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Abstract. We propose an approach for recognizing the pose and surface material of diverse objects,
leveraging diffuse reflection principles and data fusion. Through theoretical analysis and the derivation of
factors influencing diffuse reflection on objects, the method concentrates on and exploits surface information.
To validate the feasibility of our theoretical research, the depth and active infrared intensity data obtained from
a single time-of-flight camera are initially combined. Subsequently, these data undergo processing using
feature extraction and lightweight machine-learning techniques. In addition, an optimization method is
introduced to enhance the fitting of intensity. The experimental results not only visually showcase the
effectiveness of our proposed method in accurately detecting the positions and surface materials of targets
with varying sizes and spatial locations but also reveal that the vast majority of the sample data can achieve
a recognition accuracy of 94.8% or higher.
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1 Introduction
Object detection and recognition constitute a pivotal aspect of
3D reconstruction techniques.1 The primary objective is to as-
certain the identity, position, and orientation of objects within
a scene or image. Current methods are typically classified as
either model- or context-based approaches.2 Objects in the real
world are composed of diverse materials with distinct physical,
chemical, and optical properties. The discrimination of object
materials in real-world scenarios holds significant importance
in computer vision research.3 Relying solely on the shape and
orientation data may result in the omission of crucial surface
material information. Moreover, objects in real-world scenarios
often exhibit intricate surface geometrical postures. Existing
methods face limitations in concurrently recognizing materials
and surface poses. Many approaches tend to overlook surface
information while concentrating on holistic object recognition.

In our approach, to achieve improved recognition outcomes, the
material, position, and orientation information of surface ele-
ments are incorporated. It does not solely rely on size and shape
for classification, making it adaptable to various target sizes,
shapes, and poses. By extracting and detecting the surface in-
formation, our method accurately determines the object’s pose
and material, thereby enhancing its applications in computer
vision tasks, such as 3D reconstruction technology.

Image data play a pivotal role in object detection, yet their
effectiveness is constrained in complex scenes when sourced
from a single origin. The advent of image data fusion has ad-
dressed this limitation by integrating multisource information,
resulting in enhanced detection capabilities. Common fusion
methods encompass thermal infrared, visible, RGB, depth, and
active infrared.4 However, aligning fused data from diverse
sensors proves intricate due to differences in resolution, focal
length, and viewing angles. In the data acquisition setup, a
single time-of-flight (ToF) camera concurrently captures the
depth and active infrared data, presenting a solution that offers*Address all correspondence to Yang Yue, yueyang@xjtu.edu.cn.
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accurate depth information while mitigating the impact of am-
bient lighting. Notably, ToF sensor data remain independent of
natural lighting, endowing the proposed method with robustness
across various lighting conditions.5

Existing target detection methods often neglect the complex
surface information on objects, including their material, optical
properties, and geometry, thereby limiting the precision of ob-
ject recognition. This research holds significant value in advanc-
ing high-precision object recognition. Moreover, there is a need
for further investigation into fusion methods for target detection
using image data from a single sensor. To address these chal-
lenges, we propose a recognition method that combines depth
and active infrared intensity (D-AI) data from a single ToF cam-
era. By analyzing the diffuse reflections of object materials in
the near-infrared band, a framework for determining the pose
and surface material of a detected object is established. Figure 1
provides an overview of the framework, involving the simulta-
neous acquisition of D-AI images, utilizing point clouds to as-
certain the object’s pose, and identifying the surface material by
considering the reflective intensity and its influencing factors.
This method finds diverse applications in industrial production,
unmanned exploration, criminal investigation, monitoring,
autonomous driving, etc., where object surface information is
crucial, particularly in challenging lighting conditions.

The major contributions of this paper can be summarized as
follows:

1. An innovative framework that integrates multiple image
data to accurately process and recognize the objects’ pose and
surface materials focuses on acquiring and analyzing spatial po-
sitions and surface orientations, allowing recognition of objects
of several materials with various shapes if the resolution con-
ditions are met.

2. An approximate model for analyzing infrared intensity
from conventional materials with diffuse reflection in the near-
infrared wavelength band also identifies the factors affecting
the infrared reflection intensity received by the ToF sensor from
the object’s surface.

3. The utilization of a single-ToF depth camera as the core
acquisition device eliminates the need for complex alignment
processes with multiple sensors. The fusion approach, combin-
ing D-AI information, demonstrates improved robustness in the
face of ambient light and temperature changes.

4. The proposed method achieves high accuracy in pose
calculation and recognition, with recognition accuracy surpass-
ing 94.8% in 90.0% of the samples.

The subsequent sections of this paper are organized as
follows: Sec. 2 reviews related works on the recognition of geo-
metric pose and surface materials of objects, as well as image
data fusion methods in object detection. Section 3 carries on
the theoretical derivation of the diffuse reflection law of the
object’s surface and an analysis of the influencing factors.
Section 4 provides a detailed description of the developed ap-
proach. Section 5 outlines the experimental setup and analyzes
the experimental results. Finally, conclusions and avenues for
future work are discussed in Sec. 6.

2 Related Works

2.1 Recognition of Object’s Pose and Surface Materials

Diverse methods and applications have been developed for the
recognition of object poses, utilizing 2D images or depth data.
Pose estimation algorithms have reached maturity, finding
applications in areas such as motion capture,6 autonomous
driving,7 and robot grasping.8 Deep learning, particularly in
conjunction with convolutional neural networks (CNNs), has
yielded impressive results in 2D image-based pose estimation.
Pose convolutional neural network, proposed by Xiang et al.,9

predicts the object’s center coordinates and infers rotational in-
formation through regression. For 3D objects with depth infor-
mation, traditional methods involve aligning the point clouds
with known pose templates in a library and analyzing the pose
relative to the template. Improved iterative closest point (ICP)
algorithms, such as globally optimal-iterative closest point by
Yang et al.10 and GICP by Wang et al.,11 address challenges
such as variations in initial positions, missing points, noise, and
different scale factors. In addition, attitude estimation can be
achieved through deep networks, compensating for limitations
in traditional ICP algorithms. Robust point matching-net by
Yew and Lee12 is a deep-learning-based method that is insensi-
tive to initialization, while recurrent closest point by Gu et al.13

overcomes the irregularity and inhomogeneity issues of point
cloud data structures. Point cloud object retrieval and pose es-
timation method by Kadam et al.14 is an unsupervised method

