domain
caobing @tju.edu.cn; Quanlong Yang, quanlong.yang@csu.edu.cn method, until the desired performance criteria are reached.

Compact 2D arrays consisting of subwavelength artificial meta-
atoms, metasurfaces' exhibit design flexibility for controlling
electromagnetic (EM) waves, which has aroused widespread en-
thusiasm among researchers for multiple wavebands in optics
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The search procedure for geometrical parameters of meta-atoms
is not only time-consuming and inefficient but also easy to
miss the global optimal solution, which is more defective as the
dimensions of the variables or objective functions increase. To
overcome these limitations, deep learning as a powerful compu-
tational tool has been employed in metasurface design,'’ >
which is capable of revealing the underlying nonlinear and
nonintuitive relations between the geometrical parameters and
EM responses of the meta-atoms in a real-time and automatic
way.”? As a result, the well-trained deep neural networks
(DNNs), acting as a surrogate model, can effectively replace
the commercial EM simulation software with high prediction
accuracy and orders of magnitude faster calculation speed.”™!

However, the current deep-learning-based methods face the
contradiction between efficiency and accuracy because they
usually resort to a specific huge data set for reliable performance
owing to their data-hungry nature. Collecting adequate data is
slow and expensive, while training a DNN from scratch also
involves considerable time consumption and computing resour-
ces. Once the feature space or distribution is changed, even
though slightly different from the source task, the trained model
may work ineffectively. To make the deep-learning-based meth-
ods more versatile for metasurface design, some solutions have
been proposed to improve the model performance with a small
data set. Transfer learning is a helpful framework that shares the
knowledge and experience learned from the source model with
the target one, so reduces the amount of required data and imple-
ments the prediction rapidly with high accuracy. In nanophoton-
ics and metasurface design, transfer-learning-based methods are
used to migrate knowledge between different physical scenar-
ios, such as photonics films with different numbers of layers,*
and dielectric meta-atoms with different shapes or dimensions
of cross sections. **** Also the knowledge from other research
fields can also be leveraged to study metasurfaces through
transfer learning. For example, the meta-atoms are treated as
images using the transfer-learning model based on GoogLeNet-
Inception-V3 and realize the classification of phase from 0 to
360 deg.” In addition to the transfer-learning-based method,
data augmentation® and spectral scalability’” were explored to
reduce the dependence on data size, whereas previous works
were limited to a fixed spectral range of the labeled data set.
Once the range of the working waveband or the number of
the sampling points changes, it is necessary to train a new
model, and the training data set should be reprepared for this
new task. Especially when material dispersion in different
bands is considered, the scale invariance of Maxwell’s equa-
tions is no longer applicable. The method that exploits the
spectral scalability by wavelength normalization trying to ad-
dress this problem still suffers from a sudden deviation from
the simulation data near the boundaries of the waveband range,
which means the EM responses of the meta-atoms are not per-
fectly scalable.

In this work, we introduce a metasurface design methodol-
ogy empowered by transfer learning that utilizes the common-
ality of the EM characteristics of the dielectric meta-atoms in
different spectral ranges, thereby reducing the number of data by
bridging the disparity of working frequencies. Specifically, we
train the base model on an open-source data set™ in the infrared
(IR) band from 30 to 60 THz and then store the knowledge
gained in solving the source task, and transfer it to our terahertz
(THz) spectral range from 0.5 to 1.0 THz to help the target
task, which is trained on our small homemade data set. Here
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a complex-valued fully connected network that achieves high-
performance spectral predicting ability is used in the source
model, with an improvement of ~30% compared to the sum
of its real-valued counterparts. We demonstrate three transfer
strategies and experimentally quantify their performance,
among which the “frozen-none” improves the prediction
accuracy by ~26% compared to direct learning. Further, we
propose several typical THz metadevices, including a metalens
and a vortex beam generator, by employing the hybrid inverse
model consolidating this trained target network and a global
optimization algorithm as a proof-of-concept application. The
simulated results clarify the reliability and scalability of our
spectral transfer-learning-based metasurface design methodol-
ogy assisted by complex DNN (CDNN), which is of great
significance for balancing the efficiency and accuracy of the
deep-learning-based method, hence promoting metasurface
studies in arbitrary wavebands.

