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Abstract

Significance: Fourier ptychography (FP) is a computational imaging approach that achieves
high-resolution reconstruction. Inspired by neural networks, many deep-learning-based methods
are proposed to solve FP problems. However, the performance of FP still suffers from optical
aberration, which needs to be considered.

Aim:We present a neural network model for FP reconstructions that can make proper estimation
toward aberration and achieve artifact-free reconstruction.

Approach: Inspired by the iterative reconstruction of FP, we design a neural network model
that mimics the forward imaging process of FP via TensorFlow. The sample and aberration
are considered as learnable weights and optimized through back-propagation. Especially, we
employ the Zernike terms instead of aberration to decrease the optimization freedom of pupil
recovery and perform a high-accuracy estimation. Owing to the auto-differentiation capabilities
of the neural network, we additionally utilize total variation regularization to improve the visual
quality.

Results: We validate the performance of the reported method via both simulation and experi-
ment. Our method exhibits higher robustness against sophisticated optical aberrations and
achieves better image quality by reducing artifacts.

Conclusions: The forward neural network model can jointly recover the high-resolution sample
and optical aberration in iterative FP reconstruction. We hope our method that can provide
a neural-network perspective to solve iterative-based coherent or incoherent imaging problems.
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1 Introduction

In biomedical applications, it is desirable to obtain complex images with both high resolution
and wide field. Regardless of advancements in sophisticated mechanical scanning microscope
systems and lensless microscopy setups, the modification of conventional microscopes to obtain
ideal high-resolution results has been a hot topic of recent research work. Inspired by ptychog-
raphy,1,2 Fourier ptychography (FP) in particular is a simple and cost-effective analytical method
for this application.3–7 As a newly proposed computational imaging method, FP integrates prin-
ciples of phase retrieval8,9 and aperture synthesizing10,11 to achieve both high resolution and large
field of view (FOV). By introducing a programmable light-emitting diode (LED) array as an
angle-varied coherent illumination source, higher-frequency information is shifted into the pass-
band of the objective lens and detected by the image sensor. Then FP can stitch these images
together in the Fourier domain to enlarge the system bandwidth via aperture synthesizing. The
lost phase information is further recovered via the phase retrieval technique using intensity-only
measurements. As such, FP can reconstruct a sample with both high-equivalent numerical aper-
ture (NA) and large FOV. So far, FP has received increasing attention over the past few years, and
many types of research have been proposed on the system setup and reconstruction algorithm to
correct various system aberrations,12,13 provide robust optimization methods against noise,14,15

report innovative system setup designs,16,17 and so on.18–20

Recently, convolutional neural networks (CNNs) have been proven to reliably provide
inductive answers to the inverse problem in computational imaging,11 and many biomedical
imaging problems have been solved with CNN, such as computed tomography,21 image
super-resolution,22 and holography.11,23 The purpose of FP is to converge a high-resolution target
from the acquired image sequence. It is natural to introduce the idea of CNN into this inverse
problem and learn an underlying mapping from the low-resolution input to a high-resolution
output.24–27 However, there exist some specific issues in biomedical applications. First, different
from natural image applications, it is hard for biomedical imaging problems to access large
amounts of images. Therefore, supervised CNNs, which rely on large datasets, have encountered
obstacles in training data. Second, computational imaging methods like FP are sensitive to sys-
tem parameters. Once the system setup is changed or the system aberration is introduced, the
performance of the deep-learning-based network will be degraded. Toward the first dilemma,
Zhang et al.27 generated datasets with simulations to train the network. However, there is a lack
of related networks to solve the second issue. To address these dilemmas properly, it is effective
to add constraints based on the application characteristics. Jiang et al.28 proposed a physics-based
framework that they established using a forward imaging model of FP via TensorFlow and uti-
lized the back-propagation to optimize the high-resolution sample. This method uses the imaging
model of FP as the constraint and solves the above two issues. The neural network is only uti-
lized to imitate the traditional iterative recovery process. Following this idea, related methods can
work with limited data29,30 and can work stably toward system aberration.31–34 However, these
works are still essentially the iterative-based algorithm, and the automatic differentiation (AD)
property of the neural network is not fully utilized. It would be much more desirable to design a
new neural network to further degrade the noise in the reconstruction and estimate the optical
aberration with higher accuracy.

