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Abstract. The automatic segmentation of the retinal vascular network from ocular fundus images has been per-
formed by several research groups. Although different approaches have been proposed for traditional imaging
modalities, only a few have addressed this problem for optical coherence tomography (OCT). Furthermore,
these approaches were focused on the optic nerve head region. Compared to color fundus photography and fluo-
rescein angiography, two-dimensional ocular fundus reference images computed from three-dimensional OCT data
present additional problems related to system lateral resolution, image contrast, and noise. Specifically, the com-
bination of system lateral resolution and vessel diameter in the macular region renders the process particularly
complex, which might partly explain the focus on the optic disc region. In this report, we describe a set of features
computed from standard OCT data of the human macula that are used by a supervised-learning process (support
vector machines) to automatically segment the vascular network. For a set of macular OCT scans of healthy subjects
and diabetic patients, the proposed method achieves 98% accuracy, 99% specificity, and 83% sensitivity. This
method was also tested on OCT data of the optic nerve head region achieving similar results. © 2013 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.12.126011]
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1 Introduction
The automatic detection and quantitative description of retinal
blood vessels is an important area of research. It can assist
the clinician toward the objective diagnosis of vascular pathol-
ogies such as retinopathy of prematurity1,2 or hypertensive
retinopathy.3

The retinal vascular network is frequently used as the anchor
to coregister data between different imaging modalities.4

Moreover, the coregistration of exams taken at different times
allows a more accurate study of the development and progres-
sion of the pathological process and a deeper insight of the
changes occurring in the human retina.5

Special focus has been given to the imaging modalities of
color fundus photography (CFP) and fluorescein angiography
(FA). Tracking-based methods,6,7 matched filters,8–12 Hessian
matrix and gradient vector fields,13–15 supervised learn-
ing,11,16–18 and other strategies19 are several of the many
approaches proposed for segmentation of the vascular network
from these imaging modalities.

The working principle of optical coherence tomography
(OCT), which is based on the backscattering of a low-coherence
light, has been extensively described in the literature.20–22 OCT
has made it possible to acquire three-dimensional (3-D) data of
the microstructure of biological tissue in vivo and in situ. Its

main application is imaging the human retina, for which
it has become an important tool. With the introduction of
high-definition spectral-domain OCT, it is possible to acquire
high-resolution cross-sectional scans while maintaining the
acquisition time.

Vessel segmentation from OCT data is considerably different
than that from CFP or FA. At the wavelengths used by regular
OCT systems (800 to 900 nm), light is absorbed by the hemo-
globin, leading to a decrease of the backscattered light from the
structures beneath the perfused vessels.23 As such, segmentation
techniques rely on this well-known effect.

A two-dimensional (2-D) image can be obtained by projec-
ting the OCT volume depth-wise. However, traditional methods
translate into a vascular network with suboptimal detail and con-
trast. The lateral resolution and spatial sampling interval of OCT
make the process of vascular network segmentation difficult,
particularly at the macula.24 Because the vessels are consider-
ably thinner in this region, they present lower levels of contrast.

A robust method for vascular segmentation on 2-D ocular
fundus reference images obtained from OCT data would be
valuable and a significant starting point toward several algo-
rithms, such as image coregistration and 3-D vascular segmen-
tation algorithms.25

Only a few algorithms for segmenting the retinal vascular
network using OCT have been described in the literature. The
first method was proposed by Niemeijer et al.24 for optic nerve
head (ONH) OCT scans. A 2-D projection (by depth-wise sum)Address all correspondence to: Pedro Rodrigues, AIBILI—Association for
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of data from the retinal pigment epithelium (RPE) was used,
followed by a supervised pixel classification. Xu et al.26 pre-
sented a method that does not require OCT layer/interface seg-
mentation. A boosting learning algorithm was used to segment
the vascular network from ONH OCT volumes. Pilch et al.27

took a different approach and segmented the vessels directly
on high-resolution cross-sectional B-scans close to the ONH.
All of these techniques were validated on healthy retinas.

This report describes a fully automatic method for segment-
ing the vascular network of the human retina from standard OCT
data. We rely on work previously developed by our research
group28 to generate 2-D fundus reference images from OCT
data volumes. From these images, a set of features are computed
to feed a supervised classification algorithm, support vector
machine (SVM), to classify pixels into vessel or nonvessel.