2 Results

2.1 Overall Framework of the Metasurface Design
Methodology

Figure 1 schematically illustrates the spectral transfer-learning-
based metasurface comprehensive design framework, which
consists of three primary submodules: (i) a deep-learning-based
forward prediction source model trained on the massive open-
source labeled data, (ii) a target model benefiting from the
knowledge transferred from the source model then fine-tuned
with a small homemade data set, and (iii) a hybrid inverse model
for the on-demand metasurface design implemented by combin-
ing the trained target model with the conditioned adaptive
particle swarm optimization (CAPSO) algorithm. The required
transmission spectrum is fed into the inverse model as the design
goal to retrieve the geometrical dimensions of the candidate
meta-atoms, which are evaluated by comparing the predicted
EM responses output from the well-trained target model and
the desired goal. Then the optimization algorithm iteratively
updates the generated dimensions until the maximum epoch or
convergence criterion is reached. The efficacy of our proposed
methodology is ultimately demonstrated by the performance of
the metasurface assembled from the optimal meta-atoms at each
position.

2.2 Source Spectral Model Construction

The source model is a data-driven feed-forward neural network,
consisting of 11 fully connected layers that is aimed at dealing
with the regression problem between the structure parameters
and the EM responses of the meta-atoms. The fully connected
network is capable of unveiling this implicit nonlinear relation-
ship in a simplified and stable form, especially when the vari-
ables can be parameterized as tensors. Here the input and output
parameters of the network as well as all the hyperparameters
(weights W and bias b) of each layer are extended to the com-
plex domain to directly predict the complex transmission co-
efficients of meta-atoms, from which the phase and amplitude
can be derived monolithically. In addition, the corresponding
network functions, such as normalization, loss, nonlinear acti-
vation, and regularization functions, should also be adjusted to
the form suitable for complex numbers. More detailed informa-
tion about the CDNN has been included and discussed in Sec. 1
of the Supplementary Material. Using complex parameters has
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Fig. 1 Flowchart of the spectral transfer-learning-based metasurface comprehensive design
methodology assisted by the complex-valued DNN.

numerous advantages, including a richer and more versatile rep- The architecture of CDNN is depicted in Fig. 2(a). The source-
resentation capacity and a more robust memory-retrieval mecha- CDNN is first trained on the publicly released data set con-
nism, which has been demonstrated to improve the performance  taining ~60,000 {D, [Re(T),Im(T)]} pairs of geometrical
of the computer vision and audio-signal-processing tasks based parameters and the real/imaginary parts of transmittance of the

on the CDNN compared to their real-valued counterparts.®® meta-atoms in the IR band. The input layer takes in a dimension
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Fig. 2 Schematic of the source model. (a) lllustration for the architecture and the parameters of
the CDNN. (b) Learning curves of the CDNN that take the loss value as the function of the epoch.
The smoothed train loss (blue curve) and test loss (red curve) are shown in the original learning
curves (light gray). (c) Histogram of the MSE for the predicted complex transmission from the test
set, where 95% of the data have an MSE < 3.5 x 107#, as indicated by the gray dashed line.
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tensor D of size 4 including permittivity &, radius r, height h,
and the gap g between adjacent meta-atoms, and the output
tensor T is the complex transmission coefficient sampled over
30 to 60 THz with an interval of 1 THz, giving a total of
31 elements. The supervised training process is conducted by
minimizing the mean squared error (MSE) between the predic-
tion result generated from the network and the ground truth
given by full-wave simulations,

m

N (T -T)(T-T)

i=1

LS (Rel) — Re()? + [Im(F) (P} (1)
i=1

1
MSE = —
m

where m is the number of the spectrum points, and T and 1:' are
the predicted and simulated transmissions, respectively. 7™ is
the complex conjugate of 7. The Re and Im functions represent
taking the real and imaginary parts of a complex number.

