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Abstract. Defining fiber orientation at each pixel within a medical image has traditionally been computationally
intensive and prone to systematic errors. A weighted orientation vector summation algorithm capable of detecting
fiber orientation simultaneously at each pixel within an image is presented. As a result, pixel-specific fiber orien-
tation information with 2 deg to 3 deg accuracy can be determined within seconds, enabling the practical use of
pixel-wise orientation data for characterizing structural anisotropy. This analysis technique has applicability and
potential diagnostic utility for a variety of modalities, including second harmonic generation, scanning electron
microscopy and immunohistochemical imaging is demonstrated. © 2013 Society of Photo-Optical Instrumentation Engineers
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1 Introduction
Defining fiber orientation can be a critical step in assessing the
characteristics of a variety of engineered and native tissues. For
example, assessing electrospun biomaterial fiber orientations is
key for developing a composite biomaterial with desired aniso-
tropic properties.1 In fact, a variety of microstructural models of
tissue biomechanics require fiber orientation measurements to
accurately predict mechanical properties.2,3 Additionally, fiber
orientation distributions can be an important metric in diagnos-
ing diseased tissues, localizing injuries, or detecting engineered
tissue development.4–8 To create maps of collagen fiber orien-
tations within a tissue, techniques such as quantitative polarized
light imaging, small angle light scattering, and polarization-
sensitive second harmonic generation imaging have been
employed.9–12 However, these techniques require additional
optical elements and/or hardware that are not frequently avail-
able in the laboratory. For the majority of research projects,
images are acquired in which fiber orientation is not an inherent
source of contrast. Rather, fiber orientation can be qualitatively
identified by acquiring an image of sufficient magnification to
spatially resolve individual fibers organized within a tissue.
Depending on fiber size, imaging approaches can range from
using a simple light microscope to second harmonic generation
imaging to scanning electron microscopy.

A number of current approaches exist to quantify the average
fiber direction in an image. Most commonly, a Fourier transform
is applied and a two-dimensional (2-D) power spectral density
(PSD) image can be computed.13–16 Sampling the average power
of the PSD at pixels corresponding to different angles can yield
an accurate measure of the total fiber orientation distribution in
the image.6 However, such techniques generally require a square
image size and can be prone to systematic measurement errors
produced by large scale features such as the absence of fibers in

irregularly shaped subregions within the image. The Hough
transform can also be utilized to identify fiber orientation
information by characterizing the polar coordinates of specific
image locations. By making cumulative measurements of the
polar coordinates associated with weighted pixel locations,
the Hough transform has been used to determine collagen
fiber orientations within 32 × 32 pixel subregions in SHG
images.6 This image processing technique has also been applied
to identify muscle fiber orientation from ultrasound images, and
is amenable to any modality with sufficient contrast and reso-
lution to visualize discrete fiber bundles.17 However, to generate
pixel-wise fiber orientation maps, performing Fourier or Hough
transforms surrounding each pixel within an image is particu-
larly time consuming.

More sophisticated fiber tracking techniques have also been
developed, in which fiber objects are defined and tracked
through energy minimization (e.g., active contours) or line
propagation algorithms.18–20 However, these advanced tech-
niques utilize iterative processes, which are relatively time con-
suming and typically require some level of user interaction. As a
result of these limitations, fiber orientation data are not tradition-
ally calculated or reported in microscopy studies. Yet, the ability
to automatically generate fiber orientation information at each
pixel within an image would be advantageous for disease diag-
nosis, assessing tissue development, and many mechanobiology
applications.

A few simple computational approaches have been devel-
oped for rapidly detecting fiber orientation in micrographs.
Traditional edge detection algorithms use Sobel or Canny oper-
ators to compute image gradients in the x- and y-directions, find
local maximums in the magnitude of the gradient, and identify
the location of fibers within an image.21–23 In addition to iden-
tifying edges, these algorithms can estimate orientation by cal-
culating the arctangent of the x and y gradient at each pixel.
However, this approach generally suffers from inaccuracy
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The goal of this study is to develop an algorithm for the rapid,
yet accurate quantification of fiber orientation at each pixel
within an image. A weighted orientation vector summation
approach has been developed in MATLAB that can provide
pixel-specific orientations at an order of magnitude faster
than pixel-wise Fourier analysis with improved accuracy over
gradient-based edge detection approaches. The accuracy of
this detection algorithm is assessed by simulating images
with known orientations, and computational time is monitored
for a variety of image and kernel sizes. Applicability of this tech-
nique to a variety of imaging modalities is also demonstrated.