Fig. 1 Framework overview and applications.
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that retrieves targets from point clouds and estimates their
poses, surpassing traditional and learning-based approaches.
Researchers have also proposed fusion methods that combine
2D data and depth information. Dense fusion (DF) by Wang
et al.15 separately processes the data sources and employs a
DF network to extract pixel-level dense feature embeddings
for pose estimation. Sparse DF (SDF) by Gao et al.16 integrates
sparse and DF modules using the Transformer architecture,
enhancing semantic texture, and leveraging spatial structural in-
formation to improve pose estimation. Recent advancements
took more account of the evaluation quality, indeterminacy,
and target privacy for pose detection. Yang and Marco17 pro-
posed the first pose estimator that empowers the estimation with
provable and computable worst-case error bounds. Gong et al.18

explored a pose estimation framework, DiffPose, which treated
3D pose estimation as an inverse diffusion process, in response
to the inherent ambiguity and occlusion. Aleksandr et al.19 pro-
posed an image-free human keypoint detection technique using
a small number of coded illuminations and a single-pixel detec-
tor, addressing the data security and privacy issues faced by
human pose estimation.

Research in material recognition encompasses various ap-
proaches aimed at perceiving and identifying materials across
different application domains. Commonly framed as a texture
classification problem in computer vision and image analysis,
two primary categories of methods prevail: manual feature
extraction coupled with classification techniques and deep-
learning-based methods. One traditional method frequently em-
ployed is the bag-of-visual words approach,20 which has dem-
onstrated success in recognizing image materials. Feature-based
frameworks for material recognition have also been proposed,
utilizing techniques such as composite edge and color descrip-
tors or the accelerated robust feature descriptor21 to characterize
localized image regions. Hierarchical material property repre-
sentation mechanisms, exemplified by the GS-XGBoost model
with a newly designed feature fusion algorithm and relative
attribute model,22 have been developed to enhance the material
property classification. On the other hand, deep-learning-based
approaches achieve material recognition through the construc-
tion of CNNs. For instance, the Materials in Context Database23

has been leveraged to convert a pretrained CNN into an efficient
fully convolutional framework and, when combined with a fully
connected conditional random field, predicts materials within an
image. Other deep-learning networks, such as the Material
Attribute-Category CNN24 and Deep CNNs,25 along with feature
encoding methods, have been employed to address the material
recognition and visual attributes.

Besides focusing on texture, material perception can also rely
on the fusion analysis of multimodal properties such as the op-
tical properties of the target. Serrano et al.26 proposed that the
appearance of materials depends on the reflectivity, the surface
geometry, and the illumination. In the acquisition of such optical
properties, optical sensors with special capabilities, represented
by depth cameras, have a certain degree of advantage. Mao
et al.27 proposed a method for surface material sensing based
on structured laser points captured by a structured light camera
and demonstrated the relationship between the active infrared
image and the optical properties of different materials. There
are also more related studies that selected ToF for this purpose.
For example, on a pixel-by-pixel basis, Conde28 utilized the
band-limited character of material impulse response function
for the material classification. Lee et al.29,30 proposed a method

for material type identification in terms of color and surface in-
frared reflectance features as well as the use of a single depth
image for the estimation of reflectance and a segmentation
method based on the similarity of reflectance. Mannan et al.,31

on the other hand, determined the material of an object based
on the smoothness of its surface by analyzing the reflectance
pattern of infrared light.

The fields of object pose assessment and material recognition
have historically been researched independently, resulting in
disparate approaches. However, the integration of specific sur-
face information effectively combines both aspects, enabling the
simultaneous analysis of object pose and material judgment. This
information fusion approach is not only efficient but also broadly
applicable across various scenarios. In addition, relying solely on
a single source of image data for material recognition often lacks
comprehensive information. To overcome this limitation and
enhance accuracy, data fusion techniques are employed.

2.2 Image Data Fusion Schemes in Object Detection

Image data fusion involves combining images from different
sensors to generate robust and information-rich images. The
key to successful fusion lies in effective information extraction
and appropriate integration.32 Thermal infrared and visible
fusion schemes are well established.4 Visible images offer high
spatial resolution, detail, and contrast, while infrared images re-
sist environmental interferences, providing more information,
accuracy, and robustness than unimodal signals. However, com-
bining images from different sensors can introduce resolution
issues, and both types of images may be limited in extracting
spatial information, impacting target detection and recognition
in 3D space. RGB and depth image fusion is another widely
adopted technique, proven successful in applications such as
moving object recognition,33 semantic segmentation,34 scene
reconstruction,35 and medical image segmentation.36 However,
it necessitates better lighting conditions and tends to perform
less effectively and accurately in dim or dark environments.

Depth and infrared fusion is particularly advantageous in
acquiring data in dark environments and capturing the 3D stereo
information of the target. This fusion category includes depth
and thermal infrared (D-TI) as well as D-AI methods, with
current research primarily concentrating on depth and thermal
infrared fusion. Infrared or thermal imaging cameras gather emit-
ted infrared information and integrate it with the depth data.
Previous studies involved various sensors, necessitating specific
algorithms to align focal lengths, resolutions, viewpoints, and
other observation information, resulting in a complex process.
Successful approaches have included the use of structure from
motion37 and multiview stereo techniques,38 or combining lidar
scanners with infrared cameras,39 to reconstruct 3D models and
temperature fields. However, these methods encounter challenges
in detecting targets with poor infrared emission performance or
similar thermal infrared (IR) intensities. By contrast, depth and
active IR fusion achieves high-accuracy target detection using a
single sensor, making it the chosen approach for our work.