2 2-D Fundus Images
As noted, light absorption by hemoglobin is responsible for the
decrease in light scattering beneath perfused vessels. The seg-
mentation process herein takes advantage of this effect by com-
puting a set of 2-D fundus reference images from the 3-D OCT
data at the preprocessing step. A study was conducted to identify
the images that provide the best discrimination between the
vascular network and the remaining tissue (background). The
images evaluated in this study were the mean value fundus
(MVF), the expected value fundus (EVF), the error to local
median (ELM), and the principal component fundus (PCF).28

Throughout this paper, we use the following coordinate
system for the OCT data: x is the nasal-temporal direction, y
is the superior-inferior direction, and z is the anterior-posterior
direction (depth).

Let V be a low-pass filtered OCT volume, flattened at the
junction of inner and outer photoreceptor segments (IS/OS).
The MVF image is computed as the average of the A-scan val-
ues within the lower layers of the retina, i.e.,

MVFðx; yÞ ¼ 1

Z2ðx; yÞ − Z1 þ 1

XZ2ðx;yÞ

z¼Z1

Vðx; y; zÞ; (1)

where Z1 and Z2 are the z coordinates of the IS/OS junction and
of the RPE/choroid interface, respectively.

The EVF image of order ρ is computed by

EVFðx; yÞ ¼
P

z zVðx; y; zÞρP
z Vðx; y; zÞρ

: (2)

Both MVF and EVF are corrected for nonuniform
intensities.28

The ELM image of order τ is given by

ELMðx; yÞ ¼
XZmin

2

z¼Z1

jVðx; y; zÞ − Ṽwðx; y; zÞjτ; (3)

with Zmin
2 ¼ minx;yZ2ðx; yÞ and Ṽwðx; y; zÞ the local median vol-

ume. Each median A-scan from Ṽw is computed from the neigh-
borhood of the A-scan ðx; yÞwithin a window of sizew½Nx Ny �
in the xy plane, where Nx and Ny are the size (in voxels) of the
scanned region in the x and y directions, respectively.

The PCF image is computed as the principal component (by
principal component analysis) of the MVF, EVF, and ELM
images. In Ref. 28, it was demonstrated that the PCF image
provides a greater extension of the vascular network and better
contrast than the other fundus reference images (MVF, EVF, and
ELM). In addition, when computed from standard OCT data, it
presents a vascular network extension similar to that achieved
with CFP.28

Figure 1 shows the four fundus images from the same OCT
scan covering the central 20 deg field of view of a healthy retina.

3 Features
All four 2-D fundus references images computed from OCT
volumes (MVF, EVF, ELM, and PCF) were used as features
in the classification process. This section describes additional
features that were computed from the PCF image. These features
were selected through a forward-selection approach from
a larger pool of features (see Sec. 5).

Sliding windows and filters discussed in this section consider
the differences in spatial sampling between the x and y direc-
tions. As such, the results are independent of the acquisition
protocol used.

The parameters used for computing the fundus images and
SVM features presented herein are discussed in Sec. 7.
Throughout the following sections, n and o represent the
scale and orientation indexes, respectively.

3.1 Intensity-Based Features

Intensity-based features (previously used in a similar context16)
are used to describe the local intensity variations. These features
are computed from the PCF image I using a sliding window
Wðx; yÞ of size w½Nx Ny � and centered at ðx; yÞ. The
range, average, standard deviation, and entropy features (Fig. 2)
are computed as follows:

Irangeðx; yÞ ¼ Iðx; yÞ − ½ max
k;l∈Wðx;yÞ

Iðk; lÞ − min
k;l∈Wðx;yÞ

Iðk; lÞ�;
(4)

Fig. 1 Two-dimensional fundus reference images computed from the same optical coherence tomography ocular scan: (a) mean value fundus,
(b) expected value fundus, (c) error to local median, and (d) principal component fundus.
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Iavgðx; yÞ ¼ Iðx; yÞ − 1

NW

X
k;l∈Wðx;yÞ

Iðk; lÞ; (5)

Istdðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NW

X
k;l∈Wðx;yÞ

½Iavgðk; lÞ�2
s

; (6)

Ientropyðx; yÞ ¼ −
X

k;l∈Wðx;yÞ
Iðk; lÞlog2Iðk; lÞ; (7)

where NW is the total number of elements in
W (NW ¼ w2NxNy).

3.2 Gaussian-Derivative Filters

The use of the Hessian matrix to perform scale-space analysis
is a well-established technique that is commonly applied in
CFP and FA image analysis.13,14 It is applied here, with slight
modifications, to the PCF image.