In this paper, we report a neural network model to solve Fourier ptychographic problems. The
Zernike aberration recovery and total variation (TV) constraint are introduced as the augmenting
modules to ensure aberration corrected reconstruction and robustness against noise. As such, we
name this model the integrated neural network model (INNM). INNM is essentially a
TensorFlow-based trainable network mimicking the iterative reconstruction of FP. We model
the forward imaging process of FP via TensorFlow at first. To estimate the optical aberration
properly, the optical aberration of the employed objective lens is modeled as a pupil function in
our model and optimized along with the sample through backpropagation. Then we introduce the
alternate updating (AU) mechanism to achieve better performance and use the Zernike mode to
make a robust and proper aberration estimation. As such, our method can recover the optical
aberration with high accuracy and achieve better performance simultaneously. To further elimi-
nate the noise, we incorporated the TVon both the amplitude and phase of the sample image. It
turns out that this application can improve the image quality. Our experiments demonstrate that
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INNM outperforms other methods with higher contrast, especially when validated in a severe
aberration condition.

This paper is structured as follows. In Sec. 2, we discuss the fundamental principles and
reconstruction procedure of FP. In Sec. 3, we describe the model structure and introduced mech-
anisms step by step. Then in Sec. 4, we validate our method on both simulated and experimental
datasets under variant acquisition conditions and analyze the benefits of introduced methods in
detail. Finally, we provide concluding remarks and discuss our ongoing efforts in Sec. 5.

2 Fourier Ptychographic Microscopy

As a classic analytical method, FP is mainly composed of the explicit forward imaging model
and the decomposition procedure. Considering the generalized FP schematic diagram setup
shown in Fig. 1(a), the sample is successively illuminated by plane waves from the LED matrix
at different angles. The exit waves are then captured by the image sensor (CCD) through the
objective lens. Sequentially lighting distinct LEDs on the matrix, FP can obtain a low-resolution
intensity image sequence to recover a high-resolution complex one.

The forward imaging procedure is shown in the left column of Fig. 1(a). We denote the thin
sample as its transmission function oðrÞ, where r ¼ ðx; yÞ represents the 2D spatial coordinates
with its Fourier expression as k ¼ ðkx; kyÞ. When obliquely illuminated by the n’th monochro-
matic LED, the exit wave at object plane can be denoted as oðrÞ ⊙ expðiknÞ, where ⊙ denotes
the element-wise multiplication and kn ¼ ðknx; knyÞ denotes the n’th wave vector corresponding to
the angle of incident illumination. The final wave captured by the CCD can be expressed as

EQ-TARGET;temp:intralink-;e001;116;466IlnðrÞ ¼ jfoðrÞ ⊙ expðiknÞg � F−1fCðkÞgj2; (1)

where F denotes Fourier transformation, � denotes convolution, CðkÞ denotes the coherent
transfer function (CTF) of the objective lens, and IlnðrÞ denotes the captured image under n’th
LED illumination. Here we note that subscripts l, h, and n denote low resolution, high resolution,
and sequence number, respectively. The standard formulation of the pupil function CTF can be
expressed as

EQ-TARGET;temp:intralink-;e002;116;378CðkÞ ¼
�
1; ðk2x þ k2yÞ < ðNA · k0Þ2;
0; otherwise;

(2)

where NA characterizes the range of angles over which the system can accept light, k0 ¼ 2π∕λ
and λ is the illumination wavelength.

(a) (b)

Fig. 1 Fundamental principles of FP: (a) the schematic diagram of the FP experimental setup and
the physical comparison and (b) the iterative decomposition procedure with pupil recovery.
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As for the decomposition procedure shown in Fig. 1(b), FP will first initialize a high-
resolution sample image. Then FP will shift the confined CTF into distinct apertures and utilize
a phase retrieval method called alternating projection (AP) to obtain a self-consistent complex
image. In AP, the pinned aperture in the Fourier domain will be updated by keeping its spatial
phase unchanged and replacing its spatial amplitude with the square root of the corresponding
captured image. In addition, since optical aberration is a common issue in practical applica-
tions,35 it is valuable to embed an extra pupil recovery called ePIE4 after AP to compensate
for this interference. The whole decomposition process with pupil recovery is shown in
Fig. 1(b) (the red flowchart denotes the original FP and the green one denotes the extended
pupil recovery).