3 Theoretical Model of the Diffuse-
Reflection Law and Influencing Factors

In target detection and 3D reconstruction applications, we can
approximate and analyze the optical properties and diffuse re-
flection laws of materials on the target object’s surface using
theoretical principles. This information is instrumental in
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understanding and leveraging factors that affect the active infra-
red intensity of camera acquisition in the subsequent fusion
methods. Common materials such as paper, fabrics, leather,
paint layers, and plastics exhibit similar diffuse reflection laws
in the near-infrared band emitted by lidars (e.g., ToF cameras).
Their behavior can be roughly approximated using Lambertian
scattering40 and Kubelka–Munk (K-M) theoretical models41 for
computational analysis, without necessitating precise reflection
values. When considering diffuse reflection effects, the detected
surface is treated as an infinitely wide sheet of material, neglect-
ing edge effects and assuming that the object thickness is much
larger than the size of particles interacting with absorbed and
diffusely reflected light. In addition, when near-infrared light
illuminates the detected surface, the model assumes isotropic
energy reflection in all directions within the hemispherical
space.

Since the size of the irradiation unit of the ToF camera used
in this method is negligible with respect to the scale of the cap-
tured scene, the emitted infrared light is approximated as a point
light source. According to the law of illumination, when illumi-
nating with a point light source, the illuminance on the surface
of an object perpendicular to the light is proportional to the
luminous intensity of the light source and inversely proportional
to the square of the distance from the illuminated surface to the
light source. When the surface element dA is at a distance r from
a point source with luminous intensity I, and the angle between
it and the plane where the camera lens is located is θ, the illu-
minance E in the surface element dA can be expressed as

EjdA ¼ I
r2

cos θ

����
dA
: (1)

According to Lambert’s cosine law,42 which is applicable to
Lambertian scatterers, the reflected intensity Ir at the surface
element dA of the object received by the ToF sensor is propor-
tional not only to its own reflectivity R but also to the cosine of
the angle γ between the direction of observation and the normal
of its surface element dA. The reflected intensity Ir can be ex-
pressed as

IrjdA ¼ R ×
I
r2

cos θ × cos γ

����
dA
: (2)

The relative spatial positions and surface geometry of the sur-
face element and the camera in Eq. (2) are illustrated in Fig. 2.

θ is related to the inclination of the surface element, while γ is
related not only to the inclination of the object surface but also
to the spatial position where the surface element is located. The
reflectivity R of the surface element is connected to the specific
optical properties of the object surface. As the object material is
often irregular and inhomogeneous in the interior, the optical
action within the scope of this paper is considered a semi-
infinite sample optical model described by the K-M theory.
In this context, the K-M diffuse modification equation can be
expressed as the diffuse reflectivity of the surface of the object
for a particular material.43 The K-M function F follows

FðRÞ ¼ K
S
¼ ð1 − R∞Þ2

2R∞
≈
ð1 − RÞ2

2R
; (3)

where K is the absorption coefficient, S is the scattering coef-
ficient, and R∞ is the reflectivity of the sample of the infinite
thickness. Since the surface’s optical impact within the range of
scales compared with the macroscopic size of the object can be
disregarded, R∞ is approximately equal to the object surface
reflectivity R.

After transforming and substituting Eq. (3) into Eq. (2),
we obtain

IrjdA ¼
�
1þ K

S
−
�
K2

S2
þ 2K

S

�1
2

�
×

I
r2

cos θ × cos γ

����
dA
: (4)

In the K-M theory, the absorption coefficient K and the scat-
tering coefficient S are coefficients related to the particle size,
refractive index,44 and the composition of the surface material of
the object and its microscopic properties. By analyzing Eq. (4),
if we apply the above-mentioned model assumptions and ap-
proximations condition, the infrared intensity of a particular
surface element dA in the acquisition scene received using
the ToF sensor is mainly related to the material, the incident
infrared intensity I, the distance r between dA and the camera
lens, the angle θ between dA and the plane of the camera lens,
and the angle γ between the line of the surface element and the
camera lens.

The camera lens plane is denoted as the z ¼ 0 plane, the
equivalent luminous geometric point is labeled as (0, 0, 0),
and the surface element dA is labeled as ðx; y; zÞ, then
z = dep is the depth value of dA captured in the depth image.
The horizontal inclination α and the vertical inclination β are
introduced to characterize the inclination of the object’s surface
jointly, as shown in Fig. 3. Horizontal inclination α is defined as
the angle between the projection of the surface normal vector in
the horizontal plane and the line from the camera lens to the
center of the field of view. When the projection of the surface
normal vector of the object is located on the right side of the line
from the camera lens to the center of the field of view, the hori-
zontal tilt angle takes a positive value; conversely, the horizontal
inclination takes a negative value. The vertical plane, defined as
the plane that crosses the line from the camera lens to the center
of the field of view and is perpendicular to the horizontal plane,
is introduced. The vertical inclination β is defined as the angle
between the projection of the object surface normal vector in the
vertical plane and the line from the camera lens to the center of
the field of view. It is situated on the surface of the object surface
normal vector projection of the camera lens to the center of the
field of view of the line of the upper. The vertical inclination is

Fig. 2 Relative spatial position and geometric relationship be-
tween the ToF sensor and the surface element dA.
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positive if it is located on the upper side of this line; otherwise,
it is negative.