The Hessian matrixH at scale n is a square matrix defined by

Hnðx; yÞ ¼
�
Lxx
n ðx; yÞ Lxy

n ðx; yÞ
Lyx
n ðx; yÞ Lyy

n ðx; yÞ
�
; (8)

where Lxx
n , Lxy

n , Lyx
n , and Lyy

n are the second-order partial deriv-
atives at scale n. These derivatives result from the convolution of
second-order partial derivatives of a Gaussian filter (Gn) with
the fundus reference I, leading to

Lxx
n ðx; yÞ ¼ Iðx; yÞ � σnxσny

∂2

∂x2
Gnðx; yÞ

Lyy
n ðx; yÞ ¼ Iðx; yÞ � σnxσny

∂2

∂y2
Gnðx; yÞ

Lxy
n ðx; yÞ ¼ Lyx

n ðx; yÞ ¼ Iðx; yÞ � σnxσny
∂2

∂x∂y
Gnðx; yÞ; (9)

where * is the convolution operator and Gn is defined as

Gnðx; yÞ ¼
1

2πσnxσny
exp

�
−
1

2

�
x2

σ2nx
þ y2

σ2ny

��
: (10)

To accommodate for differences in sampling, the standard
deviations are defined as

σnj ¼ σnαpj; (11)

where pj is the spatial sampling along the j ¼ fx; yg direction,
α is a normalization parameter, and σn is the sampling-invariant
standard deviation of the filter at scale n.

3.2.1 Hessian eigenvectors

Eigenvectors from the Hessian matrixHnðx; yÞ provide informa-
tion about the image curvature at ðx; yÞ. For ocular fundus
images, at vessel pixels, the eigenvector v ¼ ðλ; θÞ (in polar
coordinates) associated with the largest/smallest eigenvalue
(λþ and λ−, respectively) is normal/parallel to the vessel.14 In
addition, λþ at vessel pixels is considerably larger than the
ones in the background, and it presents a consistent direction
θþ across different scales. As such, relevant local information
can be extracted by resorting to eigenvectors from the Hessian
matrix. In this work, we use λþ (eigenvalue) and θþ (eigenvector
orientation—mapped to the interval � − π∕2; π∕2�) to compute
two features.

3.2.2 Laplacian of Gaussian

The Laplacian of Gaussian filter is commonly used as an edge
detector. This feature represents the Laplacian of a low-pass
(Gaussian) filtered version of image I; it can be directly obtained
as the trace of the Hessian matrix for multiple scales

ΔIn ¼ ΔðI � GnÞ ¼ Lxx
n þ Lyy

n . (12)

3.2.3 Gradient norm

The norm of the image gradient is computed from a Gaussian
low-pass filtered version of image I, for multiple scales, as

j∇Ijn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLx

nÞ2 þ ðLy
nÞ2

q
; (13)

with

Lx
nðx; yÞ ¼ Iðx; yÞ � σnx

∂
∂x

Gnðx; yÞ

Ly
nðx; yÞ ¼ Iðx; yÞ � σny

∂
∂y

Gnðx; yÞ: (14)

3.2.4 Features across acales

To reduce the number of features and create new features
that encode multiscale information, the results across scales
are combined14

λmax ¼ max
n

�
λþn
σn

�
(15)

Fig. 2 Intensity-based features computed from the principal component fundus image: (a) range, (b) average, (c) standard deviation, and (d) entropy.
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θvar ¼ var
n
θþn ; (16)

ΔImax ¼ max
n

�
ΔIn
σn

�
; (17)

j∇Ijmax ¼ max
n

�j∇Ijn
σn

�
: (18)

Results can be seen in Fig. 3.

3.3 Local-Phase Features

Good results in edge and corner detection using phase congru-
ency were achieved by Kovesi.29,30 The method proved to be
useful for vascular segmentation in ocular fundus images.31

Computing local-phase features requires the convolution of
the image with a bank of log-Gabor kernels, each having
a unique orientation-scale pair. These filters are created by
combining a radial and an angular component, limiting the
frequency bands and the orientation of the filter, respec-
tively (Fig. 4).