3 Method

3.1 Framework of INNM

To solve FP problems via the neural network, we model the forward imaging process via
TensorFlow, which could obtain the sample and optical aberration simultaneously. Figure 2 illus-
trates the detailed pipeline workflow and the framework of our method. As shown in Fig. 2(a),
the upsampled central measurement and the standard CTF without pupil aberration are set to the
initial guess of the sample and CTF, respectively. Then the optimized targets can be obtained
through several training stages. Each training stage consists of a few epochs (for simplicity,
only one epoch is shown). As shown in Fig. 2(b), we take the pair of captured image IlnðrÞ
and corresponding plane wave vector kn as a single batch. In each epoch, all batches are fed
into the model, and the model parameters are updated through backpropagation. To avoid con-
fusion, we termed these batches as varying angle illumination units (VAIUs) and represented
them as a complete epoch.

The detailed framework of our model with the embedded pupil recovery is shown in
Fig. 2(c). This model is transferred from the forward imaging process in the Fourier domain,
and the whole process can be formulated as follows:

(a)

(b) (c)

Fig. 2 Illustration of the INNM framework: (a) schematics of pipeline procedure with the AU
mechanism; (b) schematics of a training epoch; and (c) the basic framework of INNM with
embedded pupil recovery.
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EQ-TARGET;temp:intralink-;e003;116;735φlnðkÞ ¼ Oðkþ knÞ ⊙ CðkÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;701φhnðkÞ ¼ F
n ffiffiffiffiffiffiffiffiffiffiffi

IlnðrÞ
p ⊙ ∠fF−1fφlnðkÞgg

o
; (4)

where OðkÞ denotes the Fourier function of the sample, ∠ denotes the phase, φln and φhn re-
present the original and updated apertures in Fourier domain during the AP.

Reflected in Fig. 2(c), the sample and CTF are naturally treated as two-channel (with the real
and imaginary parts) learnable feature maps. Then the sample OðkÞ in the Fourier domain is
forward propagated through the well-designed framework following Eq. (3), where the sample
is first shifted according to kn and multiplied with the CTF CðkÞ. Then the generated spectrum
φlnðkÞ is transmitted via the AP defined in Eq. (4) with the preupsampled input IlnðrÞ. Thus we
can generate the updated spectrum φhnðkÞ. Based on the phase retrieval mechanism, these two
exit wave series of spectra φlnðkÞ and φhnðkÞ should contain the same frequency information
when converged. Therefore, the whole framework can obtain optimized results by minimizing
the differences between these spectra. The first loss function used in INNM can be expressed as

EQ-TARGET;temp:intralink-;e005;116;552loss ¼ ΣN
n¼0kφhnðkÞ − φlnðkÞk22; (5)

where L2-norm is used to measure the differences and N denotes the number of VAIUs.
As for the detailed composition of the network, self-designed fixed -layers and multiplication

layers are widely used to perform operations such as AP. More specifically, the -layer can be
flexibly customized to define operations, such as using the roll function in TensorFlow to per-
form the shifting operation. As such, these layers can be designed to perform the forward im-
aging model of FP in TensorFlow. We should note that INNM is defined in the complex field,
and all the layers consist of the real and imaginary parts. For example, we should rewrite Eq. (3)
in the complex domain as

EQ-TARGET;temp:intralink-;e006;116;424

φlnðkÞ ¼ fOrðkþ knÞ þ i · Oiðkþ knÞg ⊙ fCrðkÞ þ i · CiðkÞg
¼ ðOr ⊙ Cr −Oi ⊙ CiÞ þ i · ðOr ⊙ Ci þOi ⊙ CrÞ; (6)

where the subscripts r and i denote the real and imaginary parts, respectively. At last, customized
network layers are used to represent the learnable targets, like sample and CTF. As such, the
model is lightweight with limited trainable parameters (sample and CTF). After backpropaga-
tion, we can extract parameters in the learnable layers shown in the blue boxes of Fig. 2(c) to get
the optimized results. Our Jupyter notebook source code for this algorithm has been made avail-
able; a link is provided in the Data, Materials, and Code Availability section, below.

3.2 Alternate Updating Mechanism

Based on the model designed in Fig. 2, we can directly obtain the recovered sample and esti-
mated CTF in theory. However, the sample and CTF have different sensitivities toward the back-
ward gradients. The model cannot converge to the optimal result if the sample and CTF are
updated simultaneously with the same step size of gradient descent. As such, the AU mechanism
is devised to control the optimized target and the step size of gradient descent.