Based on the aforementioned provisions and assuming a res-
olution of the collected scene as 640 × 480, the expressions for r,
θ, and γ in terms of x, y, dep, α, and β can be formulated as
follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 320Þ2 þ ðy − 240Þ2 þ dep2;

q
(5)

θ ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 αþ sin2 β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 αþ sin2 β þ ðcos αþ cos βÞ2

p �
; (6)

γ ¼
�
π

2
− θ

�
− arcsin

�
dep

r

�

¼
�
π

2
− arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 αþ sin2 β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 αþ sin2 β þ ðcos αþ cos βÞ2

p �	

− arcsin

�
depffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − 320Þ2 þ ðy − 240Þ2 þ dep2
p �

; (7)

IrjdA¼
�
1þK

S
−
 
K2

S2
þ2K

S

!1
2
�

×
I

ðx−320Þ2þðy−240Þ2þdep2

×
cos αþcos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2αþsin2βþðcos αþcos βÞ2
p

×cos

((
π

2
−arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2αþsin2β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2αþ sin2βþðcos αþcos βÞ2

p
#)

−arcsin

�
depffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx−320Þ2þðy−240Þ2þdep2
p �)�����

dA

: (8)

This represents the theoretical approximation of the infrared
reflection intensity for a specific surface element on a particular
material. It is important to highlight that employing profes-
sional simulation software for calculations can yield a more

precise relationship between infrared reflective intensity and
its influencing factors. However, it is crucial to recognize that
simulations may vary for different surface materials and in di-
verse complex environments, leading to a scarcity of universally
applicable outcomes. The proposed approximate calculation
method outlined above offers a more intuitive visualization
of the relationship between factors influencing infrared reflec-
tion intensity. Its significance lies in its general applicability and
universality, providing insights into the broad understanding
of the relationship between factors and intensity in different
scenarios.

According to the analysis above, the relationship between the
corresponding infrared reflection intensity of a specific surface
element and the horizontal and vertical position of the surface
element, along with the horizontal and vertical inclination
angles, can be calculated separately, as illustrated in Fig. 4.
Figure 4(a) depicts the theoretical approximation of the relation-
ship between the infrared intensity and the landscape/portrait
position of the surface element when both α and β are 0 at
dep = 1.5 m. Figure 4(b) showcases the theoretical approximate
relationship between the infrared reflection intensity and the
horizontal/vertical inclination of the surface element when
dep = 1.5 m, x ¼ 320, and y ¼ 240. In the calculations, the
values of K, S, and I are all adjusted to ensure that the maxi-
mum value of the intensity aligns with the maximum value of
the cardboard intensity obtained using the Intel RealSense
LiDAR L515 under the same acquisition conditions.

The intensity value Ir corresponding to each surface element
on the target object is associated with the material category, the
depth value dep, its position ðx; yÞ in the depth plane, as well as
the horizontal inclination α and vertical inclination β. These
factors satisfy a certain functional relationship and can be ex-
pressed by the following equation:

IrjdA ¼ fðMaterial; x; y; dep; α; βÞjdA: (9)

Considering the aforementioned five feature values, exclud-
ing the material, as the spatial positions and surface orientations
recognition information of each surface element on the object,
if the acquired image data are processed to obtain the infrared
intensity information of each pixel value (considered a surface
element as described above), along with the spatial positions
and surface orientations information, a specific recognition
method can be employed to determine the pose and surface
material of the target object.

Fig. 3 Schematic diagram of horizontal inclination angle α and vertical inclination angle β. (a) is
the front view of α, (b) is the top view of α, (c) is the front view of β, and (d) is the side view of β.
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Moreover, another common material used in the target rec-
ognition tasks is highly reflective materials such as metals.
The active reflective intensity of such materials is influenced
by the energy distribution and polarization structure of the
near-infrared light when it reflects on the metal surface. In this
case, the diffuse reflection model assumed earlier is no longer
applicable, and the reflected infrared intensity no longer follows
a distribution law such as that shown in Fig. 4. However, despite
the change in the reflective behavior of highly reflective materi-
als, based on the derived geometric relationship and empirical
qualitative judgment, this method still assumes that the intensity
value Ir corresponding to each surface element on the target
object is still related to the material, the depth value dep, its
location ðx; yÞ in the depth plane, as well as the horizontal
inclination α and vertical inclination β, and the relationship de-
scribed in the Eq. (9) is still adopted. It is essential to note that if
a ToF camera is chosen to collect the data, and there is specular
reflection in the shooting scene, it may lead to inaccuracies or
deviations in the depth values according to its shooting princi-
ple. Therefore, this method is most suitable for shooting scenes
that minimize the influence of specular reflection.

4 Detection Methods for Object Pose and
Surface Material

Figure 5 illustrates the workflow of the proposed object recog-
nition method based on the theoretical analysis above. The main
sequence involves image preprocessing, contour extraction, and
pixel value extraction on the depth-active infrared intensity im-
age data set and the scene image to extract various influencing
factors as analyzed in Sec. 3. Simultaneously, for the point cloud

data, the normal vector acquisition is performed, and the surface
orientations are calculated to comprehensively obtain the posi-
tion of the object surface and pose information. Subsequently,
an optimization neural network is employed for training and
fitting, and the results obtained from the fitting are used for
the material recognition of the object after optimizing the theo-
retical formulas.

4.1 Acquisition, Extraction, and Computation of Object’s
Spatial Positions and Surface Orientation
Information and Infrared Intensity Information

As depicted in Fig. 6, the acquisition scene and equipment pri-
marily consist of a computer, a ToF depth camera, objects (or
scene) to be acquired, a camera tripod, and data cables, among
other components. Throughout the acquisition process, it is cru-
cial to ensure an unobstructed field of view in front of the target
object. Simultaneously, the camera should be positioned stably
and securely on a tripod, and data from the same scene should be
acquired in multiple shots. The collected data encompass the
infrared intensity image, the depth image, and the point cloud
data that has been aligned with the 2D depth image, referred to
as D-AI images.

In the image preprocessing stage, this method utilizes three
noise reduction techniques: mean noise reduction, depth value
filtering, and corrosion noise reduction. The objective is to en-
hance the quality of image data. Specific practices include elimi-
nating irrelevant depth information and noise while minimizing
errors such as multi-path interference (MPI), flying pixels, and
intensity errors during image acquisition. MPI errors occur
when the ToF sensor receives not only light reflected by the

Fig. 4 Theoretical approximation of the infrared reflected intensity with respect to (a) the land-
scape and portrait positions and (b) horizontal and vertical inclinations of the surface element.