The radial component is computed with the log-Gabor trans-
fer function in the frequency space Fðϱ; θÞ (in polar coordinates)
as

FlG
n ðϱ; θÞ ¼ exp

�
−ln2ðϱ∕f0nÞ

2 ln2ς

�
; (19)

where ς is the ratio between the standard deviation of the
Gaussian describing the log-Gabor transfer function (in the fre-
quency domain) and the central frequency f0n, given by

f0n ¼ fmax2.1−ðn−1Þ; (20)

where fmax is the largest central frequency.32 The log-Gabor
transfer function is then multiplied (Hadamard product) with
a low-pass filter (Butterworth) to ensure uniform coverage in
all orientations

Flpðϱ; θÞ ¼ ½1þ ðϱ∕fcÞ2υ�−1; (21)

where fc ∈ ½0; 0.5� is the cutoff frequency and υ is the order of
the filter.

In turn, the angular component is given by

Fas
o ðϱ; θÞ ¼

� ð1þ cos dÞ∕2 if d ≤ π
0 if d > π

; (22)

with

d ¼ jθ − θojNo∕2; (23)

where θo is the orientation and No is the total number of
orientations.

These components are multiplied (Hadamard product) to
obtain the frequency domain log-Gabor filter. In the time
domain, the filter is composed by the even (real part) and the
odd (imaginary part) kernels (Fig. 5).

The local-phase features—phase congruency (PC), , feature
type (FT), phase symmetry (PSym), and symmetry energy
(SymE)—are described below Examples of these features are
shown in Fig. 6.

3.3.1 Phase congruency

PC is a dimensionless quantity that measures the agreement of
the phase of the Fourier components of the signal (image) being
invariant to changes in image brightness or contrast. It differs
from gradient-based features because the same relevance is
given to all frequency components, independent of gradient
magnitude. Hence, an estimate of the noise is removed from
the local energy.29

Fig. 3 Gaussian-derivative features computed from the principal component fundus image: (a) Hessian eigenvalue, (b) Hessian eigenvector orientation,
(c) Laplacian of Gaussian, and (d) gradient norm.

Fig. 4 Log-Gabor filter (frequency domain): (a) radial and (b) angular
components.

Fig. 5 Log-Gabor filter (time domain) for a specific orientation: (a) even
and (b) odd kernels.
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The PC evaluates the local phase information of an image
log-Gabor wavelet transform and is computed by

PC ¼
P

o

P
n ωo

�
ϕno · ϕ̄o − jϕno × ϕ̄oj − To

�
εþP

o

P
n Ano

; (24)

where b:c operator assumes the enclosed quantity as zero when
negative, ε is a small positive constant that prevents division by
zero, and A is the norm of the phase angle vector ϕ.29 To is
a noise threshold estimated from the response amplitude of
the smallest scale filter.29 Moreover, ϕ is given by

ϕno ¼ ½Meven
no Modd

no �; (25)

and the weighted mean phase angle vector ϕ̄o is the unit vector

ϕ̄o ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPn M
even
no Þ2 þ ðPn M

odd
no Þ2

p �X
n

Meven
no

X
n

Modd
no

�
;

(26)

where Meven and Modd result from the convolution of image
I with the even and odd components, respectively, of the log-
Gabor kernels. The sigmoid weighting function ωo is computed
by

ωoðx; yÞ ¼
1

1þ expfg½c − soðx; yÞ�g
; (27)

where c and g model the sigmoid, and

soðx; yÞ ¼
1

Nn

�P
n Anoðx; yÞ

εþ Amax
o ðx; yÞ

�
(28)

is the spread of the log-Gabor filters responses.

3.3.2 Feature type

While higher values ofMeven are found at the vessel pixels,Modd

takes higher values at the vessel boundaries and other step/edge
locations. To emphasize line-like structures, the even wavelet
response is weighted by its odd counterpart. FT was adapted
from Ref. 32 and is given by

FT ¼ arctan 2

�
maxob

P
n M

even
no c

maxoð
P

n jModd
no jÞ

�
; (29)

where arctan2 is the four-quadrant arctangent (FT ∈� − π; π�).

3.3.3 Phase symmetry

PSym is a local contrast-invariant measure of the degree of
symmetry of an image.33 This feature is computed by

PSym ¼
P

o b
P

n M
even
no c −P

o

P
n jModd

no j
εþP

o

P
n Ano

(30)

and was adapted from Refs. 32 and 33.