2 Methods

2.1 Overview of Vector Summation Technique
for Orientation Detection

The algorithm developed in this study defines fiber orientation
by identifying the variability of image intensities along different
directions surrounding each pixel within an image. Upon select-
ing a square window size to evaluate each pixel, all possible
vectors passing through the center pixel in the window and
two additional pixel locations symmetric about the center are
defined, and the angles associated with these orientation vectors
are calculated [Fig. 1(a)]. Next, for each pixel location, the ori-
entation vectors are weighted based on intensity variability and
length [Fig. 1(b)]. Because the perimeter of a circle, with diam-
eter L, is π � L, the lines of length L passing through the center
pixel of the window also scale in number by π � L. Since the
longer vectors are more numerous, they would have a greater
collective weight when calculating mean fiber orientation sur-
rounding the center pixel. To correct for this effect, each orien-
tation vector is weighted by the inverse of its length (L), which
enables pixels close to the center pixel of interest to have equal
collective weight in determining fiber orientation as pixels far-
ther from the center [W1 in Fig. 1(b)]. Sensitivity to fiber ori-
entation was determined by also weighting the vectors according
to the lack of variance among the intensities of the three pixel

locations used to define the vector. This vector weight was
defined as the difference of the maximum possible standard
deviation among three points and the measured standard
deviation among the points [W2 in Fig. 1(b)]. The images
were converted to span intensities from 0 to 1, and the maximum
theoretical standard deviation among three values spanning such
a range is the square root of 1∕3. Once the weighted vector
lengths are computed for a given pixel, all the vectors are
summed to determine an average direction [Fig. 1(c)]. While
vector summation can provide mean orientation data of circular
data (for which an orientation of 0 deg and 360 deg are equiv-
alent), fiber orientations are axial data (for which 0 deg and
180 deg are equivalent). To account for these axial data, all vec-
tor angles are multiplied by two prior to vector summation and
the angle of the resultant vector is divided by two in order to
determine the final fiber orientation angle at the center pixel.

The time required to serially compute the fiber orientation for
every pixel within an image using this vector summation
method, or any other algorithm, would normally be prohibitive.
However, this vector summation process can be performed
simultaneously at each pixel to dramatically increase the
speed by which an orientation map can be generated. The initial
vector orientations and lengths can be computed once at the
beginning of the algorithm. Next, our program creates three cop-
ies of the intensity image and, based on the Cartesian coordi-
nates of a given orientation vector, shifts the coordinates of
two copies in opposite directions. These three copies of the
image with different coordinate shifts are assembled into an
n ×m × 3 array of intensities (where n and m are the image
dimensions). For example, to analyze a 512 × 512 image
using a 7 × 7 window there are 24 unique vectors [Fig. 1(a)],
and for each one of those vectors, an array with dimensions
of 512 × 512 × 3 is produced. For a vector with coordinates
of (2,1) relative to the center pixel (26.6 deg above the horizon-
tal), one 512 × 512 copy is shifted to the right 2 pixels and up
1 pixel, while another copy is shifted to the left 2 pixels and
down 1 pixel. The standard deviation along the third dimension
of this three-dimensional (3-D) array is computed to obtain the
W2 weight for a given orientation vector at each pixel. This proc-
ess for determining the each vector’s weight is repeated for each
vector position. Every time a weighted vector is computed, the
x- and y- components of the vector are each added to running
subtotals of the components for each pixel. The cumulative x-
and y- component vectors are ultimately used to compute the
average vector orientation at the center pixel. With this algo-
rithm, the computational time for orientation detection more
closely scales with the number of orientation vectors (i.e., the
window size) used rather than the number of pixels in the
total image.