Fig. 5 Algorithm framework for recognizing object pose and surface material.
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target object but also complex diffuse or specular reflections,
leading to measurement discrepancies. Flying pixel errors arise
due to limited pixel values in the depth image, resulting in in-
accurate depth values for pixels at object edges or regions with
significant depth variations. Factors such as interpixel cross talk
and lens scattering can contribute to flying pixel noise.45,46

Intensity errors stem from non-flat object surfaces, distance,
and integration time, causing fluctuations in values.

In mean noise reduction, multiple images of the same scene
in the acquired D-AI images are averaged. Depth value filtering
involves selecting a threshold based on the spatial location of the
target object, which can be selected according to the recom-
mended working depth range of the ToF camera. This threshold
produces a preliminary binarized image, effectively filtering
out irrelevant depth information. The irrelevant depth value is
set to 0, retaining only the depth information within the range
of the target object. Image erosion is performed by convolving
the depth-filtered image with a suitable kernel to derive the

minimum value within the kernel’s coverage area. For images
with a resolution of 640 × 480, a convolution kernel of a size
such as (5,5) can work well. This minimum value replaces the
pixel values at reference points. The erosion operation further
filters out irrelevant information and noise in the highlighted
area, specifically removing flying point noise errors.

The contour and pixel value extraction process involves ap-
plying a Gaussian filter to the noise-reduced depth image. The
filtered image is then binarized and saved. Gaussian filtering47

smoothens the image by averaging the neighboring pixel values,
facilitating the extraction of the object’s edge contour. Since
weighted averaging affects some pixels, a suitable gray thresh-
old is chosen for the filtered contour image, which then under-
goes secondary binarization. Once the contour is obtained,
the pixel values of the target object in the D-AI image are ex-
tracted and outputted. The extraction is limited to the range
within the contour edges. An example of this process is illus-
trated in Fig. 7.

Fig. 6 Schematic diagram of acquisition scene and equipment arrangement.

Fig. 7 Example of data preprocessing and contour extraction. (a) Depth map of the scene after
mean noise reduction, (b) result of binarization after depth-valued filtering, (c) result after corrosion
noise reduction, (d) result after contour extraction, and (e) result after the second binarization
operation.
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The process encompasses parallel point cloud data process-
ing, incorporating both preprocessing and inclination extraction.
Background information is filtered out from the acquired point
cloud, retaining only the foreground object data, as depicted in
Fig. 8. Each point cloud is then individually extracted to obtain
the normal vector information of each point, as demonstrated in
Fig. 9. Parameters such as the local surface model and sphere
neighborhood radius are utilized to adjust the normal direction.
By employing a minimum spanning tree,48 the normal vector
value N of each point on the object’s surface is calculated to
obtain the normal components Nx, Ny, and Nz.

The direction of the line from the center of the field of view to
the center of the camera lens is denoted as the z direction, and
the direction parallel to the horizontal plane and perpendicular
to the z axis is denoted as the y direction. Therefore, a 3D
orthogonal coordinate system x-y-z can be established in the
field of view. Within this coordinate system, the horizontal in-
clination α and vertical inclination β of each point in the point
cloud can be expressed using the normal vectors of the three
directions, Nx, Ny, and Nz

a ¼ arctan

�
Nx

Nz

�
; (10)

β ¼ arctan

�
Nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
x þ N2

z

p �
: (11)

The inclination of each surface element is determined by cal-
culating the horizontal inclination angle α and vertical inclina-
tion angle β from the normal vector of each point. By combining
this information with the spatial position data from the point
cloud, we obtain the surface orientations ðα; βÞ, depth value dep,
and position ðx; yÞ of each surface element. These factors with
the actual diffuse reflection intensity Ir are analyzed to deter-
mine the material.

To achieve the target task, an artificial neural network is
trained using a data set that includes the influencing factors
and actual intensity values. The network learns to predict the
fitted infrared intensity values for each surface element of the
target object. The backpropagation (BP) neural network49 is
chosen due to its simple structure, low computational require-
ments, and strong nonlinear mapping capabilities. However, to
address limitations such as slow convergence and the risk of
local minima, the BP neural network is optimized using genetic
algorithm (GA-BP)50 and dung beetle optimizer (DBO-BP)51 in
subsequent calculations. Consideration can also be given to the
other neural networks and advanced optimization algorithms for
better fitting. Last, the fitted intensity of each surface element is
combined with the actual diffuse reflection intensity to classify
the materials of the object’s surface elements in the next step.

4.2 Methods of Judging Surface Materials

For the application of material recognition on the object’s sur-
face in this study, the infrared reflection intensity, spatial posi-
tions, and surface orientations data of each surface element of
the object’s surface can be expressed in the following form in
relation to the material, after the neural network is trained, fitted,
and merged to obtain the results:

Materials of dAi ← gðxi; yi; depi; αi; βi; iri;actualvalue; iri;fittedvalueÞ;
(12)

Materials of the object

←
X
i

gðxi; yi; depi; αi; βi; iri;actualvalue; iri;fittedvaleÞ: (13)

The judgment method based on the above equation proposed
in this study is shown in Fig. 10.

Fig. 8 Example of the point cloud information for (a) the scene and (b) the extracted result.

Fig. 9 Panels (a), (b), and (c) are the surfaces of different target objects.
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Two separate neural networks will be employed to simplify
the training and improve the prediction: one network without
considering inclination (marked as “no inclination” in Fig. 10)
and another network that includes inclination, which are trained
separately. These networks are designed for different material
recognition scenarios. When the camera lens is parallel to a flat
surface of the detected object or there is minimal surface cur-
vature, the inclination has a smaller impact on material recog-
nition compared with the spatial position. However, in cases
with complex surface curvature or specific shooting viewpoints,
surface element inclination becomes more important. Therefore,
it is advantageous to employ two parallel neural networks that
complement each other.