In the total data set, a 70/30 split for the training and test data
set is assigned. As the learning curve shown in Fig. 2(b),
the overall test MSE is ~1.05 x 10~* after 50,000 epochs.
Figure 2(c) displays an MSE histogram of the predicted
transmission from the test set, showing an average MSE of

1.048 x 107* and a 95% data demarcation line <3.5 x 1074,
consistent with the low prediction error exhibited by the CDNN
after training. Once the complex transmission coefficients are
determined from the network, the corresponding phase and
amplitude are calculated monolithically at each frequency,
as shown in the right part of Fig. 2(a). Several samples are
randomly selected from the test set as presented in Fig. S1 in
the Supplementary Material, from which we can see that the
network prediction results are in good agreement with the simu-
lated truth values, even at those resonant frequency points,
which demonstrates that CDNN has reasonably high predicting
accuracy. To clarify the efficacy of the CDNN, we also trained
two real-valued deep neural networks with real (RDNN) and
imaginary (IDNN) parts as outputs, respectively. Detailed
information on these two networks is described in Sec. 1 in
Supplementary Material. The MSE of the CDNN is ~30% less
than the sum of the MSE of the RDNN and IDNN, which are
both ~7.5x 1075 after 50,000 epochs, indicating that the
CDNN has superior performance compared with its real-valued
counterparts. Given the vital role the source model plays in our
transfer-learning-based method, such highly generalized pre-
dicting accuracy is critical to ensure the target model acquires
sufficiently reliable knowledge to facilitate the on-demand
metasurface design in the target task.
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Fig. 3 Schematic of transfer learning. (a) Diagram of the relation of interest bands of the source
and target task and (b) illustration of spectral transfer learning. The top row is the architecture of
the source model (blue), and the next rows are the target models (orange) based on three transfer
strategies: frozen-none, copy-all, and hybrid-transfer, respectively. Blue blocks represent the cop-
ied layers from the trained source network and then are fine-tuned during training. Orange blocks
represent the fine-tuned layers with random initialization. The mosaic pattern represents the frozen
state. Black rounded rectangles represent activation layers.
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2.3 Transfer Knowledge to Target Spectral Model

Benefiting from the knowledge learned by the source model, the
target model is trained on the target frequency domain (from 0.5
to 1.0 THz) to predict the complex transmission coefficients of
the meta-atoms with a relatively small data set of 1000 samples.
The relation of the interest bands of the source task and target
task of spectral transfer learning is depicted in Fig. 3(a). The
target data set of cylindrical-shaped all-dielectric meta-atoms
is established via the commercial software CST Microwave
Studio under x-polarized normally incident light from 0.5 to
1.0 THz. In this home-built library, each meta-atom is deter-
mined by the same four geometry parameters as the above-men-
tioned ones in the open-source data set, but within a different
range. The ranges of the four parameters are & € [10,20],
r € [5,65], h € [3,65], and g € [5,95] (all in gm). The complex
transmission coefficients over the whole spectrum are sampled
into 51 frequency points with an interval of 0.01 THz. The sim-
ulation details are described in Sec. 1 in the Appendix. Then we
employ transfer learning to help train the target neural network.
The target model has the same network structure as the source
model except for the output layer, whose dimensionality can be
adjusted according to the sampling points of the target spectrum;
in our case, there are 51 dimensions.