In general networks, the training process is always consecutive. Here we divide the training
process of INNM into plural stages, and the updating objectives differ in adjacent stages. The
approach of how we control the updated parameters has shown in Fig. 2(a). In the first stage, we
believe the CTF is closer to the practical ground truth. Then the parameters of CTF Cð0Þ will be
fixed, and only the sample parameter Oð0Þ can be updated by backpropagation. Then we will
update the CTF Cð0Þ and keep Oð1Þ unchanged since the updated sample Oð1Þ contains more
detailed and realistic information. In short, INNM alternately keeps either the sample or the
CTF constant in a stage. Then INNM can assign the sample and CTF individual learning rates
to control the step size of gradient descent. The targets can be better optimized. As the model
parameters are alternately updated, the sample and CTF will gradually converge to the optimal
point.
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For clarity, the details of the sample and CTF in distinct stages are provided in Fig. 2(a). In
the first stage, the amplitude and phase images of the sample are improved, and in the second
stage, the CTF is updated. We can obtain the estimated CTF and the recovered aberration-free
object in the last stage. As such, we can demonstrate that the benefit of applying AU into the
INNM is that this mechanism can help to update the parameters more appropriately by control-
ling the optimized target.36

3.3 Improved Modality of Optical Aberration

In FP applications, if the sampling pattern is a periodic grid in the Fourier domain, it would
introduce periodic artifacts to the recovered pupil function. Then this corrupted pupil function
will degrade the high-resolution FP reconstruction.18 To address this problem, the Zernike poly-
nomials are incorporated due to their powerful ability to describe wavefront characteristics in
optical imaging.37–39

In addition, the CTF is always updated as a whole. Nevertheless, if the Zernike mode is
applied to model the CTF, the parameters that need to be compensated for the aberration are
reduced from the square of image size to the constant number of Zernike modes that need to be
fitted. In other words, the optimization degrees of freedom are orders of magnitude lower than
the previous implementations.

As such, the new modality of CTF’s phase is updated as

EQ-TARGET;temp:intralink-;e007;116;495∠CðkÞ ¼
XL
l¼1

cl · ZlðkÞ; (7)

where L denotes the number of Zernike modes used in the model, and cl ∈ R is the coefficient of
each polynomial ZlðkÞ. In general, the first nine modes after piston Z0

0 can already fit the
common aberration in microscopy. Consequently, we can only train nine parameters to achieve
the same performance as that of its entirety. As for the CTF’s amplitude, it will still be updated as
a whole. As such, CðkÞ ¼ jCðkÞj ⊙ expfi∠CðkÞg is the final form we used in INNM to model
the CTF.

3.4 Enhanced Loss Function

One of the strengths of neural networks lies in the auto-differentiation capabilities of optimi-
zation toolboxes. Therefore, different cost functions can lead to different results. If the appro-
priate functions are introduced, the model can achieve better results.

In FP applications, the recovered sample image will contain noise due to the limited syn-
thesized NA. As such, considering reduce noise without degrading edges, we can use the TV
regularizer to achieve better performance. TV regularization is widely used in the field of signal
processing and so on.40,41 By calculating the integral of the absolute gradient, it evaluates the
degree in which the image is disturbed by noise.

We expand the loss function Eq. (5) with TV as follows:

EQ-TARGET;temp:intralink-;e008;116;227loss ¼ kφhnðkÞ − φlnðkÞk22 þ α1 · TVfjΦhnðrÞjg þ α2 · TVf∠ΦhnðrÞg; (8)

EQ-TARGET;temp:intralink-;e009;116;183TVfoðrÞg ¼
X

ðjoxþ1;y − ox;yj2 þ jox;yþ1 − ox;yj2Þη∕2; (9)

where j · j and ∠ represent the amplitude and phase of the complex sample ΦhnðrÞ. In addition,
ΦhnðrÞ is the transmission function of the spectrum φhnðkÞ in the spatial domain. Equation (8) is
composed of three parts, where kφhnðkÞ − φlnðkÞk22 denotes the L2-norm during the AP,
TVfjΦhnðrÞjg and TVf∠ΦhnðrÞg represent the TV regularization of the amplitude and the phase
of the updated image. Parameters α1 and α2 denote the coefficients of two TV terms, respec-
tively. The larger the values are, the smoother the reconstructed images are. The standard for-
mulation of the TV function is expressed as Eq. (9), where oðrÞ is used as a template, η represents
the power series of TV, and η ¼ 1 is used in our experiments. Since the TV regularization is
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applied to improve the spatial smoothness of two relevant targets, our method can adjust the
performance by choosing different TV coefficient combinations.