The first network solely considers the influence of spatial
position and material on the reflected intensity when the normal
vector of the surface element is perpendicular to the lens plane.
By providing spatial position information to a neural network
trained on various materials, the output represents the fitted in-
tensity value corresponding to a specific material.

The second network takes both spatial position and inclina-
tion into account. A tilt factor θt is introduced to quantify the
intensity change for each surface element caused by inclination,
and θt is defined as the ratio of the fitted intensity value con-
sidering horizontal inclination α and vertical inclination β to the
fitted intensity value without inclination,

θt ¼
irðα; βÞ
irð0,0Þ : (14)

The fitted intensity value irij corresponding to a surface
element when it is a certain material j according to the neural
network in the case without inclination is obtained, and then, the
tilt factor θtij corresponding to the surface element through the
neural network in the case with inclination when it is a certain
material is obtained. The result obtained by multiplying irij and
θtij is used as the result of the fitted intensity value of the surface
element corresponding to each material. Afterward, the method
differs the true intensity value from the results of the fitted in-
tensity values corresponding to all the materials in the data set,
respectively, to obtain the difference Δirij, and the relative
deviation errij can be obtained as well,

Δirij ¼ jirij × θtij − irij; (15)

errij ¼
jirij × θtij − irij

iri
× 100%: (16)

It is worth noting that for some pixels at certain spatial
locations, there are two or more materials corresponding to es-
sentially the same intensity values, for example, at the spatial
location corresponding to a given surface element k, there are

irka ≈ irkb: (17)

The pixel points at these locations are recorded as recogni-
tion blind spots. If the data corresponding to the blind spots are
used to make judgments, the specific material cannot be accu-
rately determined, which will affect the overall judgment of the
object material and cause a decrease in recognition accuracy.
Therefore, the data corresponding to the blind spots should be
eliminated according to certain criteria. For the example shown
above, the quantitative criteria for eliminating blind spots are

jirka − irkbj
irka

× 100% ≤ 1%; (18)

and

jirka − irkbj
irkb

× 100% ≤ 1%: (19)

The pixel corresponding to k is considered the blind spot for
judging material a and material b. It is necessary to remove
k from the set of pixels contained in the object to be measured,
and after all the blind spots have been removed, judgment can be
made to get the result.

After that, the Δirij of different materials is compared to
find the smallest value of Δirimin and its corresponding errimin,
then the material corresponding to Δirimin can be regarded as
the material corresponding to the surface element. Then, the
material corresponding to each face element is totalized, and
the material corresponding to the most surface elements is the
material to which the object to be measured belongs as deter-
mined by this method. When a large number of Δirimin at
different locations of the object are different, it means that
the target object is composed of different materials and should
be re-segmented before repeating the above process.

Fig. 10 Flow chart of the judgment method based on the fitting results of the IR intensity values.
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4.3 Analysis of the Fitting Results of the Factors
Affecting Infrared Intensity

Figures 11 and 12 display the fitting results of GA-BP and
DBO-BP neural networks using data sets for cardboard, leather,
and metal. These results depict infrared intensity distribution at
a depth of 1.25 m, no inclination, full field of view, and reso-
lution of 640 × 480. Data set acquisition and training details
are in Sec. 5. The figures illustrate the relationship between
the infrared intensity and the planar spatial position ðx; yÞ for
different materials. Both optimized neural networks accurately
represent the consistent infrared intensity distribution of each
material. The overall distribution of leather and cardboard aligns
with theoretical laws in Sec. 3. However, changing position

introduces bias and intensity fluctuations due to overfitting or
missing data, necessitating further optimization.

In Fig. 13, the fitted infrared intensities are shown at different
depths for the three materials. The center position is (320, 240),
while the upper left third of the field of view is represented by
the position (212, 80). At this position, leather has a higher
intensity than cardboard for depths below 13.6 but lower for
depths above 13.6. This depth, (212, 80, 13.6), creates a blind
spot where leather and cardboard discrimination is inaccurate,
hampering object recognition. Depths larger than 32 result in
indistinguishable intensities for metal and leather, forming addi-
tional blind spots. Increased depth reduces recognition accuracy,
which is influenced by the performance of the ToF depth cam-
era used.

Fig. 11 Active infrared intensity distribution of different materials by GA-BP network fitting.
(a) Cardboard, (b) leather, and (c) metal.

Fig. 12 Active infrared intensity distribution of different materials by DBO-BP network fitting.
(a) Cardboard, (b) leather, and (c) metal.

Fig. 13 Fits to the active IR intensity distribution of different materials as a function of the depth of
the surface element (a) at position (320, 240) and (b) at position (212, 80).
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Figure 14 exhibits the intensity fitting results for cardboard
surface elements at the center point (320, 240) of the field of
view. The depth is fixed at 1.25 m, and the inclination angles
vary in increments of 5 deg. Both GA-BP and DBO-BP net-
works produce similar fitting results, which align with the theo-
retically derived laws in Sec. 3. However, there is a noticeable
degree of deviation and fluctuation in intensity when the incli-
nation angles change, regardless of the network used. This
deviation could be due to factors such as overfitting or missing
data, highlighting the need for further improvement.

4.4 Further Optimization of the Method According to
the Diffuse Reflection Theory

The data set collected according to the above method is only a
small number of samples in space, and the fitting ability of the
neural network itself is always limited. It is important to note
that while the overall distribution of the fitted results is generally
consistent, there are still irregular fluctuations and deviations in
intensity values when influencing factors change, as seen in the
examples above. Although this overfitting can be made to be
mitigated by increasing the amount of sample data and tuning
the network hyperparameters, the inclusion of an optimization
method for the neural outputs can be helpful in improving the
accuracy due to the inherent intensity errors of the ToF sensors
(attributed to the roughness of the object and the integration
time). Thus, given the theoretical expectation of diffuse reflec-
tion, where intensity should be continuous and monotonous

from the center to the surrounding areas, further optimization
of the fitted intensity values is necessary before applying them
to the judgment method. The optimization process employed in
the method is illustrated in Fig. 15.