3.3.4 Symmetry energy

The last of the local-phase features is the total unnormalized raw
symmetry energy32 given by

SymE ¼
X
o

X
n

½jMeven
no j − jModd

no j − To�: (31)

3.4 Band-Pass Filter

The PCF image is filtered with a band-pass filter, defined by the
log-Gabor radial component as in Eqs. (19) to (21). Several val-
ues of central frequency f0n were tested. See Table 1 for the
chosen parameters. A band-pass filtered PCF can be seen in
Fig. 7(a).

3.5 Filter Banks

Locally, vessels may be considered linear structures, and pixels
are expected to preserve their intensity along the vessel direction.
In this class of features, the PCF image is filtered with sets of
kernels. The responses are then combined into a single feature
for each type of filter bank, the average filter bank and the
log-Gabor filter bank features [Figs. 7(b) and 7(c), respectively].

3.5.1 Average filter bank

Consistency along a local direction is a characteristic exhibited
by vessel pixels but not by background ones. By using direc-
tional average kernels Ko (average line operators34), pixels that
belong to a vessel are highlighted. Each of these kernels is cre-
ated as a matrix of zeros except on the line that crosses its center
with angle θo.

Differences between acquisition protocols are again taken
into account, as the line length is computed using an ellipse
(in polar coordinates) defined by

rEðθoÞ ¼
rxryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx sin θoÞ2 þ ðry cos θoÞ2
q ; (32)

Fig. 6 Local-phase features computed from the principal component fundus image: (a) phase congruency, (b) feature type, (c) phase symmetry, and
(d) symmetry energy.
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where rj is computed by

rj ¼ αpj; (33)

similar to Eq. (11). The size of the filter Ko, for each orientation
o, is defined to accommodate a straight line of length mrEðθoÞ,
where m is the sampling-invariant length.

The bank responses are combined by

Bavgðx; yÞ ¼ max
o

½Iðx; yÞ � Ko�: (34)

3.5.2 Log-Gabor filter bank

For the log-Gabor filter bank, the same principle of consistency
(used in the average filter bank) applies, this time using 2-D
log-Gabor filters. This method is frequently used for vessel
enhancement and detection.11,12

The bank responses are combined across scales and orienta-
tions as the average value of the maximal filter response over
the different directions, i.e.,

BlGðx; yÞ ¼ 1

Nn

X
n

max
o

ðMeven
no Þ; (35)

where Meven
no denotes the convolution between the PCF image I

and the even component of a log-Gabor wavelet of orientation o
and scale n.

4 Data
OCT data were gathered from our institution’s database. These
OCTs had been acquired resorting to the high-definition
spectral-domain Cirrus™ HD-OCT (Carl Zeiss Meditec Inc.,
Dublin, CA). It allows the acquisition of volumetric data
from a region of the human retina of 6000 × 6000 × 2000 μm3,
covering a 20 deg field of view of the ocular fundus, with
200 × 200 × 1024 or 512 × 128 × 1024 voxels, along the x
(nasal-temporal), y (superior-inferior), and z (anterior-posterior)
directions, respectively.

Three different datasets—DS1, DS2, and DS3—were used to
validate our algorithm.

OCT macular scans of 10 eyes from 10 healthy subjects and
20 eyes from 13 patients diagnosed with type 2 diabetes mellitus
[early treatment diabetic retinopathy study (ETDRS) levels 10 to
35] were used for optimization and cross-validation of the
classification process. The healthy group contains four volumes
of 200 × 200 × 1024 voxels and six volumes of 512 × 128 ×
1024 voxels. The diabetic group consists of 11 volumes of
200 × 200 × 1024 voxels and 9 volumes of 512 × 128 ×
1024 voxels. This dataset will be referred to as DS1.

Although our objective is the segmentation of the vascular
network within the macular region, we also consider the ONH
region to allow the comparison with previously proposed
methods. With this purpose, a dataset (DS2) composed of ONH-
centered OCT scans of 10 eyes from 10 healthy subjects
(all acquired with the 200 × 200 × 1024 protocol) was used.

Finally, dataset DS3 was used to evaluate the robustness of
the proposed method when applied to eyes with pathological

Fig. 7 Band-pass (a), average filter-bank (b), and log-Gabor filter bank (c) features computed from the principal component fundus image.

Table 1 Parameter values used for feature computation.