3.5 FP Reconstruction Procedure with INNM

Combining the above mechanisms, our model can effectively reconstruct the sample and CTF
with smooth background and high image contrast.

As shown in Fig. 2(a), the whole procedure can be divided into three parts. In the initial-
ization stage, the upsampled intensity image and the standard CTF without pupil aberration are
used as the initial guesses. Next, the sample and CTF are modeled as learnable weights of hidden
layers according to Eqs. (3), (4), and (7) and optimized according to Eq. (8). The gradient is then
calculated by the auto-differentiation of TensorFlow to optimize the learnable parameters. It
should be noted that the captured images should be preupsampled to satisfy the size require-
ments. In the output stage, we can obtain the sample with recovered CTF simultaneously by
extracting the optimized weights of hidden layers.

4 Experiments

We validated our INNM on both simulated and experimental datasets. For comparison, we
mostly compared our results with the widely used method ePIE,4 which is a robust and effective
FP method with pupil recovery. We also compared with other methods over the experimental
dataset, such as Jiang’s method28 and AS.42

4.1 System Setup

The whole setup with its schematic diagram is shown in Fig. 1(a). In our setup, a programmable
15 × 15 LED matrix (532 nm central wavelength) is placed ∼90 mm below the sample plane for
illumination. The distance between adjacent LEDs is 4 mm. Then the 2×, 0.1 NA objective lens
with a 200-mm tube lens is used to build the FP microscopy system, and a camera with a pixel
size of 3.45 μm is utilized to capture low-resolution intensity images. As such, the overlap ratio
in the Fourier space is about 78% and the synthetic NAsyn could be up to 0.50.

For the generation of simulated datasets, we chose two images with a size of 128 × 128 as the
ground truth. Then 225 32 × 32 simulated intensity images were generated based on the above
system setup. To be more authentic, we additionally assumed the simulated images were cap-
tured with a defocus aberration, where the defocus mode Z0

2 is about -1.44, corresponding to
50 μm defocus.

For the acquisition of experimental datasets, we captured the images under two different
conditions. First, we obtained two tissue section datasets with the image size of 64 × 64.
The samples were well placed on the focal plane, and the aberration could be ignored. Then
we designed an extreme but valuable extension that we crop a 128 × 128 tile close to the edge
of the entire FOV with severe aberration.

For the experimental datasets, we alternately updated the sample and CTF with 10 stages and
5 epochs for each stage. For simulated datasets, such hyperparameters would be different since
the image size was smaller.

4.2 Results on Simulated Datasets

The ground truth of the simulated dataset is shown in Fig. 3(f). The cameraman and street map
are used as the amplitude and phase images. The defocus aberration is set to be the optical
aberration. The goal of reconstructed methods is to extract the sample and CTF from 225 32 ×
32 intensity images.

4.2.1 Alternate updating process

For clarity, we call the framework of INNM in Sec. 3.1 as B-INNM. Then recovered results
under different settings of INNM are represented in Figs. 3(a)–3(d), and INNM stands for
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B-INNM with all the attributes. Considering the influence of the AU, we compare the recovered
results shown in Figs. 3(a) and 3(b). It is apparent that the former sample images are quite
ambiguous, and the estimated aberration is also meaningless. Instead, the latter one contains
fewer artifacts and achieves higher fidelity, owing to the introduction of the AU mechanism.
In addition, we represent the training curve with AU shown in Fig. 3(g). Based on the above
discussion, we can demonstrate that AU can lead to the expected optimum by controlling the
optimized target and compensate for the aberration to some extent. However, the recovered aber-
ration contains unexpected periodic speckles [Fig. 3(b3)]. This problem is caused by the periodic
grid sampling pattern in the Fourier domain and would degrade the high-resolution FP
reconstruction.18 To solve this problem, additional principles are incorporated.