To enhance accuracy, we utilize the Savitzky–Golay filter52

to smooth the intensity data for materials following the diffuse
reflection law. This filter fits a low-order polynomial to neigh-
boring data points, preserving the overall trend and width of the
signal. The collected infrared intensity exhibits a centrosymmet-
ric distribution at the center point of the image and adheres to
Lambert’s cosine law. To achieve centrosymmetrization, we
process the intensity distribution in both the planar position
and inclination domains. Equidistant points from the center have
their intensities averaged and assigned to all the data points on
them. The selection interval of data points depends on the scene
resolution in the planar position domain and can be customized
in the inclination domain (e.g., using a 5 deg interval in this
case). For materials with high reflectivity, such as metals, micro-
structures cause variations in their infrared intensity at different
inclinations, which are not currently optimized. To address the
intensity distribution within the same depth, we employ a spe-
cific localization method based on the intensity distribution. The
final optimized intensity is calculated by averaging values from
multiple optimized neural networks. Figure 16 illustrates the
optimization results for the example in Figs. 11 and 12, and
Fig. 17 shows the results for the example in Fig. 14. The opti-
mized data significantly reduce distribution bias and improve
overall accuracy.

Fig. 14 Active infrared intensity fitting results at different inclination angles of (a) GA-BP network
and (b) DBO-BP network.

Fig. 15 Optimization of the fitting intensity for (a) materials that follow the general diffuse reflec-
tance law and (b) high reflectance materials.
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5 Experimental Setup and Results

5.1 System Building and Data Set Preparation

The data scene is arranged similarly to Fig. 6. Using the Intel
RealSense Viewer software, a suitable shooting location is de-
termined after conducting pre-experiments. Shots are captured
with the Intel RealSense LiDAR L515 camera. D-AI data sets
are collected from cardboard, leather, and metal materials at five
depths (100, 125, 150, 175, and 200 cm) and nine spatial loca-
tions at each depth, as shown in Fig. 18. The surface orientation
of each material is adjusted, and D-AI images are acquired
with varying inclination angles (−60, −30, 0, 30, and 60 deg
horizontally and vertically). Figure 19(a) illustrates an example
set of intensity maps for cardboard material with different

inclinations at the same location. Simultaneously, a point cloud
map with matching resolution is obtained for each depth image.
To reduce the flying point noise, three sets are collected for each
position, material, and orientation. These sets form the basis of
the adjustable D-AI data set, catering to specific application re-
quirements. Our collected data set provides a viable, practical,
and fundamental demonstration.

Following Fig. 5, the raw data undergo image preprocessing
(wherein the depth threshold is set in accordance with a range of
100 to 200 cm), contour extraction [Fig. 19(b) shows examples
after contour extraction], pixel value extraction, and inclination
calculation. This provides the influencing factors for each ex-
tracted surface element, and these data can be used to train a
practical neural network model. A total of 1245 images are col-
lected according to the data set construction method described
above. There are one to three objects of different materials
distributed in each image and overlapped with each other. As
the proposed method needs to ensure the accuracy and original-
ity of the IR intensity and depth, neither of the two streams of
data aligned need to undergo additional enhancement means.
Our approach uses surface elements as the base magnitude
for processing. A total of 107,492 leather data, 90,425 card-
board data, and 94,910 metal data are extracted for lightweight
machine-learning training according to the methods provided in
Sec. 4.1. Training and testing sets are divided according to the
ratio of 7:3, and it is consistently ensured that the inputs in the
testing set with and without tilting are in equal proportions. For
the collected data set, the neural network without inclination has
two hidden layers: the first hidden layer has eight neurons, and
the second hidden layer has six neurons. Training parameters
include a learning rate of 0.001, target error of 0.001, maximum

Fig. 16 Optimized fits of infrared intensity distributions for different materials based on the data in
Figs. 11 and 12. (a) Cardboard, (b) leather, and (c) metal.

Fig. 17 Optimized fit of the infrared intensity of cardboard at
different inclination angles based on the data in Fig. 14.

Fig. 18 Schematic illustration of D-AI image data acquisition locations for each material.
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of 4000 iterations, and 50 training sessions. In the GA-BP stage,
there are 600 evolutionary iterations, a population size of 160,
a crossover probability of 0.625, and a mutation probability of
0.05. In the optimization algorithm (DBO-BP) stage, there are
100 evolutionary iterations and a population size of 50. For the
neural network with inclination, hidden layers are adjusted: the
first hidden layer has 10 neurons and the second hidden layer
has 8 neurons.

5.2 Test Results of Recognition

D-AI images of the objects without inclination are first ran-
domly collected as a validation test of the recognition effect.
For different materials, 10 areas of different sizes and locations
are randomly selected as objects to be recognized in different
sizes and locations for the recognition test. A total of 30 samples
are obtained. Based on the recognition process in Sec. 4, the
spatial positions and surface orientations of the samples are
extracted, and the determination of the material to which each
sample belonged is further obtained. The maximum deviation of
each sample is defined as the maximum value in the errimin cor-
responding to each surface element, in the determined material
among all the surface elements of the sample, which can also be
denoted as

devmax ¼
½Δiri�max;certain material

iri
× 100%: (20)

The average deviation is defined as the average value of
errimin corresponding to each surface element of the sample
in the determined material, which can reflect the whole degree
of proximity between the object and the predicted result, as

devavg ¼
P

n
i¼1 errimin

n
: (21)

The total pixel accuracy is defined as the ratio of the number
of surface elements contained in the material belonging to the
one with the highest number of face elements, to the total num-
ber of surface elements (excluding blind spots) of the object to
be measured, as

Acc ¼ ½surface elements of the same material�max

n
× 100%:

(22)

Then, the total pixel accuracy, maximum deviation, and aver-
age deviation of the test results for each set of samples are dem-
onstrated in Fig. 20.