Features Parameters

Expected value fundus ρ ¼ 7

Error to local median τ ¼ 0.5

w ¼ 0.1

Irange, Iavg, Ientropy, Istd w ¼ 0.03

λmax, θvar, ΔImax, j∇Ijmax σn ¼ f1;4g

Phase congruency, feature type,
phase symmetry, symmetry energy, B1G

o ¼ f1;2; : : : ;6g

n ¼ f1;2;3;4g

Band-pass filter n ¼ 3

Bavg o ¼ f1;2; : : : ;12g

m ¼ 5

Equations Parameters

(11), (33) α ¼ 6000∕ð128 − 1Þ

(19) ς ¼ 0.55

(20) fmax ¼ 1∕3

(21) f c ¼ 0.45

υ ¼ 15

(27) c ¼ 0.5

g ¼ 10
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disorders. It consists of macular OCTs of eight eyes with differ-
ent pathologic disorders (four OCTs of each protocol).

All 48 PCF reference images were manually segmented
pixel-by-pixel by two graders (T.M. and S.S.) who established
two ground truths (one per grader) for each image. The first
ground truths (T.M.) are used for all SVM training and testing
processes (instead of the union or intersection of the two
segmentations), following the approach used in Ref. 18. The
segmentations of the second grader (S.S.) are used only to assess
the intergrader agreement.

5 Classification
SVM is a supervised-learning algorithm widely used in
pattern recognition.35,36 In this work, pixel-by-pixel classifica-
tion was performed by SVM. For training, manual segmenta-
tions of the vascular network are used to derive the best
SVM model.

A C-support vector classification with a radial-basis-function
kernel was used,37 where two additional parameters intrinsic to
the SVM are required: the parameter C controlling the separabil-
ity margin of the hyperplane and the parameter γ controlling the
spread of the kernel. The best ðC; γÞ combination was searched
for using a genetic-algorithm aiming for the highest accuracy
using cross-validation. The dataset DS1 and the ground truths
of the first grader were used for optimization. Because of the
large amount of data and the required computing time, we
used a twofold cross-validation for the optimization and only
a fraction of each image. Specifically, we used 10% of vessel
pixels and 10% of nonvessel pixels (both randomly selected)
of each image.

All the defined features were used in the SVM. These fea-
tures were selected from a pool using a forward-selection
approach based on the accuracy of the classification. This larger
pool of features included all the ones described herewith,
as well as variations of these, e.g., different ρ, τ, and w
[Eqs. (2) and (3)], and additional features like moment invari-
ants-based features16,38 and semantic/categorical features using
spin descriptors,39,40 to name a few. The segmentations of the
first grader and the dataset DS1 were used in this process.

6 Metrics
Accuracy, specificity, and sensitivity were used for the evalu-
ation of the system performance.

In addition, appropriate metrics were borrowed from Ref. 41.
In brief, these are the connectivity C, area A, length L, and CAL.
C, A, and L are given by

CðS;SGÞ¼1−min

�
1;
j#ccðSGÞ−#ccðSÞj

#ðSGÞ
�

AðS;SGÞ¼
#f½βdilðSÞ∩SG�∪ ½βdilðSGÞ∩S�g

#ðS∪SGÞ

LðS;SGÞ¼
#f½βskelðSÞ∩βdilðSGÞ�∪ ½βskelðSGÞ∩βdilðSÞ�g

#½βskelðSÞ∪βskelðSGÞ�
; (36)

where S and SG are binary images for the segmentation being
evaluated and the ground truth segmentation, respectively. #cc is
the number of eight-connected components, βdil is a morpho-
logical dilation operator, βskel is a morphological skeletonization
operator, and ∩ and ∪ are the AND and OR binary operators,
respectively. CAL is defined as the product of the three compo-
nents (C, A, and L). These metrics are specific to the vascular
network and are insensitive to small tracing differences in grader
segmentations.41

Cohen’s κ (Ref. 42) was computed as a metric of segmenta-
tion agreement. It is defined by

κ ¼ Pa − Pe

1 − Pe
; (37)

where Pa is the observed agreement and Pe is the expected
agreement by chance.

7 Results
Each of the features used by the supervised-classification
process requires the specification of working parameters.
These parameters were defined based on the system character-
istics (e.g., scanning protocol), the forward-selection method

Table 2 Results from the 10-fold cross-validation on dataset DS1, healthy and diabetic subjects. The minimum (MIN), maximum (MAX), average
(AVG), and standard deviation (SD) values for each segmentation performance metric.