We propose three transfer learning strategies as depicted in
Fig. 3(b). (i) The target network copies the first k layers from the
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source model as the initialization of weights and bias, and the
remaining layers of the target network are randomly initialized
with a normal distribution. The entire target network is fine-
tuned simultaneously to be trained on the target data set and
model, called the “frozen-none” strategy. (ii) The target network
copies all hidden layers (except for the last one due to the
mismatch of the dimensions) from the trained source model
as the initialization of all hyperparameters. During the training
process, the first k layers are frozen, meaning that they do not
change with training, and only the remaining layers are fine-
tuned, called the “copy-all” strategy. (iii) The target network
copies the first k layers from the source model and freezes them,
whereas the remaining layers are initialized and fine-tuned,
called the ‘“hybrid-transfer” strategy. Further details of the
training setup (learning rates, etc.) are given in Sec. 2 of the
Supplementary Material. As the major challenge in transfer
learning is to select the general layers and specific layers to
avoid the negative transfer between the source and target tasks,
we conduct three sets of experiments to determine the best trans-
fer-learning strategy as well as the most appropriate number of
the transfer layers. The learning curves of these three strategies
are shown in Fig. 4(a), and the colors from dark to light indicate
the number of transfer layers from less to more, i.e., from 1(0) to
10(9). We aim not to maximize the absolute performance of the
target model, but rather to verify that the transfer-learning-based
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Fig. 4 Results of the spectral transfer learning. (a) Clusters of learning curves of three transfer
strategies: frozen-none (red), copy-all (blue), and hybrid-transfer (orange). The colors from dark to
light indicate the number of transfer layers from less to more. (b) Examples demonstrating the
performance of the target CDNN using transfer learning.
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method has advantages over direct learning. By comparing
their performances on the same data set under consistent ex-
perimental conditions, we can see that in the frozen-none case,
the test error is ~3.4 x 1073 if trained from scratch, whereas it
is around 2.7 x 1073 with the transferred knowledge, no matter
how many layers are copied. The prediction accuracy is im-
proved by about 26% through transfer learning. In addition,
the loss function of transfer learning converges earlier than
that of direct learning, manifesting a faster training speed.
It takes an average of 72 min per 10,000 epochs of training
on our computer equipped with an Nvidia RTX 3090 GPU,
and our training process runs about 15,000 iterations to con-
verge. In the other two cases, the test error is either higher or
lower than that of direct learning as the number of transfer
layers changes, which depends on the generality and speciali-
zation of different layers as well as the co-adaptation between
neighboring layers.” Our results show that the frozen-none
strategy has stronger robustness than the other two, which can
achieve higher accuracy than direct learning without careful
parameter tuning, indicating it is more applicable for the spec-
tral transfer target task.

Specifically, we use the frozen-none method of copying
the first seven layers to train the target CDNN and test the
generalization performance on the test set. Several typical
test examples are presented in Fig. 4(b). These examples
illustrate that the predicted spectra are in good accordance
with the simulated ones in the regions, no matter whether
the fluctuation is gentle or violent. It is also worth mentioning
that this process only takes several milliseconds to calculate
the transmission coefficients over the whole bandwidth under
consideration of each meta-atom. Such prediction accuracy
and efficiency are crucial for the on-demand metasurface
design in the inverse model, as will be discussed in the next
section.

2.4 Hybrid Inverse Model for the On-demand
Metasurface Design

The core objective of the spectral transfer-learning-based
method is the efficient and accurate on-demand metasurface
design in the interested band. We divide the design task of
the whole metasurface into the independent search for each
meta-atom according to the phase and amplitude distribution
oriented by functionality. In order to identify the optimal struc-
ture parameters at each pixel of the metasurface while avoiding
the exponential growth of the simulation time during the itera-
tions, we propose a hybrid inverse model that combines the
data-driven deep-learning method with the rule-driven global
optimization algorithm. In this model, the trained target-
CDNN is regarded as an EM simulator to replace the traditional
EM simulation software, which can precisely predict the trans-
mission coefficients at an extremely high speed. The CAPSO
algorithm performs to be a fast generator and a powerful opti-
mizer of the meta-atoms. Specifically, the geometrical parame-
ters given by CAPSO are fed into the target CDNN to predict
the corresponding complex spectrum tensor, from which the ex-
tracted phases and amplitudes at certain frequencies are evalu-
ated by quantifying the discrepancy between the current results
and the goals. The optimal parameters are successively updated
in iterative runs to reduce the value of the loss function [as
Eq. (2) shows] until the maximum epoch is reached,
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loss = ;;H(pgoal (;Ll) — Poptimal (/11)‘ +nx |Agoal (;Ll)

- Aoptimal (Al) ” ’ (2)

where n is the number of the target frequencies, ¢ and A are the
phase and amplitude at a certain frequency, respectively, and
the subscripts goal and optimal represent the target and the
current optimum value. # is a customized preset weight factor,
whose value depends on the role of the amplitude playing in
the functional devices.