4.2.2 Zernike polynomial function

As shown in Fig. 3(c), the greatest contribution made by the Zernike mode is the proper cor-
rection of the aberration. Compared to the aberration shown in Fig. 3(b3), the new aberration
with the Zernike modes completely removes the pollution of raster-grid speckles. Furthermore,
the decomposed Zernike coefficients under various conditions are illustrated in Fig. 3(h). We can
find that INNM can fit the polynomial coefficients with high accuracy in all order terms, whereas
B-INNMwith AU cannot restore these parameters. As such, the biased coefficients in tilt Zernike
modes (Z−1

1 and Z1
1) lead to the raster-grid speckles in Fig. 3(b3). When this issue is resolved, the

Zernike mode helps to achieve the higher reconstruction quality shown in Fig. 3(c). Such a
phenomenon proves that taking the optical aberration as a power series expansion is better for

–1.5

1.5

0

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c3)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

(f1)

(f2)

(f3)

(h)(g)

Fig. 3 Comparison of recovered results and some decomposed Zernike amplitudes.
(a)–(f) Recovered results of the sample and pupil function under different methods (the amplitude
are normalized into 0 to 1). (g) Decline curve of the INNM. (h) A scatter plot of some decomposed
Zernike polynomial coefficients cl (piston coefficient Z 0

0 is not present).
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optimization than taking it as a whole. In addition, we can further find that the decomposed
coefficient amplitudes obtained from ePIE are differential from the ground truth in the tilt
Zernike modes. This disadvantage will hinder the high-quality reconstruction shown in Fig. 3(e).

4.2.3 Total variation loss

By introducing the above two mechanisms into the B-INNM, our method can predict the optical
aberration with high accuracy and eliminate its interference. Here we will provide the results of
integrating the TV loss in the final objective function. In FP, the recovered amplitude and phase
can always crosstalk with each other and cause background artifacts. As shown in Fig. 3(c), even
though we properly estimate the aberration, the recovered sample images still suffer from this
noise. To degrade unexpected noises, we introduce the TV regularization and the modified result
is shown in Fig. 3(d). It is obvious that the background noise is greatly degraded and achieves
higher image quality. In the end, we compare our results [Fig. 3(d)] with ePIE [Fig. 3(e)]. We can
clearly find that our reconstructed phase completely eliminates the amplitude interference while
ePIE cannot, owing to the introduction of advanced mechanisms.

In summary, by reproducing the imaging system through neural network tools and incorpo-
rating advanced mechanisms, our method provides a new perspective for FP reconstruction and
can achieve higher image quality against optical aberrations and artifacts.

4.3 Results on Experimental Datasets

In this section, we implement our method over several experimental datasets captured under
normal and severe conditions.

4.3.1 Normal condition

We first implement our framework over two general datasets where the samples are well placed
on the focal plane. Figure 4 shows the reconstructions of a tissue section stained by immuno-
histochemistry methodology and a blood smear. In Fig. 4(a), we show the three recovered images
of the tissue section illuminated by red, green, and blue monochromatic LEDs. By combining the
three images together, the recovered color amplitude is shown in Fig. 4(b1) with its phase shown
in Fig. 4(b2). The corresponding results from ePIE are shown in Fig. 4(c). The tissue section
dataset is carefully captured so that the aberration could be ignored during the reconstruction. As
such, we can find that both INNM and ePIE can obtain images with high quality.

In addition, we test the two methods in another blood smear dataset shown in Figs. 4(d)–4(f)
and draw the same conclusion. The recovered sample images from ePIE and INNM share highly
similarly detailed information such as cellular structures and phase distribution, and we can

(b1) (b2)(a) (d1) (d2) (f)

(c1) (e1) (e2)(c2)

Fig. 4 Reconstruction of two datasets in a low-aberration condition. (a) Recovered amplitudes at
632, 532, and 470 nm wavelengths from INNM. (b), (c) The combined color intensity and phase
images of a tissue section stained by immunohistochemistry methodology from INNM and ePIE.
(d)–(f) Recovered results of blood cells.
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clearly see the performance improvement from these reconstructions compared to raw images
shown in Fig. 1(b).

4.3.2 Severe condition

Although the image reconstruction capabilities of INNM and ePIE are similar in generic data-
sets, the introduced mechanism introduced by INNM greatly enhances the potential to alleviate
the optical aberration. We deliberately crop a tile close to the edge of the entire FOV, in which the
system aberration is so sophisticated that seriously affects the qualities of captured intensity
images. To make our results more credible, we additionally test INNM under different network
settings, adjust the number of Zernike modes L to 50, and make an extra comparison with Jiang’s
method28 and AS.42

The reconstructed amplitude images with some magnified areas are shown in Fig. 5 (the
ground truth is obtained from the aberration-free dataset). First, compared with the ground truth
shown in Fig. 5(a), we can easily find that ePIE cannot recover the amplitude with distinguish-
able cell structures [Fig. 5(e)], which also happens in the reconstruction of INNM without
Zernike function [Fig. 5(d)]. Then when focusing on the center of the secondary magnification
area, we can find that reconstruction obtained by the INNM without TV is rough in detail due to
the noise [Fig. 5(c)], and the information of small cellular structure is totally lost. In contrast, the
complete INNM can distinguish this small cell characteristic from surrounding tissue structures,
and the overall image is high quality with a smooth background [Fig. 5(b)].