2.2 Evaluation of the Vector Summation Detection
Technique Performance

To evaluate the accuracy of this vector summation method to
detect fiber direction, images with known orientations were cre-
ated and evaluated. In an effort to include all possible fiber ori-
entations in each image, white circular rings were created over a
black background. First, to determine the relationship between
detection window size and fiber thickness, three rings of 100,
200, and 300 pixel radii were produced. Binary images of
these rings were produced with thicknesses of 1, 2, 3, 5, 7,
11, 15, and 25 pixels. A 9 × 9 Gaussian filter with σ ¼ 1.2
was applied to the images to smooth the rings and create a

Fig. 1 Summary of vector summation technique for pixel-wise fiber ori-
entation measurements. The vector lengths in (b) and (c) represent the
relative weighting factors for each orientation. The average vector ori-
entation corresponds to the direction with the lowest variation in pixel
intensity values (ai).
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grayscale image. The orientation at each pixel contained within
the ring was defined by automatically detecting the center of
each ring and finding an angle that is orthogonal to a vector
from the center of the circle to the pixel of interest. To further
investigate the accuracy of this technique, an additional image
with circular rings of varying diameter, thickness, and orienta-
tion was created with circles positioned at varying distances
from each other. The absolute value of the difference between
the true orientation and the measured orientation was calculated
for each pixel, and this average absolute difference in angles was
computed for measurements using a variety of window sizes
ranging from 3 × 3 to 25 × 25 pixels.

To provide context for the error in the vector summation-
based measurements, the absolute difference in angle measure-
ments using this technique was compared with a pixel-wise
Fourier-based approach. Based on previously described meth-
ods, fiber orientation was calculated from sampling different
angles in a 2-D power spectral density (PSD) image.6 Unlike
previous work, this PSD calculation was performed at each
pixel on subimages of the same window size as the vector sum-
mation technique. Prior to transforming each subimage to
Fourier space, the intensities were apodized by multiplying
by (1∕r − 1∕rmax), where r is the distance from the center
pixel and rmax is the radius of the largest circle that could fit
into the subimage space. This apodization darkened the edge
of the subimage and insured a bias toward 0 deg or 90 deg
would not be present due to the discontinuities between the
opposite edges of the subimage. Traditionally, once the 2-D
PSD is computed, the power density is averaged over discrete
angular segments to determine the orientation distribution and
ultimately the mean fiber direction.6,14 Due to the limited data
within the subimages of sizes 25 × 25 pixels and smaller in this
study, a summation of PSD-weighted orientation vectors corre-
sponding to each pixel location was performed to calculate the
mean fiber direction. The accuracy and computational time for a
2.53 GHz Intel Core i5-460M processor using a range of win-
dow sizes and square image sizes was determined and compared
to the spatial domain vector summation technique developed in
this study.

In addition to comparisons with a pixel-wise Fourier tech-
nique, pixel-wise orientations were calculated using directional
gradients derived from Sobel or Canny operators.22,23 To gener-
ate an image gradient in the x-direction using a Sobel operator,
a 3 × 3 kernel was produced by multiplying ð 1 2 1 ÞT by
ð−1 0 1 Þ and then was convolved with the image. This
process was repeated for the y-direction by taking the transpose
of the 3 × 3 kernel and performing another convolution. Fiber
direction was inferred by calculating the arctangent of the x- and
y- gradients using the atan2 function. In addition to a Sobel-
based detection, this study investigated the accuracy of fiber
directions derived from Canny operators as well. A 10 × 10
Canny operator was defined by computing the first derivative
of a Gaussian distribution in either the x- or y-direction, and
convolved with the image. The Canny and Sobel algorithms
were applied to the simulated image containing circles with var-
iable properties and positions, and as with the other techniques,
error was defined by computing the average absolute difference
in the actual and measured fiber orientations.

3 Results
The accuracy of the average fiber orientation measurement
using the vector summation method depends on both the

thickness of the fibers and the window size used in the analysis.
When the proximity of fibers to each other is not a factor, a
larger window size used for detection will produce smaller
errors in orientation measurements regardless of fiber thickness
(Fig. 2). For most window sizes, error in the fiber orientation
measurements increases exponentially as the fiber thickness
approaches, and eclipses the width of the window size
(Fig. 2). Interestingly, for window sizes of 9 × 9 and smaller,
the detection algorithm is most accurate when the thickness
of the simulated fibers is 5 pixels (Fig. 2). Although these results
suggest larger window sizes will result in improved accuracy,
these simulated images maintained inter-fiber spacing that
was greater than the maximum window size evaluated.