Instead of constructing an inverse or tandem DNN com-
monly used in the metasurface inverse design,”***' we employ
this hybrid model chiefly for these two reasons. (i) Previous
inverse networks take the entire spectrum tensor as the input,
which is suitable for the amplitude-functional devices in the
continuous band, such as the filter, absorber, and resonators,
whereas most phase-gradient metasurfaces only care about the
EM responses at one or several frequencies, leaving the others
alone. If the randomly assigned transmission is too different
from the ones in the data set, the inverse network is almost
impossible to output a reliable structure owing to nonuniqueness
(a spectrum can be generated by multiple structural parameters,
or no set of structural parameters can produce such a spectrum).
(i1) The inverse model with the optimization algorithm can be
readily modified to meet diverse design goals and restrictions.*
For example, we can impose a constraint in the equation on the
parameter gap to alleviate the coupling among adjacent meta-
atoms. We can also design frequency multiplexing devices with
different numbers and values.

2.5 Metadevice Design and Verification

To verify the efficacy of our proposed hybrid inverse model, first
we quickly design a focusing cylindrical metalens through this
method. The ideal phase retardation provided by the metalens
can be written as the function,

o(r.0) =2 (\J2+ =), ©)

where c is the light speed in vacuum, o is the angular frequency,
x is the distance between a meta-atom and the center of the met-
alens, and f is the focal length. In this design, the metalens with
a diameter of 12.15 mm and a focal length of 20 mm is to focus
the transmitted waves at 0.95 THz. Each column of the metalens
is composed of 81 meta-atoms, and the dimension tensor
D = [e,r, h,g]" of each meta-atom is optimized iteratively ac-
cording to Eq. (2) in turn with ¢, calculated by Eq. (3) and
Agou set as 0.5. Figures 5(a) and 5(b) show the target phase
and amplitude profiles of the metalens as well as the phase and
amplitude responses of optimized meta-atoms selected by the
hybrid inverse model at each pixel, which match each other
fairly well. The detailed procedures and resulting parameters of
this model are described in Secs. 3 and 4 in the Supplementary
Material. The metalens is then investigated using CST
Microwave Studio, where the metalens is placed on the z =0
plane with the center set at the origin. The optical axis is set as
the z axis with the open boundary condition adopted in the
x direction and the periodic boundary condition adopted in the
y direction. The metalens is illuminated by x polarized plane
waves. Figure 5(d) depicts the normalized far-field intensity
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distribution of this metalens, which is in good agreement with
the theoretical calculation derived by the Rayleigh—Sommerfeld
diffraction integral formula in Fig. 5(c). The results confirm the
validity of the hybrid inverse model and further demonstrate
the reliability of our CDNN-based transfer model.

To further verify the efficiency and versatility of our method,
we design a 2D metadevice for generating the focused THz
vortex beam based on the function as follows:

o(r,w) = ? (\/ N f) + 16, “)

where (r, 0) is the polar coordinate of a meta-atom and [ is an
integer representing the topological charge and is related to the
orbital angular momentum. The metadevice is aimed to generate
a second-order vortex beam (I = 42) operating at 0.95 THz,
consisting of 61 meta-atoms X 61 meta-atoms with a lattice size
of 150 um; each of them is automatically determined by the hy-
brid inverse model. Figure 6(a) shows the optimized results of
the structure pattern, phase, and amplitude distributions for the
designed metavortex generator. The whole prediction process
only takes about 600 s, with an average time of <0.1 s for
each meta-atom. Its performance is then evaluated using CST
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Microwave Studio, where the metavortex generator is placed
on the z = 0 plane with the z axis as the optical axis. With
the open boundary condition being applied, the linearly polar-
ized Gaussian waves with a waist radius of 3 mm are incident
on the metavortex generator. Figure 6(c) depicts the simulated
results including phase, real part, and normalized intensity
distributions, which are in good agreement with the theoretical
calculations derived by the Rayleigh—Sommerfeld diffraction
integral formula in Fig. 6(b). The deterioration of the simulated
results is suggested to be caused by the finite hexahedral mesh
limited by the computer memory and the unavoidable coupling
among adjacent meta-atoms.