In Fig. 6, we further compare the phase images recovered from INNM, ePIE, Jiang’s method,
and AS, in which the first two methods take optical aberration into account and the latter two do
not (all the methods start with the zero-aberration hypothesis). It is clear that reconstructions
from Jiang’s method and AS are highly blurred and cannot provide instructive information due
to the influence of aberrations. For more recognizable details shown in the secondary magni-
fication area, we can find that INNM achieves higher contrast than ePIE, compared with GT
shown in Fig. 6(a). Also the cell structure of ePIE is quite blur compared with INNM.

Reflected in the recovered optical aberration, the results of ePIE and INNM without the
Zernike mode [Figs. 6(g) and 6(f)] are quite different from those of INNM with and without
TV [Figs. 5(f) and 5(g)], resulting in poor performance on recovered images shown in Fig. 5.
This phenomenon further proves the superiority of INNM in compensating aberration.

In conclusion, INNM can reconstruct sample images with high quality in both simulated and
experimental datasets. Especially, when validated in severe aberration conditions, INNM per-
forms higher robustness against sophisticated optical aberrations and achieves better perfor-
mance than other methods. This improved performance relies on the augmenting modules
like Zernike aberration recovery on the one hand, and the AD of optimization tools in neural
networks on the other hand. The AD approach allows solving FP problems without finding an

(a) (b)
1

0

–1

1

0

–1

(c) (f)

(d) (e) (g)

Fig. 5 Recovered amplitude images of a tissue slide in condition of severe aberration: (a) high-
resolution ground truth; (b)–(d) recovered amplitudes from INNM under different conditions;
(e) recovered amplitude from ePIE; and (f), (g) aberrations restored from INNM with and without
TV.
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analytical derivation of the update function since the derivation could be challenging to obtain. In
addition, AD is directly benefited from the progress made in the machine-learning community in
terms of hardware, software tools, and algorithms. We can expect INNM to be further improved
thanks to the fast-paced progress in AD.

5 Conclusion

In this work, we reported a reconstruction method based on the neural network model to solve FP
problems and achieved artifacts-free performance. By reproducing the imaging process into the
neural network and modeling the sample and aberration as learnable weights of multiplication
layers, INNM can obtain an aberration-free complex sample. Advanced tools are further intro-
duced to ensure good performance. The AU can help INNM optimize the sample and aberration
in an appropriate alternative way, the introduced Zernike mode can estimate the sophisticated
optical aberration with high accuracy and the TV terms is useful to reduce artifacts by encour-
aging spatial smoothness. We tested our method over both the simulated and experimental data-
sets, and the results demonstrated that INNM could reconstruct images with smooth backgrounds
and detailed information. We believe our recovered aberration can be used as a good estimation
toward system optical transmission and we hope our method can provide a neural-network per-
spective to solve the iterative-based coherent or incoherent imaging problem. Moreover, we can
expect such techniques can be further improved thanks to the fast-paced progress in deep-learning
toolboxes like TensorFlow or powerful tools like novel regularizations and optimizers.

There are many works worth trying in the future. For example, we can replace some layers of
INNM with advanced architectures so that the model can learn some advanced features in
advance. In addition, although we can foresee the effect of different coefficient combinations
in TV terms, manual adjustment is still required for redundant operation in practice. As such,
how to optimize the image evaluation system, with which the network model can automatically
adjust the performance, is also a feasible direction of research.
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Fig. 6 Recovered phase images in condition of severe aberration: (a) ground truth; (b)–(e) recov-
ered phases from INNM, ePIE, Jiang’s method, and AS;42 and (f), (g) aberrations restored from
INNM without Zernike mode and ePIE.
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Data, Materials, and Code Availability

Our code for simulation is available in the Figshare repository via the link https://figshare.com/
articles/PgNN-Code-zip/11906832.
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