Overall (N ¼ 30) Healthy (N ¼ 10) Diabetic (N ¼ 20)

MIN MAX AVG SD MIN MAX AVG SD MIN MAX AVG SD

Accuracy 0.967 0.984 0.978 0.005 0.973 0.983 0.979 0.003 0.967 0.984 0.978 0.005

Specificity 0.989 0.998 0.994 0.002 0.989 0.997 0.993 0.002 0.989 0.998 0.994 0.002

Sensitivity 0.720 0.879 0.825 0.042 0.789 0.879 0.833 0.030 0.720 0.879 0.821 0.046

Connectivity 0.966 0.999 0.985 0.009 0.969 0.997 0.985 0.008 0.966 0.999 0.985 0.009

Area 0.829 0.946 0.900 0.026 0.884 0.946 0.914 0.021 0.829 0.928 0.892 0.026

Length 0.770 0.919 0.861 0.033 0.850 0.919 0.882 0.025 0.770 0.898 0.851 0.032

CAL 0.623 0.856 0.764 0.053 0.734 0.856 0.795 0.041 0.623 0.826 0.749 0.052

Cohen’s κ 0.798 0.908 0.861 0.027 0.824 0.894 0.865 0.023 0.798 0.908 0.859 0.029
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(features), or values previously defined in the literature. The
parameters used in this work can be found in Table 1.

It is important to note that no postprocessing was applied.
All automatic segmentations are the direct result of the classi-
fication process.

The classification was validated using a 10-fold cross-valida-
tion approach on the dataset DS1 with manual segmentations
from the first grader. Each of the 10 groups was composed of
macular scans from one healthy and two diabetic subjects. OCTs
acquired with different protocols were also distributed equitably
throughout the groups. Quantitative results are summarized in
Table 2. For visual inspection, the cases with worst and best per-
formance (for the accuracy and CALmetrics) are shown in Fig. 8.

The achieved values demonstrate the viability of the pro-
posed method. The high specificity (0.994) shows that there
is little oversegmentation, percentagewise. On the other hand,
undersegmentation is a more prominent problem, as demon-
strated by the lower sensitivity (0.825). By visual assessment
of Fig. 8, one can say that the undersegmentation is associated
with the misclassification of pixels on low-caliber vessels.
Considering the application of subsequent algorithms (e.g., 3-D
vascular segmentation and computation of vascular network
descriptors), a specificity close to 1 (associated with a high sen-
sitivity) is particularly important, as the postprocessing stage
would be less demanding.

The differences between the healthy and diabetic groups are
small. However, the algorithm performed better on the healthy
group.

A new training was performed using all OCT scans in DS1.
The model was then used to segment the OCT scans in DS2, the
ONH OCTs, and in DS3, the pathological cases. For the ONH
dataset, the optic disk was manually segmented and discarded in
metric computation. Quantitative results are shown in Tables 3
and 4. For qualitative assessment, Fig. 9 shows a few examples
of vascular segmentation on the ONH OCTs, and Fig. 10 shows

Fig. 8 Principal component fundus (top row), andmanual (middle row) and automatic (bottom row) segmentations from optical coherence tomography
volumes with the highest (a) and lowest accuracy (b), and the highest (c) and lowest CAL (d).

Table 3 Test results for the optic nerve head dataset (N ¼ 10). The
minimum (MIN), maximum (MAX), average (AVG), and standard
deviation (SD) values for each segmentation performance metric.

MIN MAX AVG SD

Accuracy 0.960 0.980 0.974 0.006

Specificity 0.987 0.999 0.993 0.004

Sensitivity 0.743 0.898 0.848 0.049

Connectivity 0.970 0.997 0.987 0.009

Area 0.874 0.966 0.934 0.029

Length 0.845 0.928 0.892 0.024

CAL 0.735 0.894 0.823 0.049

Cohen’s κ 0.826 0.908 0.877 0.027
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all segmentation results of the pathological cases. Although
the segmentation was developed mainly for OCTs of healthy
eyes and eyes close to the healthy condition, the results on the
pathological cases serve to demonstrate the robustness of the
proposed method in rather extreme conditions.

The proposed approach was able to outperform the one pub-
lished in Ref. 26 for segmentation on the ONH region, where
a specificity of 88% and a sensitivity of 85% were achieved.
Although the dataset is not the same, it has the same fundamen-
tal characteristics: the OCT scans were acquired with Cirrus
HD-OCT using the same acquisition protocol (200 × 200 ×
1024), all OCTs were centered on the ONH region, the number
of cases is similar (N ¼ 11), and all eyes are from healthy sub-
jects. Furthermore, in our work, the optimizations and training
processes were performed on OCT scans from the macular

region. Therefore, the process could benefit from parameter
optimization and training on ONH-centered scans.