3 Discussion and Conclusions

We developed a spectral transfer-learning-based comprehensive
methodology assisted by CDNN for the realization of the bal-
ance between computational efficiency and prediction accuracy
to further help with the automated on-demand metasurface de-
sign in arbitrary wavebands. We explored the spectral transfer-
learning strategy to ease the burden of large data volume
requirements by migrating the learned knowledge from the
original band to the target one by exploiting the commonality
for EM properties of the all-dielectric meta-atoms with the same
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Fig.6 Characterization of the metavortex generator designed by the hybrid inverse model. (a) The
structure pattern, phase, and amplitude distributions of the designed metavortex generator output
from the hybrid inverse model. (b), (¢) The theoretical and simulated results for the phase, real part,
and normalized intensity distributions along the x — y and y - z planes of the designed metavortex

generator.

geometrical shape but in different spectral ranges. We proposed to
utilize CDNN to train the source model on the given cheap data
set, which obtains a fairly low prediction error of 1.05 x 10~
with an improvement of ~30% compared to its real-valued
counterparts. We demonstrated that transfer learning can im-
prove the prediction accuracy by ~26% in a quite short time
compared to direct learning on the same small data set with
only 1000 samples through the robust transfer-learning strategy
named frozen-none. For proof of concept, we presented a focus-
ing metalens and a metavortex generator working at 0.95 THz
using the hybrid inverse model that combines the well-trained
target CDNN with the CAPSO algorithm. The simulated results
of these designed metadevice agreed well with the correspond-
ing theoretical calculations, consequently validating the capabil-
ity of the proposed comprehensive framework. In view of the
underlying logic of our work, the deep-learning-based network
is proposed to address the time and computing costs of the con-
ventional simulation tools for metasurface design and modeling,
i.e., our network aims at the numerical simulation process to
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demonstrate that the spectral transfer method is an efficient
alternative to the consumed EM simulation software and human
experience. As for the experiment demonstration, it will be the
application of a well-trained feed-forward network. Our results
show the potential to synchronously improve both the efficiency
and accuracy of the deep-learning-based method, which will
facilitate the fast and reliable metasurface design in arbitrary
frequency bands, thus promoting the substantial application of
deep learning in disciplines, such as meta-optics, spectral rec-
ognition, and resolution enhancement.

4 Appendix: Python-CST Co-Simulation

4.1 Random Generation of Meta-Atoms and
Establishment of Data Sets

During the target data set establishment, the co-application of
Python and CST automates the numerical simulations in a
batched manner. The CST package provides a Python interface

Mar/Apr 2024 o Vol. 3(2)



Xu et al.:" Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network

to the CST Studio Suite, which allows controlling a running 3
simulation or reading the results of project files. First, we need
to start a CST environment and create a new CST project. Then 4.
we edit the VBA codes to set up the model, materials, simulation
conditions, and so on. Dimensions of the meta-atoms are 5
randomly generated within their respective ranges, and they are
constructed on top of a fused silica substrate with a thickness of
120 ym and a fixed lattice size of 150 ym. Each meta-atom is 6.
simulated under the x-polarized plane wave by frequency do-
main solver with the tetrahedral mesh type. Periodic and per- 7.
fectly matched layer (open) boundary conditions are used along
the transverse (x and y) and longitudinal (z) directions with 8.
respect to the propagation of light. A field probe is placed at
z = 2000 um to detect the transmission spectrum of the meta- 9
atom, which can be derived from the 1D results. One loop is '
completed for each simulation run, and the number of loops is
the size of the target data set. 10.
4.2 Arrange the Layout of Metasurfaces 1"
During the verification process, the co-application of Python
and CST automates the arrangement of the metasurface layout.
Similarly, we start a CST project and initialize the settings. Then 12.
we input the dimension parameters of each meta-atom into CST 13
and place them according to their corresponding positions '
through VBA codes to arrange them into a whole metasurface in
order. The metadevice is simulated under an x-polarized plane 14.
wave by a time-domain solver with a time duration of 500 ps.
The boundary conditions in the propagation direction are set as
open, and those in the x and y directions are set as open (for 2D 15.
metadevices, such as metalenses, vortex generators, and holo-
graphic plates) or period (for 1D metadevices, such as cylindri-
cal metalenses and deflectors), as needed. Field monitors are 16.
placed according to the location of the electric field to be ob- 17
served. Corresponding codes are provided by the authors. '
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