The method successfully identifies all the 30 sample groups,
achieving a total pixel accuracy above 92.5%. The maximum
deviation from the 30 samples does not exceed 8%, and the aver-
age deviation for each sample is below 4%.

D-AI images of objects with inclination are collected for an
additional validation test of the recognition method. A total of
30 sets of test samples are obtained in a manner similar to the
previous approach, and the material recognition results are de-
termined using the proposed recognition judgment method. The
total pixel accuracy, maximum deviation, and average deviation
for each set of samples are illustrated in Fig. 21.

The method can accurately identify all the 30 sample groups,
except for three groups with fewer surface elements that had
recognition accuracy below 90.0%. The remaining 27 groups
achieve a recognition accuracy of above 91.3%. Accuracy
may slightly deviate when fewer surface elements are used. For
cardboard material, maximum deviations are below 5.1%, and
the average deviation is below 1.8%. For leather material, 9 out
of 10 samples had recognition accuracy above 95.0%. Although
seven samples had larger maximum deviations, the overall im-
pact on accuracy is minimal due to their small proportion. By
contrast, the recognition accuracy for metal material is lower
compared with the other materials. Error values are larger than
those for cardboard, indicating that the neural network is less
effective for highly reflective materials such as metal. There
is still room for improvement in accurately identifying materials
with similar infrared reflection characteristics. In addition, 10
sets of test samples with inclination are randomly selected from
the test set, a total of 18,692 surface element intensity values and
their influencing factor arrays are computed using the method of
Sec. 4.1, and then, the training set is utilized for explicit non-
linear regression (NLR) fitting and K-nearest neighbors (KNN)
classification to calculate the average accuracy. The obtained
results are compared with the accuracy obtained by the proposed

Fig. 19 Sets of (a) intensity images and (b) contour images obtained by depth image of the card-
board collected at the same location and different inclination angles.
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Fig. 20 (a) Total pixel accuracy and (b) maximum and average deviations of each set of test
samples without inclination.

Fig. 21 (a) Total pixel accuracy and (b) maximum and average deviations for each set of test
samples with inclination.
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method and the results are displayed in Table 1. Upon compari-
son, the accuracy of our method has an advantage over the
two conventional methods, and proper optimization steps are
beneficial.

The proposed method utilizes two parallel independent neu-
ral networks for training, which can improve computational ef-
ficiency and save computational resources. When the inclination
of the object surface is so slight that the effect on the reflection
intensity is negligible, or when the surface of the target object is
being captured directly, the efficiency can be greatly improved
using only the first neural network. Splitting the neural network
into two parallel ones based on the presence or absence of
inclination can also reduce the training time and decrease the
complexity of the network to improve accuracy. Conventional
methods also include the use of an multilayer perceptron fol-
lowed by softmax to classify a whole target object. However,
the method of processing and classifying the whole target is
not guaranteed for the classification results of small-sized object
materials, whereas our method still has high accuracy when the
size of the sample to be recognized is less than 500, as shown in
Figs. 20 and 21. Moreover, this method cannot use the theoreti-
cal analysis in Sec. 3 to obtain an intuitive physical strength
result for optimization in Sec. 4.4 to further improve the recog-
nition accuracy. Furthermore, since the designed method effec-
tively avoids the complex alignment process when fusing two
different types of data streams, it reduces the complexity of the
preprocessing algorithm and improves the efficiency to a large
extent. After calculating or extracting the spatial position, pose,
and infrared reflection intensity of the surface elements, the
lightweight optimized neural network is used instead of conven-
tional algorithms such as clustering or regression, which further
saves computational time and resources, and improves the infra-
red intensity fitting at the resolution used for the experiment to
the millisecond scale (even deployed on a personal laptop with a
GPU of NVIDIAGTX 3060, 6 G of graphics memory, and 16 G
of RAM).

6 Conclusion
Amethod that utilizes a single ToF camera and diffuse reflection
principles is proposed to identify the pose and surface material
of objects. Our approach involves a theoretical analysis and der-
ivation of factors influencing the object’s diffuse reflection. We
have developed an image processing method to extract these
factors, allowing for the calculation of pose positions and sur-
face orientations. Data processing involves feature extraction
and the application of lightweight machine-learning techniques.
In addition, an optimization method is introduced for determin-
ing fitting values and surface materials based on intensity infor-
mation and fitting results. To validate the feasibility of our
method, we construct a data set containing diverse materials
following theoretical laws and with varying inclined surfaces.
Experimental results showcase the method’s effectiveness in
detecting the positions and surface materials of the targets with

different sizes and spatial locations. The recognition accuracies
for materials adhering to the theoretical laws without inclination
are consistently above 94.9%. Even when there is an inclination,
90.0% of the samples can achieve a recognition accuracy of
94.8% or higher.

Our method presents a more efficient alternative to deep
CNNs and point cloud neural networks. It leverages a single
ToF sensor and integrates spatial information with active
infrared intensity data. Through the analysis of diffuse reflection
of near-infrared light from common material surfaces, we
extract comprehensive influencing factors. This approach finds
applications in various fields such as industrial production,
unmanned exploration, criminal investigation, security surveil-
lance, and unmanned vehicle driving. It successfully addresses
the challenges posed by the complex ambient illumination and
delivers valuable surface information through the use of active
optical detection techniques.

However, certain limitations must be taken into account. The
method’s generalization ability requires improvement to accom-
modate a broader range of surface materials. The accuracy is
constrained when dealing with highly reflective materials, pri-
marily due to the operating principle of the ToF camera and
potential specular reflections. Currently, the method does not
encompass materials such as glass, water, and other liquids,
as well as those with complex surface textures such as wood.
As for conventional materials, there are limitations in the pro-
posed method when the surface of the object consists of differ-
ent materials and the proportion of one is too small. Future
efforts will extend the scope to include these materials and
develop targeted approaches. Our goal is to integrate more
comprehensive optical analysis techniques and optimize feature
utilization to effectively address these challenges.
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