In the pathological cases, the specificity is lower, which
translates to higher oversegmentation. However, while no train-
ing was performed on the pathological cases other than the
diabetic ones, the results achieved on several pathologies are
similar to the results achieved with the healthy and the diabetic
subjects (accuracy >97% and κ > 0.81), which attests to the
robustness of the proposed method.

The agreement between the two graders was also evaluated.
The manual segmentations of the second grader (S.S.) were
tested against those of the first grader (T.M.). Results can be
found in Table 5. These confirm the good performance of the
algorithm. For the majority of the metrics, the average values
for the automatic segmentations on DS1 and DS2 are greater
than or equal to those for the second grader. Contrarily, as
expected, for DS3, the metrics (although similar) are lower
than those for the comparison between graders.

The total execution time for the segmentation process
(OCT fundus reference computation, features computation,
and SVM classification), using a nonoptimized MATLAB®

(The MathWorks Inc., Natick, MA) implementation, was 65.2�
1.2 s (N ¼ 15) and 108.2� 3.8 s (N ¼ 15) for the 200 × 200 ×
1024 and 512 × 128 × 1024 protocols, respectively. The system
hardware used was an Intel® Core™ i7-3770 CPU (Intel
Corporation, Santa Clara, California) at 3.4 GHz.

8 Discussion and Conclusions
To our knowledge, the work presented herein is the first attempt
to automatically segment the vascular network of the macular
region. Our findings showed that it is able to work with standard
OCTs of both healthy and diseased retinas. The proposed
method achieved good results for both the macular and ONH
regions even with no training with ONH OCTs.

The proposed models (trained only on healthy and diabetic
subjects) already show robustness on the pathological cases,

Table 4 Test results for the pathology dataset (N ¼ 8). The minimum
(MIN), maximum (MAX), average (AVG), and standard deviation (SD)
values for each segmentation performance metric.

MIN MAX AVG SD

Accuracy 0.952 0.984 0.974 0.010

Specificity 0.971 0.995 0.986 0.007

Sensitivity 0.791 0.876 0.835 0.031

Connectivity 0.953 0.985 0.968 0.011

Area 0.756 0.947 0.829 0.067

Length 0.704 0.914 0.788 0.071

CAL 0.511 0.852 0.638 0.117

Cohen’s κ 0.752 0.904 0.816 0.048

Fig. 9 Examples of optic nerve head optical coherence tomography fundus images and the automatic segmentation results. The gray region (from the
manual segmentation of the optic nerve head) was not considered.
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as the results do not differ substantially from DS1 results.
Nevertheless, with proper training on pathological data and
given enough pathological cases, the SVM would be able to
create even more robust models, which would improve the
classification performance on these cases.

Improvements are still possible and the 2-D segmentations
could benefit from a postprocessing stage. The spectrum of fea-
tures presented here can be useful for region growing based on
the automatic segmentations and subsequent deletion of small
incorrectly segmented regions. For the pathological cases, the
classification specificity is lower, which leads to a more com-
plex postprocessing stage than for DS1 and DS2. Additional
research will be performed on these issues.

With the proposed method, additional algorithms of coregis-
tration43 and computation of vascular network descriptors,44,45

already described for other imaging modalities, can now be
applied to OCT. For most multimodal coregistration algorithms,
even for the pathological cases, we are particularly convinced
that the proposed segmentation is a valuable tool. Therefore,
multimodal imaging and studies of disease progression (even
in extreme cases) are a major application area of the proposed
method.

The representation of blood vessels on OCT fundus
reference images depends on the presence of hemoglobin.
Therefore, the method is not able to segment fully occluded
vessels. However, for reperfused or partially occluded vessels,
segmentation is still possible [Fig. 10(b)]. This led to yet
another area of application now being pursued by our research
group: the discrimination between perfused and occluded ves-
sels from OCT data.46

Fig. 10 Optical coherence tomography fundus images and automatic segmentation results for cases with pathological disorders: (a) full-thickness
macular hole, (b) branch retinal arterial occlusion, (c) cystoid macular edema, (d) and (e) age-related macular degeneration, (f) vascular tortuosity,
(g) proliferative diabetic retinopathy, and (h) diabetic macular edema.
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Finally, this method establishes a good starting point toward
the fully automatic 3-D segmentation. The first tests on 3-D
segmentation have been conducted in Ref. 25.
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