The accuracy of fiber orientation detection as a function of
window size differs from Fig. 2 when the simulated images con-
tain fibers of different orientations, thicknesses, and proximity
to each other. Specifically, measurable improvements in the
average accuracy are only detected between 3 × 3 to 11 × 11
window sizes (Fig. 3). Using an 11 × 11 pixel window size,
the absolute value of the difference in detected orientation is
2.5� 2.7 deg. There is no measurable source of systematic
error in the measurements as the average difference in angle is
0.00� 3.68 deg. For window sizes greater than 11 × 11 pixels,
negligible changes are identified in the average absolute error
and a minimum mean absolute error of 2.2� 2.9 deg is reached
using a 15 × 15window. As the window size increases, the stan-
dard deviation of the average error values increase from a mini-
mum of 2.7 deg using a 13 × 13 window to a maximum of
5.7 deg for a 25 × 25 pixel size. While the error for the majority
of pixels improves with an increase in window size, an increase
in error is produced for certain locations if the window size is
large enough to include multiple simulated fibers with different
orientations in close proximity to each other [Fig. 3(d)]. This
increased spatial variability in error values produces an increase
in the standard deviation of angle differences without an
increase in the mean difference [Fig. 3(a)].

When compared to a pixel-wise Fourier-based detection of
fiber orientation, small differences in accuracy are identified,
but computational time is an order of magnitude faster in
the vector summation method. Specifically, a Fourier-based

Fig. 2 Error in fiber orientation measurements with respect to fiber
thickness and window size used for the vector summation measure-
ments. Beyond a thickness of 5 pixels, error in fiber orientation mea-
surements began increasing exponentially when fiber thickness
increased beyond the window size used for detection. Standard
deviation of the average difference in angles was on the same order
of magnitude as the mean value, but is not plotted in the graph in
order to aid in viewing the overall effects of thickness and window size.
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approach produces an average absolute difference in fiber ori-
entation of 2.7 deg�1.8 deg using an 11 × 11 window, com-
pared with 2.5 deg�2.7 deg for the vector summation
approach. Interestingly the error of the Fourier-based measure-
ments could be further reduced to 1.4 deg�1.2 deg by multi-
plying each pixel in the 2-D PSD by the distance from the center
pixel, which effectively gives more weight to the smaller

frequencies when calculating the mean fiber direction.
Although the vector summation technique performs with
slightly lower accuracy than a frequency-weighted Fourier
approach, the time required to detect alignment at each pixel
in a 1920 × 1920 image using an 11 × 11 window is 10-fold
shorter. Computational time scales exponentially with image
size for both detection methods [Fig. 4(a)], but the vector

Fig. 3 Error in orientation detection using the vector summation method for a simulated image containing regions with diverging orientations. (a) The
average absolute value of the difference between measured and actual pixel-wise orientations noticeably decreases with increasing window sizes of 3 × 3
to 11 × 11 using a simulated image (b) of circles at different locations, diameters, and thicknesses. (c)With increasing window size, error initially decreases
and then becomes localized to regions where fibers are in close proximity to each other. (d) A magnified view of the error in the area indicated by red
outline in (b) demonstrates an increase in error between 11 × 11 and 25 × 25 pixel windows for specific regions with multiple nearby fibers.

Fig. 4 Comparison of the computational times for a pixel-wise Fourier detection of fiber orientation and the vector summation approach. (a) The vector
summation approach ranges from 5.25-fold faster for a 0.01 megapixel image to 10.34-fold faster for a 5 megapixel image compared to Fourier
approaches for a range of image sizes using an 11 × 11window size. (b) Smaller window sizes produce a more pronounced difference in the computa-
tional time of the two methods. Using a 960 × 960 image, computational time of the vector summation method was 74.4-fold faster using a 3 × 3
window, but reduced to a 3.2-fold difference using a 25 × 25 window.
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summation method becomes increasingly advantageous with
larger image sizes. Similar relative increases in computational
time are observed between methods for increasing window
sizes [Fig. 4(b)].

Sobel and Canny-based directional gradient detection algo-
rithms provide pixel-wise orientation maps 1 to 2 orders of mag-
nitude faster than the vector summation approach developed
in this paper, but the accuracy of the directional gradient algo-
rithms is also far worse. Using a 3 × 3 Sobel filter, the mean
absolute difference in orientation measurements of the image
in Fig. 3(b) is 12.1 deg�18.8 deg. A more complex 10 × 10

Canny operator provides a mean absolute difference of
9.9 deg�16.6 deg. No measurable improvements in accuracy
were detected by varying the kernel size of the Canny operator,
demonstrating the vector summation technique developed here
can provide fiber orientation detection with a 4-fold increase in
accuracy.

To assess the broad applicability of this approach, fiber align-
ment distributions were calculated from biomedical images that
were acquired using a range of modalities (Fig. 5). The isotropic
alignment of neurites sprouting from a chick dorsal root gan-
glion (DRG) explant body was measured from a standard fluo-
rescence microscope [Fig. 5(a)]. Electrospun silk fibers were
imaged using scanning electron microscopy (SEM) and the
strong alignment towards 135 deg was evident from the orien-
tation maps and distribution histogram [Fig. 5(b)]. Although a
SHG image of collagen fiber deposition in engineered bone tis-
sue demonstrated less anisotropy than electrospun silk fibers, a
greater proportion of fibers near 45 deg was evident from the
false colored orientation map and the pixel-wise distribution
histogram [Fig. 5(c)]. Light transmission images of MCF10A
cells within a collagen matrix demonstrated a preferred orienta-
tion towards 120 deg [Fig. 5(d)]. With each image modality, the

calculated pixel-wise orientation measurements matched the
qualitative observations of fiber alignment from the origi-
nal image.

4 Discussion
A weighted vector summation method for detecting pixel-wise
fiber orientations from medical images has been developed. This
technique relies on changes in the fiber intensity variations in
different directions and can provide orientation information
with 2-3 deg mean accuracy an order of magnitude faster
than the evaluation of orientation using a pixel-wise Fourier-
based approach (Fig. 4). The enhanced speed of this algorithm
relative to Fourier approaches nowmakes the definition of pixel-
wise fiber orientation maps practical for experiments that
generate large series of images or particularly high resolu-
tion images. Although pixel-wise fiber orientations can be
estimated at an additional 1 to 2 orders of magnitude faster
by computing directional gradients with a Canny operator21,23

(approximately 1.2 s in this study), the large error in these mea-
surements makes such a technique insufficient for most quanti-
tative analyses of biomedical images. The improved accuracy
of the developed vector summation technique over Canny-
based approaches and the improved computational speed
over Fourier-based pixel-wise measurements enable this tech-
nique to be uniquely amenable to quantifying and visualizing
different fiber orientations for a range of imaging modalities
and applications.

When implementing this technique for detecting fiber orien-
tation, a window size that is greater than the diameter of the
fibers should be selected (Fig. 2). Interestingly, our analysis
of simulated fiber images indicates that the detection algorithm
is most accurate when the fiber diameter is at least 5 pixels, sug-
gesting the digitization of the image may reduce the accuracy of

Fig. 5 Fiber orientation detection via vector summation performed on (a) fluorescence microscopy image of DRG neurites, (b) scanning electron
microscopy image of silk fibers, (c) second harmonic generation image of collagen in engineered bone, (d) picosirius red stained collagen fibers
surrounding MCF10A cells (reproduced with permission24). For the orientation maps in the middle row, pixel-wise fiber angle measurements
were color coded to the HSV color map in MATLAB, and these color maps were then multiplied by the grayscale intensity image to produce a
final image.
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orientation measurements of fine fibers (Fig. 2). Selecting a
much larger window size than the average fiber diameter will
not necessarily produce more accurate measurements when
fibers of different orientations are in close proximity to each
other (Fig. 3). This is because a larger window size essentially
blurs the local orientation with larger surrounding areas.
Additionally, when the inherent contrast of the raw image pro-
duces intensity variations across the diameter of the fiber, such
as in SEM images [Fig. 5(b)], this method appears particularly
sensitive, regardless of fiber diameter. Furthermore, because
fiber orientations are governed by directional sensitivity to
intensity variance and not mean intensity, accurate orientation
information is not limited to locations along the center-line
of the fiber [Fig. 5(b)].

The ability to quantify fiber orientation at each pixel through
this technique comes at the cost of some precision by which an
accurate orientation distribution can be determined. Traditional
Fourier analysis transforms the entire image to Fourier space,
providing power densities for a much greater range of frequen-
cies and orientations than a small 11 × 11 subimage. As a result,
the fiber orientation distribution can be defined with greater pre-
cision than any pixel-wise detection technique. For applications
that require the definition of fiber orientation with subdegree
precision, with no need for an understanding of the spatial dis-
tribution of the orientations within the image, calculating the
power spectral density via a Fourier transform is still most
appropriate. However, quite often medical images contain addi-
tional features such as cells or tissue edges that can cause sys-
tematic errors in Fourier-based approaches. For images with
nonfiber features, such as the elongated cell in Fig. 5(b), a
bias in the measured orientation would be produced due to
the alignment of the cell. Although the vector summation tech-
nique proposed in this study also produces a 45 deg artifact
within the cell region in Fig. 5(d), a simple mask to remove
these pixels from the analysis can be implemented. Masking
the cell regions prior to a Fourier transform, however, will
not necessarily remove orientation measurement bias, because
the absence of signal in the shape of a cell would also produce
a bias in the direction of the cell orientation. In summary, while
lacking the subdegree precision of approaches using whole
image Fourier or Hough transforms, pixel-wise techniques
can more easily account for systematic errors produced by
large scale image shapes and features by masking image regions
in the spatial domain.

In the algorithm presented in this study, a set of vector ori-
entations [Fig. 1(a)] within a specific window size are weighted
and summed to compute an average orientation at each pixel.
Rather than serially computing the orientation at each pixel, run-
ning totals of the x- and y- components of the weighted orien-
tation vectors are computed for all pixels simultaneously within
an image in MATLAB. By serially summing the different vec-
tors within the window in all pixels simultaneously, rather than
serially performing the vector summation at each pixel, compu-
tational time does not scale up with image size as rapidly as a
pixel-wise Fourier approach [Fig. 4(a)]. Although Fourier-based
approaches can utilize an analogous vector summation approach
to compute the mean orientation, a discrete Fourier transform
must be applied surrounding each pixel prior to vector summa-
tion, which results in the substantial increase in computational
time (Fig. 4). The ability to remain in the spatial domain pro-
vides a clear advantage in the computational time for this vector
summation technique, but parallel processing techniques may be

used in the future to overcome some of the limitations in Fourier
approaches.

The pixel-wise weighted vector summation technique devel-
oped in this study provides superior accuracy (2.5 deg�
2.7 deg mean error) in orientation measurements compared
to pixel-wise measurements from gradient-based filters using
a standard Canny operator (9.9 deg�16.6 deg mean error).
Although a small improvement in accuracy can be accomplished
by using a pixel-wise frequency-weighted PSD technique
(1.4 deg�1.2 degmean error), the weighted vector summation
technique provides orientation maps an order of magnitude
faster than any Fourier approach. As a result, the method devel-
oped here makes the real-time production of accurate pixel-wise
fiber orientation maps possible for machine vision applications,
real-time medical diagnostic tools, and basic science research.
The ability to produce pixel-wise orientation data can enable
a wider variety of diagnostic metrics beyond directional statis-
tics based on the total orientation distribution of the image that is
normally produced through traditional analyses. Specifically,
directional summary statistics can be computed from irregular
shaped areas, the spatial autocorrelation of directional variation
can be determined to assess fiber organization, and unique mea-
sures of fiber undulation (i.e., crimping) can be produced.
Additionally, the definition of pixel-wise fiber orientation
maps can help facilitate the implementation of advanced fiber
tracking techniques that rely on directional information pro-
vided by modalities such as diffusion tensor MRI or polarization
microscopy.18 In summary, the speed by which fiber orientation
maps can be generated using this vector summation technique
enables the practical implementation of unique directional out-
comes for most experimental and clinical applications in which
tissue microstructure is imaged.
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